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CEREMADE, UMR CNRS 7534
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systèmes Hamiltoniens convexes du point de vue de la géométrie symplectique.
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1 Introduction

We consider a C2 Hamiltonian H : T ∗M −→ R on the cotangent bundle of a compact manifold
M (of dimension n) without boundary. Most of our results will be relevant only in the case where
H is optical, which means that it is convex with positive definite Hessian and superlinear in each
fiber. It is well known that the dynamics of optical Hamiltonians can be studied with the use of
the Lagrangian action functional. Using this approach, Mather defined an important compact
invariant set, that is now called the Aubry set, and which has the distinguished property of being
contained in a Lipschitz Lagrangian graph, see [13]. This set, and the corresponding notion of
critical value, has been studied in a number of papers, see for example [13, 12, 8, 10, 11, 9, 3,
14, 6]. In the present paper, we study it from a geometric point of view and give new proofs
of some of its most important properties: dynamical invariance, symplectic invariance, and the
graph property (which is tautological for the definition we use).

Let G be the set of Lipschitz exact Lagrangian graphs in T ∗M . An element of G is a subset
Γ ⊂ T ∗M of the form

Γ :=
{

(x, du(x)), x ∈M
}

where u is a C1,1 function (a C1 function with Lipschitz differential). To a given Hamiltonian
H, we associate its critical value

α(H) := inf
Γ∈G

max
(x,p)∈Γ

H(x, p).

This definition was introduced in [8] where it is also proved that the value α(H) would not be
changed if the regularity of the graphs considered in the infimum was increased. The Lipschitz
regularity has the advantage of being the highest one for which the infimum is a minimum, see
[4]. We define the Aubry set

Ã(H) :=
⋂

Γ∈G,Γ⊂{H6α(H)}

Γ =
⋂

Γ∈G,Γ⊂{H6α(H)}

(Γ ∩ {H = α(H)}).

Let us prove the second equality. We consider an element Γ = {(x, du(x)), x ∈ M} of G
contained in {H 6 α(H)}, and a point x0 ∈ M such that H(x0, du(x0)) < α(H). We want to
prove that there exists an element Γ1 of G contained in {H 6 α(H)} and not containing the
point (x0, du(x0)). In order to do so, we consider a C1,1 function v which is equal to u outside of
a small neighborhood of x0, which is C1-close to u, and such that dv(x0) is different from du(x0).
We can chose such a function v in such a way that the inequality H(x, dv(x)) 6 α(H) holds
everywhere. Then the Lagrangian graph Γ1 := {(x, dv(x)), x ∈ M}, satisfies all the required
properties.

The first step of the theory, which is also the hardest one, consists in proving that the Aubry
set Ã(H) of an optical Hamiltonian is not empty. It is already a non-trivial fact that the set
of elements Γ ∈ G which are contained in {H 6 α(H)} is not empty, or in other words that
the infimum in the definition of α(H) is a minimum. The following result was proved in [4]
extending an earlier result of [10] (see [1] for a more geometric presentation of the proof) :

Theorem 1. If H is optical, then there exists an element Γ ∈ G such that H|Γ 6 α(H) and

such that Ã(H) = Γ ∩ {H = α(H)}. As a consequence, the set Ã(H) is not empty.

It is also well-known that the set Ã(H) is invariant under the Hamiltonian flow. Moreover,
it is a symplectic invariant, as is proved in [5]( some relations between symplectic geometry and
Mather theory are also studied in [14, 18]):

Theorem 2. Let H be an optical Hamiltonian, and let ϕ be an exact symplectic diffeomorphism
of T ∗M such that H ◦ ϕ is also optical. Then

α(H ◦ ϕ) = α(H) and ϕ
(
Ã(H ◦ ϕ)

)
= Ã(H).
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This result is not a trivial consequence of the definition. The proof given in [5] uses another
approach to the Aubry set, closer to the original definition of Mather. Our goal in the present
paper is to try to understand this result directly on the presented definition. We shall be able
to reach this goal only when ϕ is a Hamiltonian diffeomorphism. It is an open and intriguing
question to prove the full statement by the geometric methods we are going to discuss below.

It is worth observing that Theorem 2 directly implies the dynamical invariance of Ã(H). It
is enough to apply it when ϕ is the Hamiltonian flow (which is a Hamiltonian diffeomorphism,
so that our “restricted” version is enough).

In the present paper, we will slightly modify the definition of the Aubry set above and define
a new set in such a way that symplectic invariance under Hamiltonian diffeomorphisms (and
thus dynamical invariance) is a tautological consequence of the definition. Then, we will prove
that this new Aubry set coincides with the classical one defined above in the case of optical
Hamiltonians. This class unfortunately remains at this point the only one for which we can
prove that the Aubry set is not empty. Some of the methods and results are similar to those
introduced by Paternain, Polterovich and Siburg in [14], this paper is the starting point of the
present work.

2 Generalized Aubry sets

Let L be a set of compact subsets of T ∗M (L = G for example). We define the critical value

αL(H) := inf
L∈L

max
(x,p)∈L

H(x, p)

and the set
ÃL(H) :=

⋂
L∈L,L⊂{H6αL(H)}

L

It may happen that the set of elements L ∈ L contained in the sublevel {H 6 αL(H)} is empty,
in which case we define ÃL(H) as the empty set. Of course, the theory will be interesting only
in the situations where we are able to prove that ÃL(H) is not empty. In the case L = G, we
have the property of local symplectic invariance:

For each L ∈ L and each Hamiltonian isotopy ϕt, there exists ε > 0 such that ϕt(L) ∈ L
when |t| 6 ε.

It is possible to deduce from this property that the Aubry set Ã(H) of an optical Hamiltonian
is invariant under the Hamiltonian flow. In order to do so we follow [16] (another proof following
the nice idea of [14] , section 1.3.1 would also be possible). We consider the Hamiltonian isotopy
ϕt generated by H. Recall that H ◦ ϕt = H. Let Γ ∈ G be such that H|Γ 6 α(H) and

Ã(H) = Γ ∩ {H = α(H)}. Note that the existence of such a graph Γ is given by Theorem 1
provided that H is optical. Then, by local symplectic invariance, for t small enough, we have
ϕ−t(Γ) ∈ G hence Ã(H) ⊂ ϕ−t(Γ) and then

ϕt(Ã(H)) ⊂ Γ ∩ {H = α(c)} = Ã(H).

As a consequence, the equality ϕt(Ã(H)) = Ã(H) holds when t is small enough, but then it
holds for all t.

We will be interested in sets L satisfying the stronger property of Hamiltonian invariance
(resp. exact invariance):

For each L ∈ L and each Hamiltonian (resp. exact symplectic) diffeomorphism ϕ, we have
ϕ(L) ∈ L.

In the case L = G, Hamiltonian invariance does not hold, which prevents from using the
following easy result to prove Theorem 2:
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Proposition 1. If L satisfies Hamiltonian (resp. exact) invariance, then , for each Hamiltonian
(resp. exact symplectic) diffeomorphism ϕ, we have

αL(H ◦ ϕ) = αL(H) and ϕ
(
ÃL(H ◦ ϕ)

)
= ÃL(H).

As a consequence, the set ÃL(H) is invariant under the Hamiltonian flow.

Proof. Let ϕ be a Hamiltonian (resp. exact symplectic) diffeomorphism. For each L ∈ L
such that H ◦ ϕ|L 6 αL(H ◦ ϕ), we have ϕ(L) ∈ L and H|ϕ(L) 6 αL(H ◦ ϕ). We conclude that
the sublevel {H 6 αL(H ◦ ϕ)} contains an element of L, and therefore αL(H) 6 αL(H ◦ ϕ).
We can apply this inequality with H ◦ ϕ instead of H and ϕ−1 instead of ϕ, and get that
αL(H ◦ ϕ) 6 αL(H), hence αL(H) = αL(H ◦ ϕ). Then, we conclude that ÃL(H) ⊂ ϕ(L) for
each L ∈ L, and consequently that

ÃL(H) ⊂
⋂

L∈L,L⊂{H◦ϕ6αL(H◦ϕ)}

ϕ(L) = ϕ

 ⋂
L∈L,L⊂{H◦ϕ6αL(H◦ϕ)}

L

 = ϕ
(
ÃL(H ◦ ϕ)

)
.

Applying this result with H ◦ϕ instead of H and ϕ−1 instead of ϕ, we get the reversed inclusion

ÃL(H ◦ ϕ) ⊂ ϕ−1
(
ÃL(H)

)
,

and thus the equality. The dynamical invariance follows directly by applying this to the Hamil-
tonian flow.

3 A symplectically invariant Aubry set

In this section, we specify the abstract construction of Section 2 in the case where

L = {ϕ(Γ),Γ ∈ G, ϕ ∈ H}, (*)

where H is the set of all Hamiltonian diffeomorphisms. By construction, this set L satisfies
Hamiltonian invariance, and therefore the corresponding set ÃL(H) is invariant under Hamilto-
nian diffeomorphisms, and dynamically invariant. Our main statement is the following:

Theorem 3. If H is an optical Hamiltonian, then for the set L defined in (*), we have αL(H) =
α(H) and ÃL(H) = Ã(H).

This theorem and Proposition 1 obviously imply Theorem 2 (restricted to Hamiltonian dif-
feomorphisms). Before proving Theorem 3, let us make some comments on regularity. We define
by G∞ and L∞ the set of Lagrangian manifolds in G and L which are smooth. It was proved in
[8] that

αG(H) = αG∞(H)

for all C2 optical Hamiltonians H, and similarly, we have

αL(H) = αL∞(H).

However, even in the case of optical Hamiltonians, the sets ÃG∞(H) and ÃL∞(H) are often
empty because there is no element of L∞ contained in {H 6 αL∞(H)}, some examples are given
in [4].

The proof of Theorem 3 is based on a property of the elements of L that we now describe.
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3.1 Generalized graph selector

Let us first recall the standard graph selector principle (see [7, 17]). There is a nice presentation
in [14], where the idea of using the graph selector for the circle of problems we are considering
is introduced. See also [2] for a very interesting related work.

Theorem 4. Let L ⊂ T ∗M be an exact Lagrangian manifold isotopic to the zero section, then
L admits a graph selector, that is a Lipschitz function u : M −→ R which is smooth on a dense
open set U ⊂M of full measure, and such that (x, du(x)) ∈ L for each x ∈ U .

It is not clear whether the elements of L as defined in (*) also admit a graph selector.
However, they admit a graph selector in a generalized sense. For each compact subset K ⊂ T ∗M ,
we denote by K̂ the fiberwise convexification of K. In other words, for each x ∈ M , the set
K̂ ∩ T ∗xM is the convex hull of the set K ∩ T ∗xM .

Lemma 1. For each compact set K ⊂ T ∗M , the fiberwise convexification K̂ of K is compact.

Proof. Let yk = (xk, pk) be a sequence of points of K̂. By the Theorem of Carathéodory (see
[15], Theorem 17.1), for each k, there exist n + 1 points pik, 0 6 i 6 n in K ∩ T ∗xkM and n + 1
coefficients tik in [0, 1] such that

∑n
i=0 t

i
k = 1 and such that pk =

∑n
i=0 t

i
kp
i
k. Recall that n is the

dimension of M . By taking a subsequence, we can assume that each of the sequences tik converges
to a limit ti in [0, 1], and that each of the sequences (xk, p

i
k) converges to (x, pi) ∈ K, where

x is some point of M . Then, the sequence yk is converging to (x,
∑

i t
ipi), which belongs to K̂.

Our generalization of the graph selector is the following:

Proposition 2. For each L ∈ L, there exists a Lipschitz function u on M such that (x, du(x)) ∈
L̂ for almost every x. We call this function u a generalized graph selector.

Proof. We have L = ϕ(Γ), where ϕ is a Hamiltonian diffeomorphism, and Γ a graph of the
form {(x, dv(x)), x ∈ M}, for some C1,1 function v. Let vk be a sequence of smooth functions
which converge to v in C1. The exact Lagrangian manifolds Lk = ϕ({(x, dvk(x)), x ∈M}) each
admit a graph selector uk. Since the manifolds Lk are all contained in the same bounded subset
of T ∗M , and since we have (x, duk(x)) ∈ Lk almost everywhere, we conclude that the sequence
uk is equi-Lipschitz. By adding appropriate constants (which does not alter the property of
being a graph selector), we can assume that the functions uk are equi-bounded, so that the
sequence uk is bounded in the Sobolev space W 1,∞. Therefore, we can assume by taking a
subsequence that the functions uk converge weakly in W 1,∞ to a limit u. We have to prove that
(x, du(x)) ∈ L̂ for almost every x.

Let Li, i ∈ N be a decreasing sequence of compact neighborhoods of L such that L = ∩iLi.
Let L̂i be the fiberwise convexification of Li. In the space W 1,∞(M) of Lipschitz functions on
M , we consider the subset Fi made of those functions w such that (x, dw(x)) ∈ L̂i for almost
every x. The set Fi is strongly closed and convex, thus weakly closed. Since uk ∈ Fi when k is
large enough, we conclude that u ∈ Fi, and this holds for each i, hence u ∈ ∩iFi. This means
that, for each i, the inclusion (x, du(x)) ∈ L̂i holds outside of a set of measure zero, and then
that the inclusion (x, du(x)) ∈ ∩iL̂i holds almost everywhere. In order to finish the proof, it
is enough to verify that ∩iL̂i ⊂ L̂. We take a point (x, p) ∈ ∩iL̂i. By Carathéodory Theorem,
for each i, there exist n + 1 points (x, pji ) ∈ Li, 0 6 j 6 n such that p =

∑n
j=0 t

j
ip
j
i , where

tji ∈ [0, 1] satisfy
∑n

j=0 t
j
i = 1. By taking a subsequence in i, we consider that the sequences tji

and pji converge as i −→∞. The limit (x, pj) of the sequence (x, pji ) belongs to Li for each i and

therefore to L. Since p =
∑n

j=0 t
jpj , we conclude that (x, p) ∈ L̂. This proves that ∩iL̂i ⊂ L̂.

An important consequence is the following:
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Proposition 3. Let H be an optical Hamiltonian. If the sublevel {H 6 c} contains an element
of L, then it contains an element of G.

Proof. If L is contained in {H 6 c}, then so is L̂. Taking a generalized graph selector u, we
observe that u is a Lipschitz solution of the Hamilton-Jacobi inequality

H(x, du(x)) 6 c.

The main result of [4] states that there exists a C1,1 subsolution provided there exists a Lipschitz
one. Applying this result, we find a C1,1 subsolution v, the corresponding graph

Γ = {(x, dv(x)), x ∈M} ∈ G

is then contained in the sublevel {H 6 c}.

3.2 Coincidence

We now prove Theorem 3. Since G ⊂ L, we have αL(H) 6 α(H). Conversely, if the inequality
α(H) > αL(H) was true, then picking some c in ]αL(H), α(H)[, the sublevel {H 6 c} would
contain an element of L, and therefore, by Proposition 3, an element of G. This is in contradiction
with the definition of α(H). So we have α(H) = αL(H).

As a consequence, recalling that G ⊂ L, we must have ÃL(H) ⊂ Ã(H). In order to prove
the equality, we have to prove that each manifold L ∈ L such that H|L 6 α(H) contains

Ã(H). This is almost the content of Theorem 5.1 in [14], except that we consider more irregular
manifolds, which may not admit a genuine graph selector, and that we use a different definition
for the Aubry set. Let us consider such a manifold L, and let us consider a point (x0, p0) in
Ã(H). Let Γ ∈ G be a Lipschitz exact Lagrangian graph contained in {H 6 α(H)}. In other
words, there exists a C1,1 function v : M −→ R which solves the Hamilton-Jacobi inequality
H(x, dv(x)) 6 α(H), and such that Γ = {(x, dv(x)), x ∈ M}. Since (x0, p0) ∈ Ã(H), we have
(x0, p0) ∈ Γ, so that p0 = dv(x0).

Let us consider the function

h(x) = max
p∈T ∗xM,(x,p)∈L

H(x, (p+ dv(x))/2).

By the strict fiberwise convexity of H, we have h(x) 6 α(H), with equality if and only if
(x, dv(x)) ∈ L and H(x, dv(x)) = α(H). It is therefore enough to prove that h(x0) = α(H). We
need the:

Lemma 2. The function h is upper semi-continuous on M .

Proof. Let xn be a sequence of points of M converging to x ∈M , and let pn ∈ T ∗xnM be such
that (xn, pn) ∈ L and such that H(xn, [pn + dv(xn)/2]) = h(xn). We assume that the sequence
h(xn) has a limit. By taking a subsequence, we can assume that (xn, pn) has a limit (x, p) in L,
and then

h(x) > H(x, [p+ dv(x)]/2) = limH(xn, [pn + dv(xn)]/2) = limh(xn).

We argue by contradiction and assume that h(x0) < α(H). Then, there exists a smooth
non-negative function V (x) such that h(x) + V (x) 6 α(H) for all x, and such that V (x0) > 0.
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Let us then consider a generalized graph selector u of L. For almost every x, the differential
du(x) belongs to the convex hull of L ∩ T ∗xM , so that

H(x, d(u+ v)(x)/2) 6 h(x).

As a consequence, we have the inequality

H(x, d(u+ v)(x)/2) + V (x) 6 α(H)

for almost every x. In other words, the functions f = (u + v)/2 is a Lipschitz sub-solution of
the Hamilton-Jacobi equation

G(x, df(x)) = α(H),

where G(x, p) = H(x, p) + V (x) is optical. Invoking once again the main result of [4], we infer
that the same inequation has a C1,1 subsolution w. This function satisfies

H(x, dw(x)) + V (x) 6 α(H)

for each x. The corresponding graph {(x, dw(x)), x ∈ M} ∈ G can’t contain (x0, p0) since
H(x0, p0) = α(H) while H(x0, dw(x0)) < α(H). This is in contradiction with the assumption
that (x0, p0) ∈ Ã(H).

3.3 Exact diffeomorphisms

It is tempting to define an Aubry set using the set

L = {ϕ(Γ),Γ ∈ G, ϕ ∈ E},

where E is the set of all exact symplectic diffeomorphisms. The corresponding Aubry set is
invariant under exact diffeomorphisms, and dynamically invariant. This theory would be in-
teresting if Theorem 3 was true with this definition of L, and we would have another proof of
the full statement of Theorem 2. Unfortunately, we are not able to prove Theorem 3 with this
definition of L at the moment. The problem is that we do not know whether a Lagrangian
manifold which is the image of the zero section by an exact symplectic diffeomorphism admits
any kind of generalized graph selector. As a consequence, we are not even able at the moment
to prove that αL(H) = α(H) for that generalized theory. Moreover, we do not know any class
of Hamiltonians H for which we can prove that ÃL(H) is not empty.
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