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—–

Resumo Estudamos algumas propriedades das variedades Lagrangianas exactas Lipschitz
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1 Introduction

We study a C2 Hamiltonian H : T ∗M −→ R on the cotangent bundle of a compact manifold
M without boundary. Most of our results will be relevant only in the case where H is optical,
which means that it is convex with positive definite Hessian and superlinear in each fiber. Such
Hamiltonians are also called Tonelli. We denote by G be the set of Lipschitz exact Lagrangian
graphs in T ∗M . An element of G is a subset Γ ⊂ T ∗M of the form

Γ :=
{
(x, du(x)), x ∈M

}
where u is a C1,1 function (a C1 function with Lipschitz differential). We will occasionally
denote by Gp the set of Cp exact Lagrangian Graphs. We denote by Hp the set of Cp Hamil-
tonian diffeomorphisms of T ∗M . An element of Hp is the time-one flow ϕ1

G of some Cp+1

time-dependent Hamiltonian function G : [0, 1] × T ∗M −→ R. It is well-known that Hp is a
group of diffeomorphisms of T ∗M . Finally, we introduce the set

Lp := {ϕ(Γ) : ϕ ∈ H∞,Γ ∈ Gp}

of Cp exact Lagrangian Manifolds isotopic to the zero section. The set

L := {ϕ(Γ) : ϕ ∈ H∞,Γ ∈ G}

will be especially important for our constructions. Note that

L = {ϕ(Γ) : ϕ ∈ H1,Γ ∈ G},

as will be proved in the appendix, hence L is invariant under H1. Fixing an energy e ∈ R, we
associate to each manifold L ∈ L the set

I∗e (L) :=
⋂
t∈R

ϕtH
(
L ∩ {H = e}

)
.

In other words, I∗e (L) is the maximal invariant subset of L ∩ {H = e}. It is compact and
invariant, but may in general be empty. Our main result in the present paper is :

Theorem 1. If H is optical, then for each L ∈ L contained in {H 6 e}, there exists Γ ∈ G
contained in {H 6 e} and such that I∗e (Γ) = I∗e (L).

Although this result holds for each e > max(x,p)∈LH(x, p), the value e = max(x,p)∈LH(x, p)
is more interesting than the others. If e > max(x,p)∈LH(x, p) then the set I∗e (L) is empty;
Theorem 1 for such values of e follows from Theorem 1 for e = max(x,p)∈LH(x, p). Actually,
taking e = max(x,p)∈LH(x, p) is not sufficient to ensure that the set I∗e (L) is non-empty. It will
appear clearly in the sequel that I∗e (L) is non-empty if and only if e = α(H) (this number will
be defined below).

Let us now expose two remarkable consequences of this theorem. First, it implies the fol-
lowing generalization of a recent result of Marie-Claude Arnaud [3]:

Theorem 2. If L ∈ L is invariant under an optical Hamiltonian, then it belongs to G.

In the case where L is smooth, this result, which had been conjectured several decades
ago, has recently been proved by Marie-Claude Arnaud. Partial results involving additional
assumptions had been obtained earlier by Bialy and Polterovich, see [4, 5]. Our generalization
to Lipschitz manifolds is rather natural since many invariant exact Lagrangian graphs of optical
Hamiltonian systems are Lipschitz but not C1.
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Proof. If L is invariant, then it is contained in an energy level {H = e}. To prove this claim,
we consider the Lipschitz function H ◦ i : M −→ R, where i(x) = ϕ(x, dvx). Let x be a point of
differentiability of dv, hence of i. The second differential d2vx is then symmetric, which implies
that its graph is a Lagrangian subspace of T(x,dvx)T

∗M . The linear map dix is thus a Lagrangian
linear embedding of TxM into Ti(x)(T ∗M) whose image is the tangent plane of L at q = i(x).
The invariance of L implies that the Hamiltonian vector field XH(q) belongs to this tangent
plane. For each v ∈ dix(TxM), we have

0 = ωq(XH(q), v) = dHq(v),

where ω is the symplectic form and where the first equality holds because dix(TxM) is La-
grangian. We conclude that d(H ◦ i)(x) = dHq ◦ dix = 0 for each point x of differentiability of
i. The Lipschitz function H ◦ i, having its differential almost everywhere equal to zero, is thus
constant. As a consequence, we have I∗e (L) = L. By Theorem 1, there exists Γ ∈ G such that

L = I∗e (L) = I∗e (Γ) ⊂ Γ,

thus L = Γ.

Our second application of Theorem 1, concerns the so-called Aubry and Mañé sets first
introduced by Mather in the study of optical Hamiltonians, see for example [19, 18, 13, 16, 17,
14, 6, 20, 9]. The following discussion is a sequel to [1] (although it can be read independently
from this paper), itself inspired by [20]. To a Hamiltonian H : T ∗M −→ R, we associate its
critical value

α(H) := inf
L∈L

max
(x,p)∈L

H(x, p).

In the case where H is optical, it follows from Theorem 1 that

α(H) = inf
Γ∈G

max
(x,p)∈Γ

H(x, p),

as was already proved in [1]. This is a classical definition of the critical value of optical Hamil-
tonians, introduced in [13]. We define the Aubry set A∗(H) and the Mañé set N ∗(H) by

A∗(H) :=
⋂

L∈L,L⊂{H6α(H)}
I∗α(H)(L) , N ∗(H) :=

⋃
L∈L,L⊂{H6α(H)}

I∗α(H)(L). (1)

These definitions are not the usual ones, but it follows immediately from Theorem 1 that

A∗(H) =
⋂

Γ∈G,Γ⊂{H6α(H)}
I∗α(H)(Γ) , N ∗(H) =

⋃
Γ∈G,Γ⊂{H6α(H)}

I∗α(H)(Γ) (2)

in the case where H is optical. This proves that the geometric definitions (1) coincide with the
standard ones in the case of optical Hamiltonians, as was already proved in [1] concerning the
Aubry set.

Remark. In [1], we defined the Aubry set as

Ã(H) =
⋂

L∈L,L⊂{H6α(H)}

(
L ∩ {H = α(H)}

)
,

which is slightly different from (1) at first sight. Let us prove that this is the same set. Since
I∗α(H)(Γ) ⊂ L ∩ {H = α(H)}, we have A∗(H) ⊂ Ã(H). On the other hand, we prove in [1] that
Ã(H) is invariant. Since Ã(H) ⊂ L ∩ {H = α(H)} for each L ∈ L contained in {H 6 α(H)},
we conclude that Ã(H) ⊂ I∗α(H)(L) for these L, and thus that Ã(H) ⊂ A∗(H).
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The reason why we introduce the new definitions (1) of the Aubry and Mañé sets is that
they involve only natural objects from the symplectic viewpoint. They explain in a convincing
way the property of symplectic invariance. More precisely, the following proposition follows
immediately from (1), as was already noticed in [1] concerning the Aubry set:

Proposition 1. Let H be a Hamiltonian, not necessarily optical. For each Hamiltonian diffeo-
morphism ϕ ∈ H1, we have

α(H ◦ ϕ) = α(H) , ϕ
(
A∗(H ◦ ϕ)

)
= A∗(H) , ϕ

(
N ∗(H ◦ ϕ)

)
= N ∗(H).

This statement is valid for the definition (1) of the Aubry and Mañé sets. It is worth
recalling here that we can derive conclusions on the “standard” Aubry and Mañé sets only when
both Hamiltonians H and H ◦ ϕ are optical. Note also that we can treat only Hamiltonian
diffeomorphisms here, while the conclusions of Proposition 1 (in the optical case) was proved
in [8] for all exact symplectic diffeomorphisms (see also [23] for other symplectic aspects of
Aubry-Mather theory). However, the proof of [8] involves different methods and definitions. We
believe that the geometric flavor of our present approach offsets the loss of generality of the
statement. It is an intriguing question whether these geometric methods can be extended to
exact symplectic diffeomorphisms, see [1] for some discussions on that issue.

The connections with the existing literature will be more explicit if we introduce the La-
grangian function L : TM −→ R defined by

L(x, v) = sup
p∈T ∗xM

(
p · v −H(x, p)

)
.

A function u : M −→ R is said dominated by L+ e if the inequality

u(x(t))− u(x(s)) 6
∫ t

s
e+ L(x(σ), ẋ(σ))dσ (3)

holds for each s 6 t and for each C1 curve x : [s, t] −→M . As is proved in [14], it is equivalent
to require that the function u is Lipschitz and solves the Hamilton-Jacobi inequality

H(x, du(x)) 6 e

almost everywhere (we say that u is a Lipschitz sub-solution of the equation H(x, du(x)) = e).
The curve x : R −→ M is said calibrated by (u, L, e) if the inequality (3) is an equality for all
s 6 t (we say simply calibrated by u when L and e are clear by the context). We denote by Ie(u)
the union, in M , of the images of all curves x : R −→ M calibrated by (u, L, e). A calibrated
curve is minimizing, hence its lifting

(x(t), p(t))

is a Hamiltonian trajectory, with p(t) = ∂vL(x(t), ẋ(t)). We denote by I∗e (u) ⊂ T ∗M the union
of all Hamiltonian trajectories which project on curves calibrated by (u, L, e). When not empty
the set I∗e (u) is compact and invariant. If u is dominated by L + e and x(t) : R −→ M is
calibrated by u, then the function u is differentiable at the point x(t) for each t, and{

du(x(t)) = ∂vL(x(t), ẋ(t)) = p(t),
H(x(t), du(x(t))) = e.

(4)

This is proved in the Theorem 4.3.8 of [14]. If u is dominated and C1,1, then the sets I∗e (u) and
I∗e (Γu) are equal, where Γu = {(x, du(x)), x ∈ M}. The inclusion I∗e (u) ⊂ I∗e (Γu) follows from
(4). Conversely, let (x(t), p(t)) be a Hamiltonian orbit contained in Γu. The (u, L, e) calibration
of x(t) is the integrated form of the equality

du(x(t)) · ẋ(t) = p(t) · ẋ(t) = L(x(t), ẋ(t)) +H(x(t), p(t)) = L(x(t), ẋ(t)) + e.
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In the book of Fathi [14], the Aubry and Mañé sets are defined by

A∗(H) =
⋂
u

I∗α(H)(u) , N ∗(H) =
⋃
u

I∗α(H)(u),

where the intersection and the reunion are taken on the set of all functions dominated by
(u, L, α(H)). That these expressions define the same sets as (2), hence as (1), follows from the
following result of [7] (see also [2]):
Theorem 3. Given e ∈ R, if u is a Lipschitz sub-solution of H(x, du(x)) = e, then there exists
a C1,1 sub-solution w such that I∗e (w) = I∗e (u).

Since this theorem is not explicitly stated in [7], we prove it in Appendix B. The sequel of
the paper is devoted to the proof of Theorem 1. We first need to study in Section 2 the concept
of generalized graph selector with more details than we did in [1]. We then expose the proof of
Theorem 1 in Section 3. Finally, we comment the definition of the set L in Appendix A and
prove Theorem 3 in Appendix B.

2 Generalized graph selectors

The cotangent bundle π : T ∗M −→ M is equipped with its canonical Liouville form λ = pdq.
An embedding i : M −→ T ∗M is called exact if the pullback i∗λ is exact, or in other words if
there exists a function S : M −→ R such that i∗λ = dS on M . Let us first recall the standard
graph selector principle (see [11, 22]). There is a nice presentation in [20], where the idea of
using the graph selector for the circle of problems we are considering is introduced.
Theorem 4. Let i : M −→ T ∗M be a smooth exact embedding isotopic to the zero section,
then the Lagrangian manifold L = i(M) admits a graph selector. It means that there exists a
Lipschitz function u : M −→ R and a dense open set U ⊂ M of full measure, such that u is
differentiable on U and such that

(x, du(x)) ∈ L and u(x) = S ◦ i−1(x, du(x))

for each x ∈ U .
We will pay special attention to the embeddings of the form

i(x) = ϕ(x, dv(x)) (5)

where ϕ is a smooth Hamiltonian diffeomorphism and v is a function on M . In the case where
v is smooth, the embedding i given by (5) is exact. Moreover, if G : [0, 1] × T ∗M −→ R is a
Hamiltonian generating ϕ (which means that ϕ is the time-one Hamiltonian flow of G), then
the function

S(x) = v(x) +
∫ 1

0
λϕs

G(x,dv(x)) ·XG(ϕsG(x, dv(x)))−G(s, ϕsG(x, dv(x)))ds (6)

is a Liouville primitive, meaning that dS = i∗λ. This can be checked by a direct, extremely
classical, computation, see e. g. [10]. In the expression above, we have denoted by XG the
Hamiltonian vector field of G and by ϕtG the associated Hamiltonian flow. Note that ϕ1

G = ϕ,
by definition. For less regular functions v, we have:
Proposition 2. Let i be the Lipschitz mapping given by (5) where v is C1,1 and ϕ is the
Hamiltonian diffeomorphism generated by the smooth Hamiltonian G. Then, the function S
given by (6) is a Liouville primitive in the following sense:

For each Lipschitz curve y(s) : [0, t] −→ L contained in L = i(M), we have

S ◦ i−1(y(t))− S ◦ i−1(y(0)) =
∫ t

0
λy(s) · ẏ(s)ds
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Proof. Each Lipschitz curve y in L is of the form i ◦x, where x is a Lipschitz curve on M . We
have to prove the equality

S(x(t))− S(x(0)) =
∫
i◦x
λ

for each Lipschitz curve x(s) : [0, t] −→M . When v and x are smooth the result follows because
we have i∗λ = dS. In order to prove the result in the general case, we can assume that the image
of the curve π ◦ i ◦ x is contained in the domain of a chart of M , else we can cut the curve x in
small pieces and prove the result for each of these pieces. We thus work in a chart of M . Let vk
be a sequence of smooth functions converging to v in C1(M,R) and bounded in W 2,∞, which
means that their differentials are equi-Lipschitz. Let Sk be the function associated to vk by the
formula (6), the Hamiltonian G being fixed. Note that the functions Sk are equi-Lipschitz and
converge uniformly to S as k −→∞. We also consider a sequence xk(s) : [0, t] −→M of smooth
equi-Lipschitz curves converging uniformly to x(s). We have the equality

Sk(xk(t))− Sk(xk(0)) =
∫
ik◦xk

λ

where ik is the map associated to the function vk by (5). Since

Sk(xk(t))− Sk(xk(0)) −→ S(x(t))− S(x(0)),

the desired result holds if we prove that∫
ik◦xk

λ −→
∫
i◦x
λ.

We denote by (qk(s), pk(s)) the curve ik◦xk(s) (recall that we work in a chart), and by (q(s), p(s))
the curve i ◦ x(s). The curves (qk, pk) are equi-Lipschitz and converge uniformly to (q, p). We
can suppose also by taking a subsequence that qk is converging to q weakly-? in the Sobolev
space W 1,∞. As a consequence, we have∫

ik◦x
λ =

∫ t

0
pk(s) · q̇k(s)ds −→

∫ t

0
p(s) · q̇(s)ds =

∫
i◦x
λ.

Corollary 1. If the mapping π ◦ i : M −→ M is a bi-Lipschitz homeomorphism, then i(M) =
Γu = {(x, du(x)) : x ∈M} ∈ G where u = S ◦ (π ◦ i)−1.

Note that u is C1,1, while S and π ◦ i may be only Lipschitz.
Proof. Let us work locally and consider local coordinates (q, p) on T ∗M . The manifold
L = i(M) is locally the image of the Lipschitz section P = p ◦ i ◦ (π ◦ i)−1. Given a local
Lipschitz curve q(t) in M , we consider its pull-back x(t) = i−1(q(t), P (q(t))). We have

u(q(t))− u(q(0)) = S(x(t))− S(x(0)) =
∫ t

0
P (q(s))q̇(s)ds.

Since this equality holds for each Lipschitz curve q, we conclude that u is C1 and that du = P .

In [1], we proved that a generalized graph selector u can be associated to the manifold
L = i(M) when v is only C1,1. Here we need to be a bit more precise on the relation between
the generalized graph selector u and the Liouville primitive S. As in [1], we denote by K̂ the
fiberwise convexification of a set K ⊂ T ∗M . For each x ∈ M , the set K̂x := K̂ ∩ T ∗xM is the
convex hull, in T ∗xM , of the set Kx := K ∩ T ∗xM .
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Proposition 3. Let i be the embedding given by (5) where v is C1,1 and ϕ is the Hamiltonian
diffeomorphism generated by the smooth Hamiltonian G. Let us set L = i(M). Then, there
exists a Lipschitz function u on M such that (q, du(q)) ∈ L̂ at each point q of differentiability of
u and such that the relation

u(q) = S ◦ i−1(q, du(q))

holds at each point q where u is differentiable and where du(q) is an extremal point of L̂q (thus
a point of L).

Even in the case where v is smooth, this result does not follow immediately from Proposition
2, because the point q does not necessarily belong to U . In this case where v is regular, the result
is essentially proved in [3]. Before we pass to the proof we present a Lemma which generalizes a
nonsmooth analysis result proved by Clarke on page 63 of [12] (see also Proposition 8.4 of [15]).

Lemma 2. Let uk : M −→ R be an equi-Lipschitz sequence of functions converging uniformly
to a Lipschitz function u : M −→ R. Let A ⊂ M be a set of full Lebesgue measure such that
each of the uk is differentiable at each point of A. For each q ∈M we define the set Kq ⊂ T ∗qM
as the set of limit points of the sequences (qk, duk(qk)), qk ∈ A, qk −→ q, . We also define its
convex hull K̂q in T ∗qM . Note that Kq, hence K̂q, are compact. If u is differentiable at q, then
du(q) ∈ K̂q.

Note: The statement of the Lemma is slightly corrected compared to the published version
of the present paper.
Proof. Let us assume by contradiction that du(q) does not belong to K̂q. Then, there exists
a vector ξ ∈ TqM such that du(q) · ξ > 1 and p · ξ < 1 for each p ∈ K̂q. As a consequence, there
exists a neighborhood Ω of q in M , that we identify with a convex open subset of Rn via a chart
and an integer N such that

duk(x) · ξ < 1

for each k > A and each x ∈ A∩Ω. By Fubini Theorem, there exists a subset Ã of A∩Ω which
has full measure in a neighborhood of q, and a positive number S > 0 such that, for each x ∈ Ã,
the inclusion x+ sξ ∈ A ∩ Ω holds for almost every s ∈ [−S, S]. We conclude that

uk(x+ sξ) < uk(x) + s

for each k > N, x ∈ Ã, s ∈ [0, S]. Since q belongs to the closure of Ã, this implies that

uk(q + sξ) 6 uk(q) + s

for each k > N, s ∈ [0, S]. We can pass to the limit k −→∞ in this inequality and obtain that

u(q + sξ) 6 u(q) + s

for each s ∈ [0, S]. This is in contradiction with the fact that du(q) · ξ > 1. We conclude that
du(q) ∈ K̂.

Proof of Proposition 3. We prove the existence of the function u as in [1]: We consider
a sequence vk regularizing v, and associate to it the various objects ik, Sk, Lk = ik(M), uk. Note
that the functions Sk are equi-bounded, and that the relation

uk(x) = Sk ◦ i−1
k (x, duk(x))

holds almost everywhere, which implies that the functions uk are equi-bounded as well. More-
over, the inclusion

(x, duk(x)) ∈ Lk
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holds for almost every x, which implies that the functions uk are equi-Lipschitz. We can thus
assume, by Ascoli Theorem, that the functions uk converge uniformly to a limit u. It is useful
to fix once and for all a subset A ⊂ M of full measure such that each of the functions uk are
differentiable on A and

(x, duk(x)) ∈ Lk , uk(x) = Sk ◦ i−1
k (x, duk(x))

for each k and each x ∈ A.
Let us consider a point q where u is differentiable. By Lemma 2, we obtain that du(q) ∈ K̂q.

We claim that
K̂q ⊂ L̂q. (7)

For the moment, let us assume that (7) holds and derive the proposition. What remains to
prove is that u(q) = S ◦ i−1(q, du(q)) provided du(q) is an extremal point of L̂q. It follows from
(7) that du(q) is then an extremal point of K̂q, hence a point of Kq. In other words, there exists
a sequence qk ∈ A such that (qk, duk(qk)) −→ (q, du(q)). The equality

u(q) = S ◦ i−1(q, du(q))

that we want to prove thus follows at the limit k −→∞ from the equalities

uk(qk) = Sk ◦ i−1
k (qk, duk(qk)).

This proves the proposition, assuming (7). We now prove (7), i.e., we prove that Kq ⊂ Lq, which
implies that K̂q ⊂ L̂q. Each point (q, p) of Kq is the limit of a sequence (qk, pk) of points of Lk.
There exist points xk ∈M such that ik(xk) = (qk, pk), and we can assume that the sequence xk
has a limit x. Since ik converges uniformly to i, we have (q, p) = lim ik(xk) = i(x) ∈ L.

3 Proof of Theorem 1

We assume, without loss of generality, that e = 0. Let us consider an element L of L contained in
{H 6 0}. By definition, there exists a C1,1 function v and a smooth Hamiltonian diffeomorphism
ϕ such that L = ϕ(Γv), where Γv = {(x, dv(x)) : x ∈ M}. As in Section 2, we denote by
i : M −→ T ∗M the embedding

i(x) := ϕ(x, dv(x))

in such a way that i(M) = L. We proved in section 2 the existence of a Lipschitz Liouville
primitive S : M −→ R, and of a generalized graph selector u : M −→ R associated to S, see
Proposition 3. We claim that

I∗0 (u) = I∗0 (L). (8)

Assuming the claim, we can finish the proof of Theorem 1. We apply Theorem 3 and get the
existence of a C1,1 function w such that H(x, dw(x)) 6 0 and such that I∗0 (w) = I∗0 (u). The
exact graph Γ = {(x, dw(x)) : x ∈M} satisfies all the conclusions of Theorem 1.

We have to prove (8). Observe that the function u solves almost everywhere the Hamilton-
Jacobi inequality H(x, du(x)) 6 0, hence it is dominated by the Lagrangian L. Let us consider
an orbit (q(t), p(t)) contained in I∗0 (u). This implies that u is differentiable at q(t) for each
t ∈ R, that du(q(t)) = p(t), and that H(q(t), du(q(t))) = 0, see (4). By Proposition 3, the point
du(q(t)) belongs to the convex hull L̂q(t) of Lq(t) := L∩T ∗q(t)M and, since H(q(t), du(q(t))) = 0, it
is an extremal point of this convex set, hence a point of Lq(t). We conclude that (q(t), p(t)) ∈ L,
so that

I∗0 (u) ⊂ I∗0 (L).

8



In order to prove the other inclusion, we now consider an orbit y(t) = (q(t), p(t)) contained in
I∗0 (L) (if I∗0 (L) is empty, then there is nothing to prove). Let us set

f(t) := u(q(t))− u(q(−t))−
∫ t

−t
L(q(σ), q̇(σ))dσ.

We have to prove that the function f is null, which implies that the curve q is calibrated by
(u, L, 0). It is easy to check that f is non-positive and non-increasing, because the function u
is dominated by L. Moreover, using that H(y(t)) = 0 and that S is a Liouville primitive (see
Proposition 2), we can compute (using that L(q, q̇) = pq̇ −H(q, p)):∫ t

−t
L(q(σ), q̇(σ))dσ =

∫ t

−t
p(σ)q̇(σ)dσ = S ◦ i−1(y(t))− S ◦ i−1(y(−t)),

hence
f(t) = u(q(t))− S ◦ i−1(y(t))− u(q(−t)) + S ◦ i−1(y(−t)).

Let us choose a sequence tk −→∞ such that the curves y(t−tk) and y(t+tk) converge uniformly
on compact sets to limit curves α(t) = (qα(t), pα(t)) and ω(t) = (qω(t), pω(t)).

Lemma 3. The asymptotic orbits α(t) and ω(t) belong to I∗0 (u) (and even to A∗(H)).

Incidentally, this Lemma implies that α(H) = 0 (the value of e) unless I∗0 (L) is empty.
Proof. We prove the statement concerning ω(t), the other being similar. We have to prove
that the curve qω(t) is calibrated by the dominated function u. We can assume by taking a
subsequence that tk+1 − tk −→∞. Since S is a Liouville primitive, we have∫ tk+1

tk−1
L(q(s), q̇(s))ds = S ◦ i−1(y(tk+1))− S ◦ i−1(y(tk−1)) −→ 0

because both sequences y(tk−1) and y(tk+1) converge to ω(0). As a consequence,

u(q(tk+1))− u(q(tk−1))−
∫ tk+1

tk−1
L(q(s), q̇(s))ds −→ 0.

For each fixed t > 0, we have

0 > u(q(tk + t))− u(q(tk − t)−
∫ tk+t

tk−t
L(q(s), q̇(s))ds

> u(q(tk+1))− u(q(tk−1))−
∫ tk+1

tk−1
L(q(s), q̇(s))ds

when k is large enough, hence

u(qω(t))− u(qω(−t))−
∫ t

−t
L(qω(s), q̇ω(s))ds =

lim
k−→∞

(
u(q(tk + t))− u(q(tk − t))−

∫ tk+t

tk−t
L(q(s), q̇(s))ds

)
= 0.

This implies that the curve qω(t) is calibrated by (u, L, 0), and then that its lifting (qω(t), pω(t))
belongs to I∗0 (u). In this proof, we have only used that u is a dominated function, we have not
used its relation to S. So we can apply the proof to all dominated functions, and conclude that
ω(t) ∈ A∗(H).
The lemma implies that u is differentiable at qα(0) and qω(0), that du(qα(0)) = pα(0), du(qω(0)) =
pω(0), and that H(α(0)) = 0 = H(ω(0)). We then conclude from Proposition 3 that

u(qα(0)) = S ◦ i−1(α(0)) , u(qω(0)) = S ◦ i−1(ω(0)).
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We obtain :

f(tk) −→ u(qω(0))− S ◦ i−1(ω(0))− u(qα(0))) + S ◦ i−1(α(0)) = 0.

Since f is non-positive and non-increasing, we conclude that f is identically null. As a conse-
quence, the curve q is calibrated by (u, L, 0).

A Lipschitz exact manifolds isotopic to the zero section

We return in this appendix to the definition of the sets Lp and L. Note that

Lp := {ϕ(Γ) : ϕ ∈ H∞,Γ ∈ Gp}

is just the set of Cp exact Lagrangian manifolds isotopic to the zero section. It could have been
equally defined as

Lp := {ϕ(Γ0) : ϕ ∈ Hp},

where Γ0 is the zero section. The first definition has the advantage of allowing a straightforward
extension to the Lipschitz regularity

L := {ϕ(Γ) : ϕ ∈ H∞,Γ ∈ G}

without bothering on defining a notion of Lipschitz Hamiltonian diffeomorphisms. Since H∞ is
a group, the set L is invariant under H∞ in the sense that

L ∈ L, ϕ ∈ H∞ =⇒ ϕ(L) ∈ L.

Actually, the set L is even invariant under H1. This follows from :

Proposition 4.
L = {ϕ(Γ) : ϕ ∈ H1,Γ ∈ G}.

Proof. Let us consider a graph Γ ∈ G and a diffeomorphism ϕ ∈ H1. We want to prove that
ϕ(Γ) ∈ L. Let us approximate the diffeomorphism ϕ by a smooth Hamiltonian diffeomorphism
ψ ∈ H∞, in the sense that ψ−1 ◦ ϕ is C1-close to the identity. We have ϕ(Γ) = ψ

(
ψ−1 ◦ ϕ(Γ)

)
.

If ψ−1 ◦ ϕ is sufficiently C1-close to the identity, then Γ′ := ψ−1 ◦ ϕ(Γ) is an element of G, by
Corollary 1 and the fact that Γ is Lipschitz. We conclude that ϕ(Γ) = ψ(Γ′) ∈ L.

B Regularization of sub-solutions

In this appendix, we deduce Theorem 3 from the content of [7]. We assume that e = 0. We
define the Lax-Oleinik semi-groups by

T tu(q) = min
x(t)=q

(
u(x(0)) +

∫ t

0
L(x(s), ẋ(s))ds

)
T̆ tu(q) = max

x(0)=q

(
u(x(t))−

∫ t

0
L(x(s), ẋ(s))ds

)
,

where the extrema are taken on the set of C1 curves x(s) : [0, t] −→ M satisfying x(t) = q in
the first expression and x(0) = q in the second. For each sub-solution u and each t > 0, it is
proved in [7] that the function T̆ sT tu is a C1,1 sub-solution provided s > 0 is small enough.
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Lemma 4. Given a sub-solution u, the functions u, T tu and T̆ tu coincide on I0(u) for each
t > 0. As a consequence, we have the inclusions I∗0 (u) ⊂ I∗0 (T tu) and I∗0 (u) ⊂ I∗0 (T̆ tu).

Proof. Let (x(s), p(s)) be an orbit contained in I∗0 (u). We have to prove that the curve x(s)
is calibrated by T tu and by T̆ tu. It is a standard and easy fact, proved for example in [14], that
T tu > u > T̆ tu because u is a sub-solution. On the other hand, given s ∈ R, we have

u(x(s)) = u(x(s− t)) +
∫ s

s−t
L(x(σ), ẋ(σ))dσ,

T tu(x(s)) 6 u(x(s− t)) +
∫ s

s−t
L(x(σ), ẋ(σ))dσ

hence T tu(x(s)) 6 u(x(s)), and thus u(x(s)) = T tu(x(s)). Similarly,

u(x(s)) = u(x(s+ t))−
∫ s+t

s
L(x(σ), ẋ(σ))dσ,

T̆ tu(x(s)) > u(x(s+ t))−
∫ s+t

s
L(x(σ), ẋ(σ))dσ

hence T̆ tu(x(s)) > u(x(s)), and thus u(x(s)) = T̆ tu(x(s)).
This Lemma implies that

I∗0 (u) ⊂ I∗0 (T̆ sT tu)

for each t, s > 0. Let us now consider two sequences sn < tn of positive numbers such that
tn −→ 0 and such that T̆ snT tnu is a C1,1 sub-solution for each n ∈ N. Let an be a sequence of
positive numbers such that

w :=
∑
n>0 anT̆

snT tnu∑
n>0 an

is a C1,1 function. This function is a sub-solution, which coincides with u on I0(u), so that

I∗0 (u) ⊂ I∗0 (w).

An orbit is calibrated by w if and only if it is calibrated by each of the sub-solutions T̆ snT tnu.
Since T̆ snT tnu −→ u uniformly when n −→ ∞, this implies that the orbit is also calibrated by
u. We conclude that I∗0 (w) = I∗0 (u).
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