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Résumé: On donne une généralisation à la dimension supérieure des résultats obtenus par
Birkhoff et Mather sur l’existence d’orbites errant dans les zones d’instabilité des applications
de l’anneau déviant la verticale. Notre généralisation s’inspire fortement de celle proposée
par Mather dans [9]. Elle présente cependant l’avantage de contenir effectivement l’essentiel
des resultats de Birkhoff et Mather sur les difféomorphismes de l’anneau.

Abstract: We generalize to higher dimension results of Birkhoff and Mather on the exis-
tence of orbits wandering in regions of instability of twist maps. This generalization is strongly
inspired by the one proposed by Mather in [9]. However, its advantage is that it contains most
of the results of Birkhoff and Mather on twist maps.

A very natural class of problems in dynamical systems is the existence of orbits connecting
prescribed regions of phase space. There are several important open questions in this line,
like the one posed by Arnold : Is a generic Hamiltonian system transitive on its energy shells?

Birkhoff’s theory of regions of instability of twists maps, recently extended by Mather
using variational methods and by Le Calvez, provide very relevant results in that direction.
In short, these works establish the existence, for a certain class of mappings of the annulus,
of orbits visiting in turn prescribed regions of the annulus under the hypothesis that these
regions are not separated by a rotational invariant circle.

John Mather has opened the way to a generalization in higher dimension of this celebrated
theory by proposing what seems to be the appropriate setting i.e. time dependent positive
definite Lagrangian systems. In this setting, he has obtained the existence of families of
invariant sets generalizing the well known Aubry-Mather invariant sets of twist maps. Then
he stated in 1993 a result on the existence of orbits visiting in turn neighborhoods of an
arbitrary sequence of these invariant sets. However, the work of Mather is not a complete
achievement since there is no relevant example in high dimension to which it can be applied,
and since it is not completely optimal even in the case of Twist maps. There are examples
where two Aubry-Mather sets of a twist map are not separated by a rotational invariant circle,
hence can be connected by an orbit, but where this can’t be seen by the result of Mather.

In the present paper, we state a new result on the existence of connecting orbits in higher
dimension, with a full self-contained proof. This result is very close to the one of Mather, and
the main ideas of the proof are the ones he introduced. Our result has the advantage that it
is optimal when applied to the twist map case, but it does not contain the result of Mather,
which we were not able to prove. 1

It is still an open question whether these results may be applied to interesting example in
higher dimension 2. On one hand, it is encouraging that this result is optimal when restricted

1As it is written in [11], the proof contains a gap which I am not able to fill.
2Just before I finished this text, John Mather has announced that he had been able to prove an important

result on Arnold diffusion, so the full achievement of the method may soon be reached.
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to the case of twist maps, but on the other hand we will prove that the result is useless in the
autonomous case. Additional work will be required both to weaken the abstract hypotheses
needed to prove the existence of connections, and to understand when these hypotheses are
satisfied.

I am grateful to Lucien Guillou who patiently encouraged me while I was writing this
paper, and to Albert Fathi for his careful reading of the manuscript and for valuable comments
which helped me to shorten some of the proofs. It is also a pleasure to thank Daniel Massart
for all the discussions we had, which were very helpful to me.

0.1 Let M be a smooth, compact, connected manifold, TM π−→ M its tangent bundle. In
the following, we note S = R/Z. We choose once and for all a Riemann metric g on M . It
is classical that there is a canonical way to associate to it a metric on TM . Let us fix a C2

Lagrangian function L : TM × R −→ R. Given any compact interval I, we have an action
functional defined on C1(I,M) by

A(γ) =
∫
I
L(dγ(t), t)dt.

Here and in the following, we note dγ(t) for the curve dγt(1) : I −→ TM. The extremals of
L on I are the critical points of A with fixed endpoints. We want to study the Lagrangian
system associated with L, that is the extremal curves of L. We suppose that L satisfies the
following conditions introduced by Mather [10]:
Periodicity The Lagrangian L is 1-periodic in time i.e. L(z, t) = L(z, t+1) for all z ∈ TM
and all t ∈ R.
Positive Definiteness For each x ∈M and each t ∈ R, the restriction of L to TxM × t is
strictly convex with non degenerate Hessian.
Superlinear Growth For each t ∈ R,

L(z, t)/‖z‖ −→ ∞ as ‖z‖ −→ ∞.

Under these hypotheses, there exists a continuous vector field EL on TM × S, the Euler-
Lagrange vector-field, which has the property that a C1 curve γ is an extremal of L if and
only if the curve (dγ(t), t mod 1) is an integral curve of EL. Although this vector field is only
continuous, it has a local flow φt on TM × S called the Euler-Lagrange flow. We assume :
Completeness The local flow φt is complete i.e. any trajectory X : I −→ TM × S of the
flow can be extended to a trajectory X̄ : R −→ TM × S.

0.2 Let I = [a, b] be a compact interval of time. A curve γ ∈ C1(I,M) is called a minimizer
or a minimal curve if it minimizes the action among all curves ξ ∈ C1(I,M) which satisfy
γ(a) = ξ(a) and γ(b) = ξ(b). If J is a non compact interval, the curve γ ∈ C1(J,M) is called
a minimizer if γ |I is minimal for any compact interval I ⊂ J . An orbit X(t) of φt is called
minimizing if the curve π ◦X is minimizing, a point (z, s) ∈ TM ×S is minimizing if its orbit
φt((z, s)) is minimizing. Let us call G̃ the set of minimizing points of TM × S. We shall see
that G̃ is a nonempty compact subset of TM × S, invariant for the Euler-Lagrange flow.

0.3 Let η be a 1-form of M × S. We associate to this form a function on TM × R, still
denoted η, and defined by

η(z, t) = 〈η, (z, t mod 1, 1)〉(π(z),t mod 1),
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where 〈., .〉(x,s) is the usual coupling between forms and vectors of T(x,s)(M × S). If the form
η is closed, then the Euler-Lagrange vector field of L− η is the Euler-Lagrange vector field of
L, and L− η satisfies all the hypotheses of 0.1 if L does. Let us define the mapping

is : M −→M × S
x 7−→ (x, s).

For any 1-form η on M × S, let us define the form ηs on M by

ηs = i∗sη.

If η is a closed 1-form, we define its class [η] = [ηs] ∈ H1(M,R), which does not depend on s.
Let η and µ be two closed forms such that [η] = [µ]. It is clear that the minimizing curves of
L− η and L− µ are the same. Let us call G̃(c) the set of minimizing points associated to the
Lagrangian L − η, where η is any closed one-form such that [η] = c. Let us also define, for
each s ∈ S, the set G̃s(c) ⊂ TM of points z ∈ TM such that (z, s) ∈ G̃(c). We will also call
G(c) and Gs(c) the projections of G̃(c) and G̃s(c) on M × S and M .

0.4 Let ω̃(c) be the union of ω-limit points of minimizing trajectoriesX : [0,∞) −→ TM×S.
Let α̃(c) be the union of α-limit points of minimizing trajectories X : (−∞, 0] −→ TM × S.
In both definitions above, minimization is considered with Lagrangians L− η, where η is any
closed one-form on M × R satisfying [η] = c. We will consider the invariant set

L̃(c) = ω̃(c) ∪ α̃(c).

We will see that L̃(c) ⊂ G̃(c). In addition, L̃ is contained in the classical Aubry set Ã(c),
hence satisfies the Lipschitz graph property, see section 3 for more details.

0.5 We associate to any subset A of M the subspace

V (A) =
⋂{

iU∗H1(U,R) : U is an open neighborhood of A
}
⊂ H1(M,R),

where iU∗ : H1(U,R) −→ H1(M,R) is the mapping induced by the inclusion. There exists
an open neighborhood U of A such that V (A) = iU∗H1(U). We can now define, for each
c ∈ H1(M,R) the following subspace of H1(M,R):

R(c) =
∑
t∈S

(
V
(
Gt(c)

))⊥
.

Our improvement compared with [11] is that R(c) may be bigger than V
(
G0(c)

)⊥, which was
considered there. To be more precise, the minimizing curves used in Mather’s work satisfy
stronger conditions than belonging to G̃, and their union is a smaller set called the Mañe set
Ñ , see section 3 for the definition. As a consequence, our result does not contain the result
stated in [11]. However, the proof is only sketched in Mather’s paper, and it is not clear to
me how it should be completed.
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0.6 We say that a continuous curve c : R −→ H1(M,R) is admissible if for each s0 ∈ R, there
exists δ > 0 such that c(s)−c(s0) ∈ R(c(s0)) for all s ∈ [s0−δ, s0+δ]. We say c0, c1 ∈ H1(M,R)
are C-equivalent if there exists an admissible continuous curve c : R −→ H1(M,R) such that
c(s) = c0 when s 6 0 and c(1) = c1 when s > 1. This is precisely the definition of Mather
[11] except that our R(c) is different from Mather’s one. We are now in a position to state
our main result :

Theorem : Let us fix a C-equivalence class C in H1(M,R). Let (ci)i∈Z be a bi-infinite
sequence of elements of C and (εi)i∈Z be a bi-infinite sequence of positive numbers. There
exist a trajectory X(t) of the Euler-Lagrange flow and a bi-infinite increasing sequence ti of
times such that

d
(
X(ti), L̃(ci)

)
6 εi.

If in addition there exists a class c∞ such that ci = c∞ for large i, or a class c−∞ such that
ci = c−∞ for small i, then the trajectory X is ω-asymptotic to L̃(c∞) or α-asymptotic to
L̃(c−∞).

We shall state and prove in section 2 slightly refined theorems, which imply the following
corollaries :
corollary 1 : Let c0 and c1 be two C-equivalent classes. There exists a trajectory of the
Euler Lagrange flow the α-limit of which lies in L̃(c0) and the ω-limit of which lies in L̃(c1).
corollary 2 : If there exist two C-equivalent classes c0 and c1 such that L̃(c0) and L̃(c1) are
disjoint, then the time one map of the Euler-Lagrange flow has positive topological entropy.
There is another statemement using the function α of Mather, see section 4. If there exist
two C-equivalent classes c0 and c1 such that α[c0,c1] is not affine, then the time one map of
the Euler-Lagrange flow has positive topological entropy.

0.7 Let us insist on the relations between our theorem and the theorem of Mather in [11].
The only difference between these two results lies in the definition of C-equivalence, and more
precisely in the definition of R(c). We replaced

V
(
N0(c)

)⊥
as the subspace of allowed directions in [11], §12, by

R(c) =
∑
t∈S

(
V
(
Gt(c)

))⊥
,

where N is the set of semi-static curves, see section 3. The bigger the subspace of allowed
directions is, the stronger the result. Our result do not contain the result of Mather because we
had to replace the set N of semi-static orbits (see section 3) by the larger set G of minimizing
orbits in order to fill the proof. On the other hand our subspace is bigger in certain cases for
example in the twist map case. An important consequence is that our result is optimal in the
case M = S while the result of Mather was not. In this case, two cohomology classes c and c′

are C-equivalent in our sense if and only if the associated sets G̃(c) belong to the same region
of instability, that is if they are not separated by an invariant graph. See section 6 for the
details. Our result is equivalent to the result of Mather in the autonomous case, however, as
we shall explain in 4.11 it is of no interest in this case.
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0.8 In order to apply the theorem, it is necessary to be able to describe the C-equivalence
classes. This is not an easy task even in the case M = S. It requires a good understanding
of the set G(c) of minimizing curves. A lot of literature is devoted to the study of globally
minimizing orbits. We give a review in Section 3. We focus in Section 4 on the dependence on
the cohomology, and introduced the function α of Mather. All these results provide a good
description of a smaller set, the Mañe set. In section 5, we see that the difference between the
Mañe set and the set G is linked with the asymptotic behavior of the so called Lax-Oleinik
semi-group. We exploit this remark to obtain some results on the shape of the set G. In
section 6, we apply these results to the case of twist maps, and obtain that our theorem is
optimal in this case. Unfortunately, there is no hope to apply our result in the autonomous
case, as is explained in 4.11.

0.9 For the convenience of the reader, we list the sets of minimizing orbits that will be
considered in the sequel:
G̃ is the set of minimizing orbits, defined in 0.2.
L̃ is defined in 0.4.
M̃ is the Mather set, defined in 2.4.
Ñ is the Mañe set, defined in 3.4.
Ã is the Aubry set, defined in 3.4.
S̃ are the static classes, defined in 3.11. They partition Ã.
We will prove in 3.9 the inclusion

M̃ ⊂ L̃ ⊂ Ã ⊂ Ñ ⊂ G̃.

The sets M,L, . . . are the projections onto M of the corresponding invariant sets in TM .

1 Minimization

It is useful to work in a slightly more general setting. In this section, we will consider a
Lagrangian L : TM × R −→ R, not necessarily time-periodic, satisfying positive definiteness
and superlinearity, but not necessarily completeness.

1.1 If the positive definiteness and superlinear growth are satisfied, there is a continuous
local flow ψt on TM such that the curve γ is a C1 extremal of L if and only if the curve
X(t) = dγ(t) is a trajectory of ψt. This local flow, called the Euler-Lagrange flow, is not
assumed to be complete in the present section.

1.2 The variational study of L relies on some standard results proved in [10].
Lemma : Given a real number K and a compact interval [a, b], the set of all absolutely
continuous curves γ : [a, b] −→M for which A(γ) 6 K is compact for the topology of uniform
convergence.
Tonelli’s theorem : Let [a, b] be a compact interval, and let us fix two points xa and
xb in M . The action takes a finite minimum over the set of absolutely continuous curves
γ : [a, b] −→ M satisfying γ(a) = xa and γ(b) = xb. If in addition the Euler-Lagrange local
flow is complete, then any curve γ realizing this minimum is C1 and dγ(t) is a trajectory of
the Euler-Lagrange flow.

Let I = [a, b] be a compact interval of time. A curve γ ∈ Cac(I,M) is called a minimizer
or a minimal curve if it is minimizing the action among all curves ξ ∈ Cac(I,M) which
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satisfy γ(a) = ξ(a) and γ(b) = ξ(b). Let J be any interval of R. A curve γ ∈ Cac(J,M) is
called a minimizer if γ |I is minimal for any compact interval I ⊂ J . Let us notice that if
the completeness is not assumed, the absolutely continuous minimizers need not be C1, an
example of this is given in [1].

1.3 Proposition There exist absolutely continuous minimizers γ ∈ Cac(R,M). If the
flow is complete, these minimizers are C1 extremals and the curves dγ(t) are trajectories of
the Euler-Lagrange flow.

This proposition follows from the following lemmas, which are stated in higher generality
for later use.

1.4 Lemma Let us fix a positive definite superlinear Lagrangian L, a compact interval of
time [a, b] and a positive constant C. There exists a constant K with the following property:
If L̃ is a positive definite superlinear Lagrangian such that

|L̃(z, t)− L(z, t)| 6 C(1 + ‖z‖)

for all z ∈ TM and all t ∈ [a, b], and if γ : [a, b] −→M is a minimizer of L̃, then∫ b

a
‖dγ(t)‖ dt 6 K and

∫ b

a
L(dγ(t), t) dt 6 K.

Proof There exists a constant B depending on L, C and [a, b] such that all minimizer γ
of L̃ satisfies Ã(γ) 6 B, where Ã is the action associated to L̃. Since L is superlinear, there
exists a constant D such that

L(z, t) > (C + 1)‖z‖ −D

for all z ∈ TM and t ∈ [a, b]. It follows that L̃ > ‖z‖ − C −D, and we get the first estimate∫
‖dγ‖ 6 B + (b− a)(C +D).

We get the second estimate thanks to the inequality

A(γ) 6 Ã(γ) + C

∫
‖dγ‖+ C(b− a).

This ends the proof of the lemma. �

1.5 Lemma Let L be a positive definite superlinear Lagrangian, and let [a, b] be a compact
interval of time. Let Ln be a sequence of positive definite superlinear Lagrangians, such that
|Ln(z, t) − L(z, t)| 6 εn(1 + ‖z‖) for all z ∈ TM and all t ∈ [a, b], where εn is a sequence
converging to 0. If γn : [a, b] −→ M is a sequence of minimizers of Ln converging uniformly
to γ : [a, b] −→M , then

A(γ) = lim
∫ b

a
Ln(dγn(t), t) dt

and γ is a minimizer of L on ]a, b[.
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Proof In view of Lemma 1.4, the sequence A(γn) is bounded and A(γn)−An(γn) −→ 0.
By Lemma 1.2, the curve γ is absolutely continuous, and satisfies

A(γ) 6 lim inf A(γn) = lim inf An(γn).

In order to prove the lemma, it is thus sufficient to prove that if x : [a, b] −→ M is an
absolutely continuous curve such that γ(t) = x(t) in a neighborhood of a and b, then A(x) >
lim supAn(γn). Let x(t) be such a curve. Recall that x is differentiable almost everywhere.
Let us consider an interval [a′, b′] ⊂ [a, b] such that x is differentiable at a′ and b′ and such
that γ(a′) = x(a′) and γ(b′) = x(b′). There exist positive constants δ0 and K such that, for
all δ ∈]0, δ0[,

d
(
x(a′), x(a′ + δ)

)
6 Kδ and d

(
x(b′ − δ), x(b′)

)
6 Kδ.

As a consequence, there exists an integer N(δ) such that

d
(
γn(a′), x(a′ + δ)

)
6 2Kδ and d

(
x(b′ − δ), γn(b′)

)
6 2Kδ

for all n > N(δ). Now let us consider the geodesic ξ : [a′, a′ + δ] −→ M connecting γn(a′)
and x(a′+ δ), and the geodesic ζ : [b′− δ, b′] −→M connecting x(b′− δ) and γn(b′). If δ 6 δ0

and n > N(δ), they satisfy ‖dξ‖ 6 2K and ‖dζ‖ 6 2K, hence there exists a constant B such
that An(ξ) 6 Bδ and An(ζ) 6 Bδ. Since γn is minimizing on [a′, b′], it follows that

An
(
x|[a′+δ,b′−δ])

)
+ 2Bδ > An

(
γn|[a′,b′]

)
.

Taking the limit, we obtain

A
(
x|[a′+δ,b′−δ])

)
+ 2Bδ > lim supA

(
γn|[a′,b′]

)
.

since this holds for all δ 6 δ0, we get that A
(
γ|[a′,b′]

)
> lim supA

(
xn|[a′,b′]

)
. At the limit

a′ −→ a, b′ −→ b, we obtain that A(x) > lim supA(γn). �

1.6 Lemma Let In = [an, bn] be a nondecreasing sequence of compact intervals and let
J = ∪nIn. Let Ln be a sequence of positive definite superlinear Lagrangians, such that∣∣Ln(z, t)− L(z, t)

∣∣ 6 εn(1 + ‖z‖)

for all z ∈ TM and all t ∈ In, where εn −→ 0. If γn : In −→ M is a sequence of minimizers
of Ln, then there is an absolutely continuous curve γ : J −→ M which is minimizing for L
on the interior of J , and a subsequence of γn which converges uniformly on compact sets of
J to γ.
Proof In view of Lemma 1.4, the sequence

k 7−→ A
(
γk|In

)
is bounded for each n. It follows from Lemma 1.2 that there is a subsequence of k 7−→
γk|In converging uniformly. By diagonal extraction, we can build a subsequence of γn which
converges uniformly on compact sets to an absolutely continuous limit γ : J −→ M . By
Lemma 1.5, this limit is a minimizer of L on the interior of J . �
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1.7 We will have in the following to consider one-forms on M×R which are neither periodic
nor closed. Let µ be a 1-form of M × R. We associate to this form a function on TM × R,
still denoted µ, and defined by

µ(z, t) = 〈µ, (z, t, 1)〉(π(z),t).

The new Lagrangian L− µ is positive definite and superlinear if L is. If µ is closed, then the
Euler-Lagrange flows of L and L− µ are the same. Let us define the mapping

it : M −→M × R
x 7−→ (x, t),

and the form µt = i∗tµ. If µ is closed, we define its homology [µ] = [µt] ∈ H1(M,R). We will
often identify a form η on M × S with its periodic pull-back on M × R.

2 Connecting orbits

In this section, we prove Theorem 0.6. In fact, we will prove more precise results, Theorems
2.10, which clearly imply Theorem 0.6 and the corollaries. We suppose from now on that L
satisfies all the hypotheses of 0.1.

2.1 Proposition The set G̃(c) as defined in 0.3 is a non empty compact subset of
TM × S. It is invariant under the Euler-Lagrange flow. The mapping c 7−→ G̃(c) is upper
semi-continuous.
Proof That G̃(c) is not empty follows from Proposition 1.3. The other statements are
consequences of the following lemma.

2.2 Lemma : Let us consider a sequence cn −→ c of cohomology classes, a sequence
Tn −→ ∞ of times, and a sequence γn : [−Tn, Tn] −→M of curves minimizing L− cn. Then
there exists a curve γ ∈ C1(R,M) minimizing L− c and a subsequence γk of γn such that the
sequence dγk is converging uniformly on compact sets to dγ.

Proof This lemma is mainly a special case of Lemma 1.6. However, we have to prove
that the convergence of γn to γ holds in C1 topology. Since all the curves γn satisfy the
Euler-Lagrange equation associated to L, the sequence γn is relatively compact in the C1

topology if it is bounded in this topology. This in turns follows from :

2.3 Lemma : Let us consider a compact set Q ⊂ H1(M,R). There exists a constant
K > 0 such that, if b > a + 1, all curve γ : [a, b] −→ M minimizing L + c, with any c ∈ Q
satisfy ‖dγ(t)‖ 6 K for each t.

Proof Let γ : [a, b] −→M be a curve minimizing L+ c, with c ∈ Q. Let I be an interval
of the form [a + i, a + i + 1] in [a, b], with i ∈ Z. By Lemma 1.4, there exists a constant
K ′ independent of I such that

∫
I ‖dγ‖ dt 6 K ′. It follows that (dγ, t mod 1) intersects the

compact set {‖z‖ 6 K ′} ⊂ TM × S on each of the intervals I. Let us set

K̃ = ∪t∈[−2,2]φt
(
{‖z‖ 6 K ′}

)
⊂ TM × S,

we have (dγ, t mod 1) ∈ K̃ for all t ∈ [a, b]. On the other hand, the set K̃ is compact in view
of the continuity of the Euler-Lagrange flow, hence contained in {‖z‖ 6 K} for some K. �
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2.4 The restriction of the Euler-Lagrange flow defines a continuous flow on the compact set
G̃(c). By the Krylov Bogolioubov theorem, this flow has invariant probability measures. The
Mather set M̃(c) is the closure of the union of all the supports of these invariant probability
measures. We have the following lemma, which is a straightforward result of topological
dynamics in compact spaces:
Lemma : For all positive number ε, there exists a positive number T such that, if X :
[0, T ] −→ G̃(c) is a trajectory of the Euler-Lagrange flow, there exists a time t ∈ [0, T ] such
that d(X(t),M̃(c)) 6 ε.

2.5 Let U be an open subset of M ×S. We also note U the open subset in M ×R of points
(x, t) such that (x, t mod 1) ∈ U . The one form µ of M × R is called a U -step form if there
exist a closed form µ̄ on M × S, also considered as a periodic one-form on M ×R, such that
the restriction of µ to t 6 0 is 0, the restriction of µ to t > 1 is µ̄, and such that the restriction
of µ to the set U ∪ {t 6 0} ∪ {t > 1} is closed.

2.6 Let R(c) ⊂ H1(M,R) be the vector subspace defined in 0.5. If (and only if) the class
d belongs to R(c), then there exist an open neighborhood U of G(c) and a U -step form µ
such that [µ̄] = d. Since H1(M,R) is finite dimensional, there exists an open neighborhood
U of G(c) such that, for each d ∈ R(c), there exists an U -step form satisfying [µ̄] = d. Such a
neighborhood U will be called an adapted neighborhood.

Proof We shall only prove that if a class d belong to R(c) then an appropriate step form
exists. The other implication will not be used, and its proof is left to the reader. Let us fix a
time t ∈ [0, 1] and a chomology class d ∈ V

(
Gt(c)

)⊥. There exist an open neighborhood Ω of
Gt(c) and a δ > 0 such that V (Ω) = V (Gt(c)) and such that Gs(c) ⊂ Ω for all s ∈ [t− δ, t+ δ].
Let us take a closed 1-form µ̄ on M the support of which is disjoint from Ω and such that
[µ̄] = d. We can consider this one-form on M as a form on M × S. Let f : R −→ R be a
smooth function such that f = 0 on (−∞, t− δ] and f = 1 on [t+ δ,∞). It is not hard to see
that the form

µ = f(t)µ̄

is an U -step form satisfying [µ̄] = d, where U is the open setM×[0, t−δ[ ∪ Ω×S ∪M×]t+δ, 1].

2.7 Proposition : Let us fix a cohomology class c in H1(M,R), and let U be an adapted
neighborhood of G(c). There exists a positive numbers δ and an integer T0 with the following
property : If d ∈ R(c) satisfies |d| 6 δ, then there exists an U -step form µ satisfying [µ̄] = d
and such that all the minimizers γ : [−T0, T0 + 1] −→M of L−µ− η0 are C1 extremals of L,
for each closed one-form η0 of M × R satisfying [η0] = c.

Proof The minimizers of L− η0 − µ do not depend on the choice of the form η0 satisfying
[η0] = c. As a consequence, it is enough to prove the proposition for a fixed form η0. Since
H1(M,R) is finite dimensional, it is possible to take a finite dimensional subspace E of the
space of all U-steps forms on M ×S such that the restriction to E of the linear map µ 7−→ [µ̄]
is onto. We shall prove by contradiction that, if µ ∈ E is sufficiently small, there exists a
minimizer γ : [−T0, T0 + 1] −→M of L− η0 − µ such that (γ(t), t) ∈ U for all t ∈ [0, 1]. Else,
there would exist a sequence µn of elements of E such that µn −→ 0 (this is meaningful in the
finite dimensional vector space E) and a sequence γn : [−Tn, Tn + 1] −→M , with Tn −→∞,
of absolutely continuous curves minimizing L− η0 − µn, such that (γn(tn), tn) 6∈ U for some
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tn ∈ [0, 1]. There exists a sequence εn of positive numbers such that εn −→ 0 and

|µn(z, t)| 6 εn‖z‖

for all (z, t) ∈ TM × R. By Lemma 1.6, there exist a curve γ ∈ C1(R,M) minimizing for
L− η0 and a subsequence of γn converging uniformly on compact sets to γ. This implies that
(γn(t), t mod 1) ∈ U for all t ∈ [0, 1] when n is large enough, which is a contradiction. This
ends the proof of the existence of a minimizer γ : [−T0, T0 + 1] −→ M of L − η0 − µ such
that (γ(t), t) ∈ U for all t ∈ [0, 1]. The form η0 + µ is closed in a neighborhood of the set{

(γ(t), t)t∈R
}
⊂M × R, hence γ is an extremal of L, hence is C1. �

2.8 Lemma Let c0 and c1 be two C-equivalent classes as defined in 0.6. There exist an
integer T (c0, c1) and a form µ on M × R such that :

ι. The restriction of µ to {t 6 0} is 0 and the restriction of µ to {t > T (c0, c1)} is a closed
periodic one form µ̄ satisfying [µ̄] = c1 − c0.

ιι. If η0 is a closed periodic one form such that [η0] = c0, then any absolutely continuous
curve γ : I −→M minimizing for L− η0 − µ is an extremal of L if I contains [0, T (c0, c1)].

Proof Let c(t) : R −→ H1(M,R) be an admissible curve such that c(t) = c0 for all t 6 0 and
c(t) = c1 for all t > 1. Let us fix, for each t ∈ [0, 1], an adapted neighborhood U(t) of G(c(t)),
and let δ(t) and T0(t) be the numbers given by applying Proposition 2.7 to c(t) and U(t). For
each t, there is a positive number δ′(t) such that c(s)− c(t) ∈ R(c(t)) and |c(s)− c(t)| 6 δ(t)
for all t ∈]t− 10δ′(t), t+ 10δ′(t)[. There is a finite increasing sequence (ti)06i6N of times such
that the intervals ]ti − δ′(ti), ti + δ′(ti)[ cover [0, 1]. We require in addition that t0 = 0 and
tN = 1. To sum up, we have constructed a finite increasing sequence (ti)06i6N such that

c(ti+1)− c(ti) ∈ R(c(ti)) and |c(ti+1)− c(ti)| 6 δ(ti).

Let us call µi the step form given by Proposition 2.7 applied with d = c(ti+1) − c(ti) for
0 6 i < N . Let us set Ti = 1 + max

(
T0(ti), T0(ti+1)

)
, 0 6 i 6 N − 1 and T−1 = T0(t0) + 1

and define the integers (τi)−16i6N by τ−1 = 0 and τi+1 = τi + Ti. We also consider τi as the
time translation (q, t) 7−→ (q, t+ τi) on M × R. Let us define the one form

µ =
N−1∑
i=0

(−τi)∗µi.

Setting T (c0, c1) = τN , we consider an interval I containing [0, T (c0, c1)]. We have to prove
that if γ : I −→M is a minimizer of L− η0−µ, then γ is an extremal of L. To check this we
consider, for each 1 6 i 6 N − 1, the curve

γ(t+ τi) : [τi−1 − τi + 1, τi+1 − τi] −→M,

which is a minimizer of

L− η0 −
i−1∑
j=0

(τi − τj)∗µ̄j − µi,

where η0 +
∑i−1

j=0(τi − τj)∗µ̄j is a closed form satisfyingη0 +
i−1∑
j=0

(τi − τj)∗µ̄j

 = c(ti).
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Since τi−1 − τi + 1 = 1 − Ti−1 6 −T0(ti) and since τi+1 − τi = Ti > T0(ti) + 1, we are in a
position to apply Proposition 2.7 and obtain that γ is an extremal of L on [τi−1 + 1, τi+1] for
each i satisfying 1 6 i 6 N − 1. It follows that L is an extremal of L on [0, τN ]. Since η is a
closed periodic one-form on I − [T1, τn − TN−1], the curve γ is an extremal. �

2.9 Lemma : For each cohomology class c and each positive number ε, there exists a
positive number Tε(c) with the following properties :
If X : [0, Tε(c)] −→ TM ×S is a trajectory of the Euler-Lagrange flow minimizing L− c, then
there exists a time t in [0, Tε(c)] such that

d
(
X(t),M̃(c)

)
6 ε.

If X : [−Tε(c), Tε(c)] −→ TM ×S is a trajectory of the Euler-Lagrange flow minimizing L− c,
then

d
(
X(0), G̃(c)

)
6 ε.

Proof : Let us fix ε > 0, and consider a sequence Xi : [0, 2i] −→ TM × S of trajectories
minimizing L + c. By lemma 2.2, there exists a minimizing trajectory X ∈ C(R, TM × S)
such that the curves Yk(t) = Xk(t+k) are converging uniformly on compact sets to X(t). On
the other hand, by Lemma 2.4, there exists a time t such that

d
(
X(t),M̃(c)

)
6 ε/2.

It follows that
d
(
Xk(t+ k), G̃(c)

)
6 ε

when k is large enough, which proves the first part. The second part follows from Lemma
2.2. �

2.10 Theorem (A): Let us fix a C-equivalence class C in H1(M,R). Let (ci)i∈Z be a
bi-infinite sequence of elements of C and (εi)i∈Z be a bi-infinite sequence of positive numbers.
If t′i and t′′i are bi-infinite sequences of real numbers such that t′′i − t′i > Tεi(ci) and t′i+1− t′′i >
T (ci, ci+1), then there exist a trajectory X(t) of the Euler-Lagrange flow and a bi-infinite
sequence ti ∈]t′i, t

′′
i [ such that

d
(
X(ti),M̃(ci)

)
6 εi.

If in addition there exists a class c∞ such that ci = c∞ for large i, or a class c−∞ such that
ci = c−∞ for small i, then the trajectory X is ω-asymptotic to L̃(c∞) or α-asymptotic to
L̃(c−∞). Recall that the sets L̃ have been defined in 0.4.

Theorem (B) : Let us fix a C-equivalence class C in H1(M,R). Let (ci)i∈Z be a bi-infinite
sequence of elements of C and (εi)i∈Z be a bi-infinite sequence of positive numbers. If ti is a
bi-infinite sequence of real numbers such that and ti+1− ti > T (ci, ci+1)+Tεi(ci)+Tεi+1(ci+1),
then there exists a trajectory X(t) of the Euler-Lagrange flow such that

d
(
X(ti), G̃(ci)

)
6 εi.

If in addition there exists a class c∞ such that ci = c∞ for large i, or a class c−∞ such that
ci = c−∞ for small i, then the trajectory X is ω-asymptotic to L̃(c∞) or α-asymptotic to
L̃(c−∞).
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Proof : Let us prove Theorem (A). Using Lemma 2.8, one can build a 1-form η on M ×R
such that the minimizers of L − η are extremals of L, and such that, for each i, the form
η|[t′i,t′′i ] is closed and periodic and satisfies[

η|[t′i,t′′i ]

]
= ci.

Let us consider a minimizer γ(t) of L−η, and the associated trajectory of the Euler-Lagrange
flow X(t) = (dγ(t), t mod 1). By Lemma 2.9, there exists a sequence ti ∈]t′i, t

′′
i [ of times such

that
d
(
X(ti),M̃(ci)

)
6 εi.

If the cohomology classes ci are equal to a fixed one c∞ for i > i0, then one can take η such
that η|[t′i0 ,∞) is closed and periodic. The trajectory X|[t′i0 ,∞) is then a minimizer of L − c∞,

hence it is asymptotic to L̃(c∞) by definition. The same holds for α-limits.
The proof of (B) is similar. We use a 1-form η on M×R such that the minimizers of L−η

are extremals of L, and such that, for each i, the form ηi = η|[ti−Tεi (ci),ti+Tεi (ci)] is closed and
periodic and satisfies

[
ηi
]

= ci. We then conclude that the minimizing trajectories of L − η
have the desired property using the second part of Lemma 2.9. �

2.11 corollary (see also 4.10) : If there exist two C-equivalent classes c0 and c1 such
that M̃(c0) and M̃(c1) are disjoint, then the time one map of the Euler Lagrange flow has
positive topological entropy.

Proof Notice first that G̃(c0) and G̃(c1) are disjoint if M̃(c0) and M̃(c1) are. Else
the intersection G̃(c0) ∩ G̃(c1) would carry an invariant measure, the support of which would
belong both to M̃(c0) and M̃(c1). Let us now chose ε < d(G̃(c0), G̃(c1))/2. Let T be an
integer greater than T (c0, c1) + T (c1, c0) + Tε(c0) + Tε(c1). Let φT : TM −→ TM be the time
T flow, we want to prove that there exists a compact invariant set on which the dynamics of
φT is semi-conjugated to a Bernoulli shift. To do so, we consider the disjoint neighborhoods
Ui = {d(X, G̃0(ci)) 6 ε}, for i = 0 or 1, and the compact φT -invariant set

K =
⋂
k∈Z

φkT (U0 ∪ U1).

Let f be the mapping from U0 ∪ U1 to the set {0, 1} which takes value 0 on U0 and 1 on
U1. Let us endow the set Σ = {0, 1}Z with the product of discrete topologies. Define the
continuous map h : K −→ Σ by (h(x))i = f(φiT (x)). By definition, we have h ◦ φT = σ ◦ h,
where σ is the shift σ(a)i = ai+1. The point here is that the map h is surjective, in view of
Theorem (B). More precisely, let us fix a sequence a = (ai) ∈ Σ. Applying the theorem with
ci = cai , εi = ε and ti = iT , we obtain the existence of a trajectory of φT in h−1(ai). �

3 Globally minimizing orbits

We have achieved our main goal, proving Theorem 0.6. However, the hypothesis of this the-
orem is rather abstract, and some additional work is required in order to understand this
hypothesis. In the present section, we will describe the various sets of globally minimizing
orbits which have been defined in the literature. Since most of the proofs have been writ-
ten only in the autonomous case, we prove most of the results we state, except the graph
properties, mostly due to Mather, and for which we send the reader to [10], [5] and [3].
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3.1 The Lagrangian L is called critical if the infimum of the actions of all closed curves
is 0. It is equivalent to require that the minimum of the actions of all invariant probability
measures is 0. Any Lagrangian satisfying the hypotheses of 0.1 can be made critical by the
addition of a real constant. See section 4 below for more details.

3.2 Let L be a critical Lagrangian. For all t′ > t we define the function

Ft,t′ : M ×M −→ R

(x, x′) 7−→ min
γ∈Γ

∫ t′

t
L(dγ(u), u) du

where the minimum is taken on the set Γ of curves γ ∈ C1([t, t′],M) satisfying γ(t) = x and
γ(t′) = x′. We also define, for each (s, s′) ∈ S2 the function

Φs,s′ : M ×M −→ R

(x, x′) 7−→ inf Ft,t′(x, x′)

where the infimum is taken on the set of (t, t′) ∈ R2 such that s = t mod 1, s′ = t′ mod 1,
and t′ > t+ 1. Following Mather, we introduce one more function

hs,s′ : M ×M −→ R

(x, x′) 7−→ lim inf
t′−t−→∞

Ft,t′(x, x′)

where the liminf is restricted to the set of (t, t′) ∈ R2 such that s = t mod 1 and s′ = t′ mod 1.
These functions have symmetric counterparts

ds,s′(x, x′) = hs,s′(x, x′) + hs′,s(x′, x) and d̃s,s′(x, x′) = Φs,s′(x, x′) + Φs′,s(x′, x)

If L is critical, then d > d̃ > 0.

3.3 Lemma The function

F : R× R×M ×M −→ R

(t, t′, x, x′) 7−→ Ft,t′(x, x′)

is Lipschitz and bounded on {t′ > t+ 1}.

Proof We first prove the Lipschitz property. The proof of boundedness will be given in 3.8.
In order to study the dependence in the space variables x and x′, let us fix a number ∆ > 1
greater than the diameter of M . In view of Lemma 1.4 and 2.3, there exists a constant K
such that, if t′ > t+ 1 and if γ ∈ C1([t, t′],M) is a minimizer, then ‖dγ‖ 6 K. Let us set

B = max
(z,t)∈TM×R,‖z‖6K+3∆

|L(z, t)|.

Consider t′ > t + 1 and four points x0, x
′
0, x1, x

′
1 in M . There is a minimizing curve γ ∈

C1([t, t′],M) such that A(γ) = Ft,t′(x0, x
′
0). Let us set

δ = min{1/3, d(x0, x1)} and δ′ = min{1/3, d(x′0, x
′
1)}.
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The geodesic x ∈ C1([t, t+ δ],M) between x1 and γ(t+ δ) satisfies

‖dx‖ 6 d(x1, γ(t+ δ))/δ 6
(
d(x0, γ(t+ δ)) + d(x0, x1)

)
/δ 6 K + d(x0, x1)/δ 6 K + 3∆,

hence A(x) 6 Bδ. The same estimate is true with the geodesic x′ ∈ C1([t′ − δ′, t′],M)
connecting γ(t′ − δ′) and x′1. We have

Ft,t′(x1, x
′
1) 6 Ft,t+δ(x1, γ(t+ δ)) + Ft+δ,t′−δ′(γ(t+ δ), γ(t′ + δ′)) + Ft′−δ′,t′(γ(t′ − δ′), x′1)
6 Ft+δ,t′−δ′(γ(t+ δ), γ(t′ + δ′)) +Bδ +Bδ′

6 Ft,t′(x0, x
′
0)−A(γ|[t,t+δ])−A(γ|[t′−δ,t′]) +Bδ +Bδ′

6 Ft,t′(x0, x
′
0) + 2Bδ + 2Bδ′.

6 Ft,t′(x0, x
′
0) + 2Bd(x0, x1) + 2Bd(x′0, x

′
1).

This proves that 2B is a Lipschitz constant for all the functions Ft,t′ with t′ > t + 1. There
remains to study the dependence in the time variable t′, the dependence in t is similar. Let
us consider three times t, t′, t′′ such that t + 1 6 t′ 6 t′′ and two points x and x′ in M . Let
γ : [0, t′′] −→M be a minimizing curve between x and x′. Recall that ‖dγ‖ 6 K. We have

Ft,t′′(x, x′) = Ft,t′(x, γ(t′)) + Ft′,t′′(γ(t), x′).

Observing that
|Ft′,t′′(γ(t), x′)| 6 B(t′′ − t′)

in view of the definition of B and that

|Ft,t′(x, γ(t′))− Ft,t′(x, x′)| 6 2Bd(γ(t), x′) 6 2BK(t′′ − t′)

in view of the Lipschitz property just proved for Ft,t′ , we conclude that

|Ft,t′′(x, x′)− Ft,t′(x, x′)| 6 B(2K + 1)(t′′ − t)

hence F is Lipschitz. We need to introduce some definitions before we prove that this function
is bounded. The proof will be given in 3.8.

3.4 It is useful to define distinguished classes of minimizers. Recall that L is a critical
Lagrangian. A curve γ ∈ C1(I,M) is called semi-static if

A
(
γ|[a,b]

)
= Φa mod 1,b mod 1

(
γ(a), γ(b)

)
for all [a, b] ⊂ I. An orbit X(t) = (dγ(t), t mod 1) is called semi-static if γ is a semi-static
curve. It is clear that semi-static orbits are minimizing. A curve γ ∈ C1(I,M) is called static
if

A
(
γ|[a,b]

)
= −Φb mod 1,a mod 1

(
γ(b), γ(a)

)
for all [a, b] ⊂ I. If γ is not semi-static, then there exists [a, b] such that

A
(
γ|[a,b]

)
> Φa mod 1,b mod 1

(
γ(a), γ(b)

)
hence

A
(
γ|[a,b]

)
+ Φb mod 1,a mod 1

(
γ(b), γ(a)

)
> d̃a mod 1,b mod 1

(
γ(a), γ(b)

)
> 0

hence γ is not static. It follows that static curves are semi-static. We call Ñ the union in
TM × S of the images of global semi-static orbits (semi-static orbits with I = R) and Ã the
union of global static orbits. Clearly,

Ã ⊂ Ñ ⊂ G̃.

It has became usual to call Ã the Aubry set, and Ñ the Mañe set.
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3.5 Let γ ∈ C1(R,M) be a static curve, and I ⊂ R be a compact interval. There exists
a sequence Tk −→ ∞ of integers and a sequence γk : [−Tk/2, Tk/2] −→ M of piecewise C1

curves which satisfies A(γk) −→ 0 and such that γk|I = γ|I , and γk(Tk/2) = γk(−Tk/2).

In order to prove this result, let us consider a sequence tk −→ ∞ of integer times. Since the
curve γ is static,

Φ0,0(γ(−tk), γ(tk)) = −A(γ|[−tk,tk ]).

As a consequence, there exist a sequence Tk > 2tk + 1 of integers and a sequence xk :
[tk, Tk − tk] −→ M of C1 curves such that xk(tk) = γ(tk), xk(Tk − tk) = γ(−tk), and
A(xk) 6 A(γ|[−tk,tk ]) + 1/k. Let γ̃k : R −→ M be the periodic curve of period Tk which
coincides with γ on [−tk, tk] and with xk on [tk, Tk− tk]. Setting γk = γ̃k|[−Tk/2,Tk/2], we have
A(γk) = A(xk) +A(γ|[−tk,tk ]) 6 1/k. �

3.6 Conversely, let us consider an absolutely continuous curve γ : I −→M , where I ⊂ R is
a compact interval of times. Assume that there exists a sequence γk : R −→M of absolutely
continuous periodic curves of period Tk ∈ N which is converging uniformly on I to γ and such
that A

(
γk|[0,Tk]

)
−→ 0. Then the curve γ is static.

We can assume without loss of generality that Tk is greater than the length of I (Tk is not
supposed to be the smallest period of γk). Let us take an interval [t, t′] ⊂ I. We have

A
(
γk|[0,Tk]

)
= A

(
γk|[t,t′]

)
+A

(
γk|[t′,t+Tk]

)
−→ 0.

On the other hand, we see from 1.2 that

A
(
γ|[t,t′]

)
6 lim inf A

(
γk|[t,t′]

)
.

We also have, by continuity of Φ,

Φt′ mod 1,t mod 1(γ(t′), γ(t)) = lim Φt′ mod 1,t mod 1(γk(t′), γk(t+ Tk))
6 lim inf A

(
γk|[t′,t+Tk]

)
,

so that
A
(
γ|[t,t′]

)
+ Φt′ mod 1,t mod 1(γ(t′), γ(t) 6 0

and γ is static. �

3.7 Lemma We have the equivalence

ds,s(x, x) = 0⇐⇒ d̃s,s(x, x) = 0⇐⇒ x ∈ As,

and the set Ã is a non empty compact invariant set.

Proof Since d > d̃ > 0, it is enough to prove that ds,s(x, x) = 0 if d̃s,s(x, x) = 0 to prove
the first equivalence. Assume that d̃s,s(x, x) = 0. Recall that d̃s,s(x, x) = 2Φs,s(x, x). Either
the infimum in the definition of Φ is a minimum, or it is a liminf. If it is a liminf, the proof
is over. If it is reached, there is a curve γ : [t, t′] −→ M such that γ(t) = γ(t′) = x and
t mod 1 = s = t′ mod 1, satisfying A(γ) = 0. In this case, we can paste γ with itself several
times and build a curve γk : [t, t+ k(t′ − t)] such that γk(t) = γk(t+ k(t′ − t)) = x and such
that A(γk) = 0. It follows that hs,s(x, x) = 0, hence ds,s(x, x) = 0. This ends the proof of the
first equivalence.
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Let us suppose that ds,s(x, x) = 0, and prove that x ∈ As. By definition of d, there is
a sequence γk ∈ C1([tk, t′k],M) of minimizing curves such that A(γk) −→ 0, γk(tk) = x,
γk(t′k) = x and such that tk mod 1 = s = t′k mod 1 and t′k − tk −→ ∞. We can see γk as a
sequence of periodic curves in C1(R,M) of period t′k − tk. By Lemma 1.6 we can suppose,
taking a subsequence, that the curves γk are converging uniformly on compact sets to a
minimizer γ ∈ C1(R,M). It follows from 3.6 that γ is static, hence x ∈ As.

Conversely, if x ∈ As, there exists a static curve γ : R −→ M such that γ(s) = x, where
we also note s the real number such that s mod 1 = s. It is then a direct consequence of
3.5 that ds,s(x, x) = 0. The set A is not empty because it is clear that the minimum of the
continuous function x 7−→ ds,s(x, x) has to be 0 for each s if L is critical. Finally, Ã is clearly
invariant since it is defined as a union of orbits. �

3.8 We are now in a position to prove that the function F is bounded. Let

A = sup
t,x,x′

Ft,t+1/3(x, x′) and B = sup
s,s′,x,x′

Φs,s′(x, x′),

both A and B are finite. let γ ∈ C1(R,M) be a semi-static curve. There exist semi-static
curves since we just proved the existence of static curves. Let us chose t′ > t+1 and x, x′ ∈M.
We have

Ft,t′(x, x′) 6 Ft,t+1/3

(
x, γ(t+ 1/3)

)
+

Ft+1/3,t′−1/3

(
γ(t+ 1/3), γ(t′ − 1/3)

)
+ Ft′−1/3,t′

(
γ(t′ − 1/3), x′

)
6 A+B +A,

where we have used that, since γ is semi-static,

Ft+1/3,t′−1/3

(
γ(t+ 1/3), γ(t′ − 1/3)

)
= Φ(t+1/3) mod 1,(t′−1/3) mod 1

(
γ(t+ 1/3), γ(t′ − 1/3)

)
.

Recalling that the functions Ft,t′ are equilipschitz, we obtain the existence of a constant C
such that

Ft,t′(x, x′) 6 C

for all t′ > t + 1 and all (x, x′) ∈ M2. In order to end the proof, notice that, when k is an
integer such that t+ k > t′ + 1,

Ft,t′(x, x′) + Ft′,t+k(x′, x) > 0,

hence Ft,t′ > −C. �

3.9 Lemma We have the inclusions

M̃ ⊂ L̃ ⊂ Ã ⊂ Ñ ⊂ G̃.

Proof It is enough to prove that L̃ ⊂ Ã. Let X : [0,∞) −→ TM × S be a minimizing orbit
and let γ = π ◦X be its projection on M . There exists a sequence tk −→ ∞ of times such
that tk mod 1 = s and γ(tk) −→ ω. We can assume in addition that tk+1− tk −→∞. Let us
set Xk(t) = X(t + [tk]). Taking a subsequence if necessary, we can suppose that the curves
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Xk are converging uniformly on compact sets to a curve Y (t) = (dx(t), t mod 1). In order to
prove that x is a static curve, we write, for t′ > t+ 1,

A(x|[t,t′]) + Φt′ mod 1,t mod 1(x(t′), x(t))
= limA

(
γ|[t+[tk],t′+[tk]]

)
+ Φt′ mod 1,t mod 1(x(t′), x(t))

= lim
(
A
(
γ|[tk−1,tk+1]

)
−A

(
γ|[tk−1,t+[tk]]

)
−A

(
γ|[t′+[tk],tk+1]

))
+ Φt′ mod 1,t mod 1(x(t′), x(t))

6 lim inf
(
A
(
γ|[tk−1,tk+1]

))
−

(
Φs,t mod 1(ω, x(t)) + Φt′ mod 1,s(x(t′), ω)− Φt′ mod 1,t mod 1(x(t′), x(t))

)
6 lim inf

(
A
(
γ|[tk−1,tk+1]

))
6 0.

In this calculations, we have used Lemma 1.5 between the first line and the second, and we
have used Lemma 3.3 to obtain the last inequality. More precisely, it follows from this lemma
that the sum

n∑
k=1

A
(
γ|[t2k−1,t2k+1]

)
= A

(
γ|[t1,t2n+1]

)
= Ft1,t2n+1

(
γ(t1), γ(t2n+1)

)
is bounded, which implies that the liminf is not positive. �

3.10 First Graph property Let us call Π : TM ×S −→M ×S the natural projection.
Then Π|Ã is a bilipschitz homeomorphism onto its image A. In addition, we have

Ñ ∩Π−1
(
A
)

= Ã.

In other words, there is a Lipschitz section v : A −→ TM ×S of Π with the property that, for
each (x, s) ∈ A, there is one and only one semi-static orbit X(t) satisfying Π(X(0)) = (x, s),
this orbit is static and is given by X(t) = φt(v(x, s), s).

3.11 It is not hard to see that

d̃s,s′(x, x′) = ds,s′(x, x′)

if (x, s) ∈ A or (x′, s′) ∈ A. We define an equivalence relation on A by saying that (x, s) and
(x′, s′) are equivalent if and only if ds,s′(x, x′) = 0. We call static class an equivalence class
of this relation. We also call static class the image by the Lipschitz vector field v of a static
class in M × S. Static classes are compact invariant subsets of Ã.

Remark If γ : [0,∞) −→ M is minimizing, then the omega-limit set of the orbit X(t) =
(dγ, t mod 1) is contained in a static class.

Proof Let us consider sequences tk and t′k such that tk mod 1 = s and t′k mod 1 = s′, and
such that X(tk) −→ ω̃ and X(t′k) −→ ω̃′. We can assume in addition that tk − t′k −→∞ and
that t′k − tk−1 −→∞. If ω and ω′ are the projections on M of ω̃ and ω̃′, then

ds,s′(ω, ω′) 6 lim inf A
(
γ|[tk,tk+1]

)
6 lim inf Ftk,tk+1

(γ(tk), γ(tk+1)) 6 0,
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where the last liminf is not positive in view of Lemma 3.3 since γ(tk) is convergent. �
A semi-static curve thus has its alpha-limit contained in a static class, and its omega-limit
contained in a static class. Each static class intersects M̃.

Lemma A semi-static curve is static if and only if its alpha and omega-limit belong to the
same static class. If Ã contains only one static class, then Ñ = Ã. It is the case for example
if M̃ is transitive i.e. if it has a dense orbit.

Proof It is quite clear that if γ(t) is a static curve, then

dt mod 1,t′ mod 1(γ(t), γ(t′)) = d̃t mod 1,t′ mod 1(γ(t), γ(t′)) = 0

for all t 6 t′. Taking the limit t −→ −∞ and t′ −→ ∞ we obtain that the alpha and omega
limit belong to the same static class. On the other hand, let γ(t) be a semi-static curve such
that the alpha and omega-limit belong to the same static class. Let us consider sequences
tk −→ −∞ and t′k −→∞ of integers such that γ(tk) has a limit α ∈M and γ(t′k) −→ ω. The
hypothesis is that d0,0(α, ω) = 0. For each t′ > t, we have

dt mod 1,t′ mod 1(γ(t), γ(t′)) + d0,t mod 1(α, γ(t)) + dt′ mod 1,0(γ(t′), ω) 6 d0,0(α, ω) = 0,

hence dt mod 1,t′ mod 1(γ(t), γ(t′)) 6 0 and γ is static. �

3.12 If S̃ ⊂ TM ×S is a static class, we call S̃+ the set of points (z, s) ∈ TM ×R such that
the orbit φt(z, s) is semi-static on an open neighborhood of [0,∞), and omega-asymptotic to
S̃. We define S̃− in the same way with alpha-limits.

Second graph property For each static class S̃, the restriction of Π to S̃+ is a bilipschitz
homeomorphism onto its image, as well as the restriction of Π to S̃−. The set Ñ is the union
of the graphs Ñ ∩ S̃+, as well as the union of the graphs Ñ ∩ S̃−.

4 The averaged energy

We will now explain the method introduced by Mather to associate to each Lagrangian L
satisfying the hypotheses 0.1 a family of invariant sets. We will also define the averaged
energy α of Mather, and state some results of Massart [6] which establish a link between the
averaged energy and the topology of the Aubry set. These results will be useful later to study
the twist map case, and they show that no connecting orbit can be obtained from our results
in the autonomous case.

4.1 Let us identify H1(S,R) with R in the standard way. To a closed one-form η on M ×S,
we associates the cohomology λ(η) ∈ R of its restriction to {x}×S, this cohomology does not
depend on x ∈M , and depends only of the cohomology of η. Recall that we have defined in
0.3 the class [η] ∈ H1(M,R) of any closed one form η on M × S. The function

η 7−→ ([η], λ(η))

induces an isomorphism between H1(M × S,R) and H1(M,R)× R.

4.2 Let us fix a Lagrangian L, not necessarily critical. We say that a closed one-form η on
M × S is critical if L− η is critical.
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Theorem (Mather [10]) There exists a convex and superlinear function

α : H1(M,R) −→ R

with the property that a closed one-form η is critical if and only if

λ(η) = −α([η]).

We call the function α the averaged energy.

4.3 Given a critical form η, we can associate all the sets M̃, Ã, . . . to the critical Lagrangian
L− η. It is not hard to see that these sets depend only on the class [η] ∈ H1(M,R). In view
of Mather’s Theorem above, the function η 7−→ [η] restricted to critical forms is surjective,
and induces an isomorphism in cohomology i.e. the cohomology in H1(M ×S,R) of a critical
form η is determined by its cohomology [η] ∈ H1(M,R). We note

M̃(c) ⊂ L̃(c) ⊂ Ã(c) ⊂ Ñ (c) ⊂ G̃(c)

the sets M̃, L̃, . . . associated to the critical Lagrangian L − η, where η is any critical form
satisfying [η] = c. They are non empty compact sets invariant under the Euler-Lagrange flow
of L.

4.4 We note ∂α(c) the subderivative of α at c, which is a compact and convex subset of
H1(M,R). This is the set of rotation vectors of invariant measures of the Euler-Lagrange flow
supported in Ã(c). These measures are the minimizing measures defined by Mather in [10],
see [5].

4.5 Following Mather, we note

β : H1(M,R) −→ R

the Fenchel conjugate of α. We call it the averaged action. For each ω ∈ H1(M,R), the
number β(ω) is the minimal action of invariant probability measures of rotation vector ω.
There are interesting connections between the size of the flats of the averaged energy α and
the topology of the invariant set A(c). In the following, we adapt to our needs some results
of Massart [6].

4.6 A flat of α is a closed convex K ⊂ H1(M,R) such that α|K is an affine function. To any
closed convex set K, we associate the vector subspace V K = Vect(K −K). A point c is said
to be in the interior of K if there exists a neighborhood U of 0 in V K such that d+ U ⊂ K.
The interior of a flat is not empty. Given c ∈ H1(M,R), we note F (c) the union of all flats
containing c in their interior. It is clear that F (c) is a flat, we note V F (c) the associated vector
space. It is easy to see that V ∂α(c) ⊂ V F (c)⊥, although the equality does not always hold
(for example, if α is differentiable at c, and strictly convex, then V F (c) = V ∂α(c) = {0}).

4.7 Proposition (Massart, [6]) : If F is a flat of α, there exists an Aubry set Ã(F )
which is the Aubry set Ã(c) for all cohomology class c in the interior of F , and is contained
in the Aubry set of any cohomology class c ∈ F .
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Conversely, if G̃(c) ∩ G̃(c′) 6= ∅, then the segment [c, c′] between c and c′ is contained in a
flat, or equivalently α|[c,c′] is affine. Here [c, c′] ⊂ H1(M,R) is the compact segment between
c and c′ (the convex envelope of {c, c′}).

Proof : Let us consider a flat F of α. Let η be a critical form such that [η] = c is in the
interior of F , and let µ be a closed one-form such that η+λµ is critical for λ ∈ [λ0, λ1], where
λ0 < 0 < λ1. This is to say that e = [µ] ∈ V F . Let us prove that Ã(c) ⊂ Ã(c + λe) for
all λ ∈ [λ0, λ1]. Recall that Ã(c) is the union of orbits which are static for L − η, so that it
is enough to prove that each curve γ ∈ C1(R,M) which is static for L − η is also static for
L − η − λµ. Let I ⊂ R be a compact interval, and let γk be the sequence of periodic curves
given by 3.5 applied with γ and I for L− η, so that Aη(γk) −→ 0. Since the form η + λµ is
critical and the curve γk is closed, we have

0 6 Aη+λµ(γk) = Aη(γk)− t〈e, [γk]〉,

where [γk] ∈ H1(M,R) is the homology of γk. We obtain that

〈e, [γk]〉 6
Aη(γk)
λ1

−→ 0,

when k −→ ∞, hence Aη+λµ(γk) −→ 0. This implies, in view of 3.6, that γ|I is static for
L − η − λµ. Since this holds for all I, the curve γ is static for the Lagrangian L − η − λµ
when λ ∈ [λ0, λ1].

In order to prove the converse, let us consider two cohomology classes c and c′ such that
G̃(c) ∩ G̃(c′) 6= ∅. It is clear that in this case M̃(c) ∩ M̃(c′) 6= ∅. Choose a critical form η
such that [η] = c and a closed form µ such that η+ µ is critical and satisfies [η+ µ] = c′. We
are going to prove that the form η + λµ is critical for each λ ∈ [0, 1]. Let us note l(λ) the
infimum of the actions of closed curves for L−η−λµ, we have to prove that l(λ) = 0 on [0, 1].
The function λ −→ l(λ) is concave as an infimum of linear functions, and l(0) = l(1) = 0.
As a consequence, l(λ) > 0 on [0, 1]. It remains to prove that l(λ) 6 0. Let us consider a
curve γ ∈ C1(R,M) whose lifting (dγ(t), t mod 1) is a recurrent orbit of the Euler-Lagrange
flow contained in M̃(c) ∩ M̃(c′). Let tk −→ ∞ be a sequence of integer times such that
γ(tk) −→ γ(0). Let us set δk = dist(γk(tk), γ(0)). Let γk : [0, tk] −→ M be the closed
continuous curve such that γk|[0,tk−δk] = γ|[0,tk−δk] and γk|[tk−δk,tk] is a minimizing geodesic
between its endpoints. Since the curve γ is static for L−η, we have, using the action associated
to L− η

A
(
γ|[0,tk]

)
= −Φ0,0(γ(tk), γ(0)) −→ −Φ0,0(γ(0), γ(0)) = 0

and a simple calculation shows that A(γk) −→ 0. The same holds for L−η−µ, since the curve
γ is also static for this Lagrangian. On the other hand, the action Aλ(γk) of γk associated
to L − η − λµ is a linear function of λ for each k. As a consequence, we have Aλ(γk) −→ 0
uniformly on [0, 1], hence l(λ) 6 0 on [0, 1]. �

4.8 Following Massart, let us define two subspaces of H1(M,R) associated to the topology
of Ã(c). By cohomology class of a closed one form of M × S, we mean the cohomology class
in H1(M,R) defined in 0.3. The subspace E(c) ⊂ H1(M,R) is the set of cohomology classes
in H1(M,R) of closed one forms of M × S which have a support disjoint from A(c). The
subspace G(c) ⊂ H1(M,R) is the set of cohomology classes in H1(M,R) of continuous closed
one forms of M × S which vanish on T(x,s)(M × S) for each (x, s) ∈ A(c). In the above
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definition, we call a continuous one-form closed if it is locally the differential of a C1 function.
It is not hard to define the cohomology of such a closed form, for example by considering its
action on closed curves.

4.9 Theorem (Massart, [6]) We have the inclusions

E(c) ⊂ V F (c) ⊂ G(c).

The proof of this result in [6] is based on some regularity properties of the function h discovered
by Fathi, see [3]. The generalization from the autonomous setting of [6] to the non autonomous
setting here does not present any difficulty.

4.10 The orbits constructed in section 2 are non-trivial if they connect disjoint invariant
sets. Hence interesting applications of these results are possible if and only if there exist
C-equivalence classes which are not contained in any flat of α. For example, we have the
following restatement of Corollary 2.11.

Corollary If there exist two C-equivalent classes c and c′ such that α|[c,c′] is not affine, or
equivalently such that no flat F contains c and c′, then the time one map of the Euler-Lagrange
flow has positive entropy.

4.11 In the autonomous case, the sets At(c) and Gt(c) ⊂ M do not depend on t, and we
have, using the notations of 0.5,

R(c) = V
(
Gt(c)

)⊥ ⊂ V (At(c))⊥ = E(c) ⊂ V F (c)

for each t. Hence each C-equivalence class is contained in a flat of α, so that our results are
of no interest in the autonomous case.

5 Convergence of the Lax-Oleinik semigroup

The Graph properties provide a good description of the Mañe set Ñ . However, the set involved
in the hypothesis of Theorem 0.6 is the a priori larger set G̃. The relations between the sets G̃
and Ñ are related to the asymptotic behavior of the so called Lax-Oleinik semi-group. In all
this section, we will consider a critical Lagrangian L as defined in 3.1. Results similar to the
ones of this section have been obtained from the point of view of Hamilton-Jacobi equations
in [14] by J. M. Roquejoffre.

5.1 We say that L is regular if the liminf in the definition of the functions hs,s′ given in
3.2 is a limit for all s, s′, x, x′. In this case, since the functions Ft,t′ are equilipschitz, we have
uniform convergence of the sequence Ft,t′ , t mod 1 = s, t′ mod 1 = s′ to hs,s′ for all s, s′. If
L is regular and if η is an exact one-form on M × S, then L− η is regular.

5.2 It is usual to define the mapping Tt : C(M,R) −→ C(M,R) by the expression

Ttu(x) = min
y∈M

(
u(y) + F0,t(y, x)

)
.

The sequence (Tn)n∈N is a semi-group called the Lax-Oleinik semi-group, see [2],[3] and [4].
We say that the Lax-Oleinik semi-group is convergent if, for each function u ∈ C(M,R), there
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exists a function U ∈ C(M × S,R) such that

lim
t mod 1=s,t→∞

Ttu(x) = U(x, s).

It is known that the Lax-Oleinik semi-group is convergent if and only if L is regular, see [2]
and [4]. We recall the argument. If L is regular, then the Lax-Oleinik semi-group is clearly
convergent with limit

U(x, s) = min
y∈M

(
u(y) + h0,s(y, x)

)
.

On the other hand, Assume that the Lax-Oleinik semi-group is convergent. Let us fix t ∈ R
and z ∈ M , and set u(x) = Ft,k(z, x), where k ∈ N is chosen such that k > 1 + t. For each
t′ > k, we have Ft,t′(z, x) = Tt′−ku(x). If we fix t′ mod 1 = s′ and let t′ go to infinity, this is
converging to U(x, s′), which has to be equal to hs,s′(z, x). It follows that L is regular.

5.3 Proposition If L is regular, then G̃ = Ñ .

Proof Let γ ∈ C1(R,M) be a minimizing orbit. We have to prove that this orbit is semi-
static. Let us consider a sequence tk −→ −∞ such that s = tk mod 1 does not depend on k
and such that α = lim γ(tk) exists. In the same way, we consider a sequence t′k −→ ∞ and
set s′ = t′k mod 1 and ω = lim γ(t′k). Since L is regular,we have

A
(
γ|[tk,t′k]

)
= Ftk,t′k

(
γ(tk), γ(t′k)

)
−→ hs,s′

(
α, ω

)
.

Let us consider a compact interval of times [a, b], and assume to make things simpler that
s′ = a mod 1 and s = b mod 1. For k large enough, we have

A
(
γ|[a,b]

)
= A

(
γ|[tk,t′k]

)
−A

(
γ|[tk,a]

)
−A

(
γ|[b,t′k]

)
= Ftk,t′k(γ(tk), γ(t′k))− Ftk,a(γ(tk), γ(a))− Fb,t′k(γ(b), γ(t′k)).

Taking the limit, we get

A
(
γ|[a,b]

)
= hs,s′(α, ω)− hs,s(α, γ(a))− hs′,s′(γ(b), ω).

On the other hand, we observe if L is regular that

hs,s′(α, ω) 6 hs,s(α, γ(a)) + Φs,s′(γ(a), γ(b)) + hs′,s′(γ(b), ω).

As a consequence, we obtain

A
(
γ|[a,b]

)
6 Φs,s′(γ(a), γ(b))

hence γ is semi-static. �

5.4 Lemma If for each (x, s) ∈M, the liminf in the definition of hs,s(x, x) is a limit, i.e. if

Ft,t+n(x, x) −→
n→∞

0

for each (x, s) ∈M and each t satisfying t mod 1 = s, then L is regular.

Corollary If M̃ is a union of 1-periodic orbits, then L is regular.
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Proof Let us fix (x, s) and (x′, s′) in M ×S, and ε > 0. We want to prove that there exists
T such that, if t and t′ satisfy t mod 1 = s, t′ mod 1 = s′ and t′ > t+ T , then

Ft,t′(x, x′) 6 hs,s′(x, x′) + ε.

Let K be a common Lipschitz constant of all functions Ft,t′ with t′ > t+ 1. Such a constant
exists by Lemma 3.3. Let γ : [t, t′] −→M be a minimizing curve such that A(γ) = Ft,t′(x, x′)
and such that γ(t) = x and γ(t′) = x′. By Lemma 2.9, it is possible to chose t0 6 t1 6 t′0
such that t0 mod 1 = s and t′0 mod 1 = s′, and a minimizing curve γ ∈ C1([t0, t′0],M) such
that A(γ) = Ft0,t′0(x, x′) and such that γ(t0) = x, γ(t′0) = x′ and d(γ(t1),Mt1) 6 ε/4K. Since
hs,s′(x, x′) = lim inf Ft,t′(x, x′), we can suppose in addition that

Ft0,t′0(x, x′) 6 hs,s′(x, x′) + ε/2.

Let x1 = γ(t1), we have

Ft0,t′0(x, x′) = Ft0,t1(x, x1) + Ft1,t′0(x1, x
′),

and there exists a point y ∈Mt1 such that d(x1, y) 6 ε/4K. It follows that∣∣Ft0,t′0(x, x′)− Ft0,t1(x, y)− Ft1,t′0(y, x′)
∣∣ 6 ε/2,

hence
Ft0,t1(x, y) + Ft1,t′0(y, x′) 6 hs,s′(x, x′) + ε.

Writing and t′ − t = t′0 − t0 + n with n ∈ N, we have

Ft,t′(x, x′) = Ft0,t′0+n(x, x′) 6 Ft0,t1(x, y) + Ft1,t1+n(y, y) + Ft1+n,t′0+n(y, x′).

Taking the limsup yields

lim supFt,t′(x, x′) 6 Ft0,t1(x, y) + 0 + Ft1,t′0(y, x′) 6 hs,s′(x, x′) + ε.

Since this holds for all ε > 0, the lemma is proved. Let us now prove the corollary. If
γ ∈ C1(R,M) is 1-periodic and minimizing, then for each t the sequence

Ft,t+n(γ(t), γ(t+ n)) = nFt,t+1(γ(t), γ(t+ 1))

is bounded, hence Ft,t+n(γ(t), γ(t)) = 0 for each n. As a consequence, if M̃ is a union of
1-periodic orbits, then the hypothesis of the lemma is satisfied and L is regular. �

5.5 One may wish to consider the given Lagrangian L, which is 1-periodic in time, as a
k-periodic function of time only. This is best done in our setting by considering the mapping

Pk : TM × S −→ TM × S
(x, v, t) 7−→ (x, v/k, kt)

and the new 1-periodic Lagrangian Lk = L ◦ Pk. This Lagrangian has the property that a
curve γ ∈ C1(I,M) is an extremal of Lk if and only if the curve γk : t 7−→ γ(kt) is an extremal
of L. We call Mk, Ak,. . . the various sets associated to Lk. It is clear that

Pk(G̃k) = G̃.

23



On the other hand, we have
Ñ ⊂ Pk(Ñ k)

but it is not hard to build examples where Ñ 6= Pk(Ñ k) (see [4]). Since Pk(Ñ k) ⊂ G̃, this
provides examples where

G̃ 6= Ñ .

A direct consequence of Corollary 5.4 and Proposition 5.3 is
Lemma If M is a union of k-periodic orbits, then Lk is regular, hence G̃ = Pk(Ñ k).

5.6 Lemma If M̃ is minimal in the sense of topological dynamics and if there exists a
sequence γn of n-periodic curves such that A(γn) −→ 0, then L is regular, hence Ã = Ñ = G̃.

Proof We can suppose that the curves γn are minimizers. Let us consider the n-periodic
orbits Xn(t) = (dγn(t), t mod 1). Let us also note Xn the image of Xn, which is a compact
subset of TM ×S. Each subsequence of Xn has a convergent subsequence (for the Haußdorff
topology). The limit of such a subsequence is an invariant subset of M̃. Since M̃ is minimal,
this limit has to be M̃, hence Xn is converging to M̃ for the Haußdorff topology. It follows
that each point (x, s) ∈ M is the limit of a sequence (γn(tn), s) with tn mod 1 = s for each
n. Using Lemma 3.3, we get that

lim supFt,t+n(x, x) = lim supFt,t+n(γn(tn), γn(tn)) = lim supA(γn) = 0

for each (x, s) ∈M and each t satisfying t mod 1 = s. By Lemma 5.4, L is regular. �

5.7 Theorem (Fathi, [2]) If L does not depend on t, then it is regular.
As a consequence, in the autonomous case, the sets G̃ and Ñ are the same, hence our result
is precisely the result of Mather in this case. See however 4.11.

6 Twist Maps

We are now going to specify our results in the case M = S. As we shall see, unlike Mather’s
theorem of [11], our result in high dimension is optimal when restricted to this case, in the
sense that two cohomology classes c and c′ are C-equivalent if and only if the sets G̃(c) and
G̃(c′) are not separated by a rotational invariant curve.

6.1 Let f : TS −→ TS be the Poincaré return map associated to the section TS × {0}.
Moser has proved that any twist map of the annulus TS can be realized as the Poincaré map
of a Lagrangian flow satisfying our hypotheses ([13]).

6.2 We identify H1(S,R) and H1(S,R) with R in the standard way. We shall use the
term Lipschitz graph for a set which is the image of a subset of the basis S or S × S by a
Lipschitz section of the tangent bundle TS −→ S or TS × S −→ S × S. We shall use the
term full Lipschitz graph for a set which is the image of a Lipschitz section of the tangent
bundle. A rotational invariant curve for f is a closed curve of TS which is invariant by f
and is not homotopic to a constant curve or equivalently an invariant curve the complement
of which has two unbounded connected components. The Euler-Lagrange vectorfield gives a
canonical homotopy between the identity and f , hence each rotational invariant circle has a
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well defined real rotation number. For each c ∈ H1(S,R), the set Ã0(c) is a Lipschitz graph
which is invariant by f . By the theory of homeomorphisms of the circle, the map f restricted
to Ã0(c) has a rotation number, which is the only subderivative of α at point c. Hence α is
differentiable, and α′(c) is the rotation number of f |Ã0(c).

6.3 Theorem If R(c) = 0, then the set G̃(c) contains a rotational invariant curve of
rotation number α′(c). This curve is a full Lipschitz graph.

Note that R(c) = 0 if and only if G(c) = S × S. We have to prove that G̃(c) contains a full
Lipschitz graph if G(c) = S × S. Let us first mention a corollary.

6.4 Let C ⊂ R be the set of cohomology classes c ∈ R such that R(c) = 0, or equivalently
such that G(c) = S × S. Since the mapping c −→ G(c) is upper semi-continuous (see 2.1),
the set C is closed. Let Ω = α′(C) be the set of rotation numbers of the sets G̃(c) which
contain full Lipschitz graphs. Since the function α is convex and superlinear, the set Ω is
closed. Assume that Ω 6= R, then the complement of Ω contains an open interval I. It follows
from the theorem above that R(c) 6= 0 if α′(c) ∈ I, hence the set α′−1(I) is contained in a
C-equivalence class. On the other hand, this set is not contained in a face of α, so that we
have the following consequence of Corollary 4.10:

Corollary If Ω 6= R, then the diffeomorphism f has positive topological entropy.

Corollary If there exists ω ∈ R such that no rotational invariant curve of rotation number
ω exist, then the diffeomorphism f has positive topological entropy.

Let us now prove Theorem 6.3. We need the following result.

6.5 Proposition (Mather [8]) The function β is differentiable at irrational points.
Equivalently, all the flats of α of dimension 1 have rational slope.

The original proof in [8],[7] of this result is rather complicated. We shall obtain it as a
consequence of the inclusion V F (c) ⊂ G(c) of 4.9. It is enough to prove that any continuous
closed form η of S × S which vanishes on M(c) has trivial cohomology in H1(M,R). Let
us consider the universal cover R2 of S × S. The closed one form lifts to an exact form dg,
where g ∈ C1(R2,R). We still call M the lifting of M(c). It is a union of embedded lines,
which will be called the trajectories of M. Since η = 0 on M(c), the function g is constant
on each trajectory of M. Let us call g0 the restriction of g to t = 0, i.e. g0(x) = g(x, 0),
and M0 =M∩ {t = 0} ⊂ R. Proving that η has trivial cohomology is equivalent to proving
that the constant g0(x + 1) − g0(x) is null. It is enough to prove that the function g0 is
constant on M0. Let ]x−, x+[ be a connected component of the complement of M0. Let
γ± be the trajectory of M which contains (x±, 0). Since the function g is Lipschitz and
constant on γ− and γ+, and since the distance between γ− and γ+ in R2 is zero, we have
g0(x−) = g0(x+). Since this holds for all connected component of the complement of M0,
there exists a continuous function g̃0 ∈ C(R,R) which is equal to g0 onM0 and is constant on
each connected component of the complement. This function is differentiable at each point,
with zero derivative. Hence it is constant, so that the restriction of g0 to M0 is constant. �

6.6 Let us consider a rational number ω = p/q in lowest terms. Let us choose c ∈ ∂β(ω).
We see from the theory of homeomorphisms of the circle that the Mather set M̃(c) is a union
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of orbits of period q, whose lifting γ̄ to the universal cover R satisfy γ̄(t+q) = γ̄(t)+p. Among
the curves ξ ∈ C1(R, S) whose liftings ξ̄ to the universal cover R satisfy ξ̄(t+q)−ξ̄(t) = p, those
which are orbits of M̃(c) are precisely those which minimize the action. As a consequence,
these orbits all have the same action A(γ) = qβ(p/q).

6.7 Rational rotation number Let us assume that α′(c) is a rational number p/q in
lowest terms. By Lemma 5.5, we have G̃(c) = Pq(Ñ q(c)). Let H be the closure of a connected
component of the complement ofM(c) in M×S. The boundary of H is made of two periodic
curves γ+ and γ−. We see from the second graph property that G̃(c) ∩Π−1H is the union of
two graphs G̃+ and G̃−, where the orbits G̃+ are heteroclinic from γ− to γ+, as well as γ−

and γ+ themselves, and the orbits of G̃−, are heteroclinic from γ+ to γ− as well as γ− and
γ+. If none of the projected sets G+ = Π(G̃+) and G− = Π(G̃−) is H, then their union is
also properly contained in H i.e. H ∩ G(c) 6= H, hence G(c) is properly contained in S × S
so that R(c) = R. Else, G̃(c) ∩ Π−1H contains a Lipschitz graph. If for all possible choice of
H the second option holds, then clearly all the Lipschitz graphs can be glued together, and
G̃(c) contains a full Lipschitz graph.

6.8 Irrational rotation number Let us assume that α′(c) is an irrational number ω.
The Mather set M̃(c) is minimal in the sense of topological dynamics, and we have

Ã(c) = Ñ (c) = G̃(c).

As a consequence G̃(c) is a Lipschitz graph.

Proof That the Mather set is minimal is a consequence of the theory of homeomorphisms
of the circle. We can assume by subtracting a critical form η satisfying [η] = c that β(ω) =
0 = β′(ω). In view of Lemma 5.6, it is enough to prove the existence of a sequence γn of
n-periodic orbits such that A(γn) −→ 0. For each integer n, let us consider a real number
cn ∈ ∂β([nω]/n), so that M̃(cn) contains a periodic orbit γn of period n and rotation number
[nω]/n. In view of 6.6, the orbit γn has action A(γn) = nβ([nω]/n) which is converging to 0
because β(ω) = 0 = β′(ω). �

6.9 In terms of the Lax-Oleinik semi-group, we have proved the following. Let L be a critical
Lagrangian, and let ω be the rotation number of Ã. Let us consider the integer k defined by
k = 1 if ω is irrational, and k = q if ω = p/q in lowest terms. Then the semi-group T kn , n ∈ N
is converging. Here we may view equivalently T kn as Tkn, or as the Lax-Oleinik semi-group
associated to Lk. In other words, the semi-group Tn has k-periodic asymptotic orbits. Part
of this result was obtained by J. M. Roquejoffre in [14]. In the paper of Roquejoffre, the
convergence is proved in the case of an irrational rotation number only under the additional
assumption that the Mather set is the full circle.
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