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Abstract. We study the Monge transportation problem when the cost is the action associated to
a Lagrangian function on a compact manifold. We show that the transportation can be interpo-
lated by a Lipschitz lamination. We describe several direct variational problems the minimizers of
which are these Lipschitz laminations. We prove the existence of an optimal transport map when
the transported measure is absolutely continuous. We explain the relations with Mather’s minimal
measures.

Several observations have recently renewed the interest for the classical topic of optimal
mass transportation, whose origin is attributed to Monge a few years before the French
revolution. The framework is as follows. A spakgis given, which in the present paper

will be a compact manifold, as well as a continuous cost funetiany) : M x M — R.

Given two probability measuresg and u1 on M, the mappingsl : M — M which
transportug into 1 and minimize the total cosf,, c(x, W(x)) duo are studied. It turns

out, and it was the core of the investigations of Monge, that these mappings have very
remarkable geometric properties, at least at a formal level.

Only much more recently was the question of the existence of optimal objects rig-
orously solved by Kantorovich in a famous paper of 1942. Here we speak of optimal
objects, and not of optimal mappings, because the question of existence of an optimal
mapping is ill-posed, so that the notion of optimal objects has to be relaxed, in a way that
nowadays seems very natural, and that was discovered by Kantorovich.

Our purpose here is to continue the work initiated by Monge, recently awakened by
Brenier and enriched by other authors, on the study of geometric properties of optimal
objects. The cost functions we consider are natural generalizations of thgcost =
d(x, y)? considered by Brenier and many other authors. The Hodk [39] gives some ideas
on the applications expected from this kind of questions. More precisely, we consider a
Lagrangian functiord (x, v, t) : TM xR — R which is convex irv and satisfies standard
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hypotheses recalled later, and define our cost by

1
c(x,y) = myin/ Le (), 70, 1) dr
0

where the minimum is taken over the set of curyes|0, 1] — M satisfyingy (0) = x
andy (1) = y. Note that this class of costs does not contain the very naturat©qst) =
d(x, y). Such costs are studied in another paper [9].

Our main result is that the optimal transports can be interpolated by measured Lip-
schitz laminations, or geometric currents in the sense of Ruelle and Sullivan. Interpola-
tions of transport have already been considered by Benamou, Brenier and McCann for
less general cost functions, and with different purposes. Our methods are inspired by the
theory of Mather, M&é and Fathi on Lagrangian dynamics, and we will detail rigor-
ously the relations between these theories. Roughly, they are exactly similar except that
mass transportation is a Dirichlet boundary value problem, while Mather theory is a pe-
riodic boundary value problem. We will also prove, extending work of Brenier, Gangbo,
McCann, Carlier, and others, that the optimal transportation can be performed by a Borel
map with the additional assumption that the transported measure is absolutely continuous.

Various connections between Mather—Fathi theory, optimal mass transportation and
Hamilton—-Jacobi equations have recently been discussed, mainly at a formal level; see
for example [[39], or[[19], where they are all presented as infinite-dimensional linear
programming problems. This has motivated a lot of activity around the interface be-
tween Aubry—Mather theory and optimal transportation, some of which overlaps partly
the present work. For example, at the moment of submitting the paper, we were informed
about recent preprints of De Pascale, Gelli and Grariiefi [15] and of Graniéri [26]. We
had also been aware of a manuscript by Wolansky [40], which, independently, and by
somewhat different methods, obtains results similar to ours. Note however that Lipschitz
regularity, which we consider one of our most important results, was not obtained in this
preliminary version of([40]. The papeis [36] of Pratelli ahd|[31] of Loeper are also worth
mentioning.

1. Introduction

We present the context and the main results of the paper.

1.1. Lagrangian, Hamiltonian and cost

In all the present paper, the spadewill be a compact and connected Riemannian man-
ifold without boundary. Some standing notations are gathered in the appendix. Let us fix
a positive real numbeF, and a Lagrangian function

LeC¥TM x[0,T],R).



Optimal mass transportation and Mather theory 3

Acurvey € C%([0, T], M) is called arextremalif it is a critical point of the action

T
fo LG0). y(1). 1) dt

with fixed endpoints. It is called minimizing extremailf it minimizes the action. We
assume:

e Convexity: foreach(x,r) € M x [0, T], the functionv — L(x, v, t) is convex with
positive definite Hessian at each point.

e Superlinearity: for each(x,t) € M x [0, T], L(x, v, t)/||v] — oo as|jv|| — oo.
Arguing as in[[20, Lemma 3.2.2], this implies that for all> 0 there exist€ > 0
such thatL(x, v, t) > a|v|| — C forall (x,v,7) e TM x [0, T].

e Completeness:for each(x, v, ) € TM x [0, T], there exists a unique extremale
C2([0, T], M) such thai(y (1), y (1)) = (x, v).

We associate to the Lagrangidna Hamiltonian functiond € C3(T*M x [0, T], R)
given by
H(-xa P, t) = maX(P(v) - L(-x? v, t))
v

We endow the cotangent bundfé M with its canonical symplectic structure, and asso-
ciate to the Hamiltonia#! the time-dependent vector fiellon 7*M, given by

Y = (3,H, —d, H)

in any canonical local trivialization of *M. The hypotheses oh can be expressed in
terms of the functior:

e Convexity: foreach(x,t) € M x [0, T], the functionp — H(x, p, t) is convex with
positive definite Hessian at each point.

e Superlinearity: for each(x,t) € M x [0, T], we haveH (x, p,t)/||pll — oo as
pll — oo.

e Completeness:each solution of the equatiati(z), p(r)) = Y (x(¢), p(¢),t) can be
extended to the interval [T"]. We can then define, for afl 7 € [0, T], the flow ¢! of
Y from times to time¢.

In addition, the mapping,L : TM x [0,T] — T*M x [0, T] is a C* diffeomor-
phism, whose inverse is the mappidgH. These diffeomorphisms conjugaleto a
time-dependent vector fiel on T M. We denote the flow of by ¥! : TM — TM
(s,z € [0, T)); it satisfiesy? = Id andd, ¢! = E; o ¢!, where as usuak, denotes the
vector fieldE (-, r) on T M. The diffeomorphism$, L andd, H conjugate the flows!
andy!. Moreover the extremals are the projections of the integral curv&sasfd

(m oyl d(m o)) = ¥l 1)

whererr : TM — M is the canonical projection. Ifi](1); (= o ¥!) is seen as a vector
in the tangent space @f ats o y!. If 3,(7 o ¥!) is seen as a point ifi M, (I) becomes
simply 3, (;w o 1) = .
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Foreach O< s <t < T, we define the cost function
t
ci(x,y) = n}/m/ L(y(0),y(0),0)do
N

where the minimum is taken over the set of curyes C2([s, ], M) satisfyingy (s) = x
andy (¢) = y. That this minimum exists is a standard result under our hypotheses (see
[33] or [20]).

Proposition 1. Fix a subintervals, t] c [0, T]. The se€ ¢ C?([s, t], M) of minimizing
extremals is compact for th@? topology.

Let us mention that, for eaadtxo, s) € M x [0, T], the function(x, t) > ck(xo, x) is a
viscosity solution of the Hamilton—Jacobi equation

oru+ H(x,d,u,t) =0

on M x ]s, T[. This remark may help the reader understand the key role which will be
played by this equation in what follows.

1.2. Monge—Kantorovich theory

We recall the basics of Monge—Kantorovich duality. The proofs are available in many
texts on the subject, for example [1,137] 39]. We assumeih#& a compact manifold

and that is a continuous cost function g x M, which will later be one of the cost$
defined above. Given two Borel probability measurgsand1 on M, atransport plan
betweenuog anduy is a measur@ on M x M which satisfies

(mo)s(n) = no and (w1)s(n) = pa,

whereng : M x M — M is the projection on the first factor, and is the projection on
the second factor. We denote k{110, 11), after Kantorovich, the set of transport plans.
Kantorovich proved the existence of the minimum

C(po, p1) = _min f cdn
nek(no.n1) J MxM
for each painuo, 1) of probability measures o . Here we will denote by
Cluonpi= min [ citxyydnee, )
nekno,n1) JMxM

the optimal value associated to our family of cagt§he plans which realize this mini-
mum are calledptimal transfer plansA pair (¢g, ¢1) of continuous functions is called
anadmissible Kantorovich paif it satisfies the relations

$1(x) = min(go(y) +c(y,x)) and ¢o(x) = maxp1(y) — c(x, y))
yeM yeM
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for all x € M. Note that the admissible pairs are composed of Lipschitz functions if the
costc is Lipschitz, which is the case of the cos{swhens < r. Another discovery of
Kantorovich is that

C(po, n1) = max(/ ¢1dﬂl—/ ¢odﬂo> 3
$0.91\J M M

where the maximum is taken over the set of admissible Kantorovich @&irg1). This
maximization problem is called thdual Kantorovich problemand the admissible pairs
which reach this maximum are callegtimal Kantorovich pairsThe direct problent {2)
and dual probleni {3) are related as follows.

Proposition 2. If n is an optimal transfer plan, and if¢o, ¢1) is an optimal Kantorovich
pair, then the support af is contained in the set

{(x,y) € M2 ¢1(y) — do(x) = c(x, y)}.

Let us remark that the knowledge of the set of admissible Kantorovich pairs is equivalent
to the knowledge of the cost functian

Lemma 3. We have
c(x,y) = max(¢1(y) — ¢o(x))
(¢0,91)
where the maximum is taken over the set of admissible Kantorovich pairs.

Proof. This maximum clearly does not excee¢k, y). For the other inequality, fixg
andyp in M, and consider the functios (y) = c(xo, ¥) andego(x) = max,ep ($1(y) —
c(x, y)). We havep1(yo) — ¢o(xo) = c(xg, o) — 0 = c(xp, yo). So it is enough to
prove that(¢o, ¢1) is an admissible Kantorovich pair, and more precisely fhay) =
Min, e (Po(x) + c(x, y)). We have

¢o(x) +c(x,y) = c(xo, y) — c(x, y) + c(x, y) = c(x0, y) = ¢1(¥),
which gives the inequality1(y) < min,cp (do(x)+c(x, y)). On the other hand, we have

Qiﬂ(qﬁo(ﬂ +c(x,y)) = go(xo0) + c(xo, y) = c(x0, y) = ¢1(y). o

1.3. Interpolations

In this section, the Lagrangiah and time7 > 0 are fixed. It is not hard to see that if
w1, w2 andus are three probability measures dh and ift; < 2 < 13 € [0, T], then

Ci(u1, u3) < C2(u1, n2) + C2 (12, 13).

The family u,, t € [0, T], of probability measures oM is called aninterpolationbe-
tweenug anduy if

CR (1t i) = C2 (g fay) + C2 (e, )

forall0 <1 <t <t3 < T.Our main result is the following:
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Theorem A. For each pairug, ur of probability measures, there exist interpolations
betweernuo and 7. Moreover, each interpolation,, ¢t € [0, T], is given by a Lipschitz
measured lamination in the following sense:

Eulerian description: There exists a bounded locally Lipschitz vector figlg, 7) :

M x 10, T[ — TM such that, if ¥/, (s,7) € ]0, T[?, is the flow ofX from times to
timez, then(W!), i = u, for each(s, 1) € 10, T[°.

Lagrangian description: There exists a familyF ¢ C?([0, T], M) of minimizing ex-
tremalsy of L such thaty (r) = X (y(¢),t) forall t € 10, T[ andy € F. The set

T={y@),y@),1):t€l0,T[, y e F} CTM x 10, T[

is invariant under the Euler—Lagrange floyw. The measure:, is supported orZ; =
{y () : y € F}. In addition, there exists a continuous family, ¢ € [0, T'], of probability
measures off' M such thatm, is concentrated off; = {(y (1), y(¢)) : y € F} for each
t €10, T'[, mym; = p, for eachr € [0, T, and

m; = (YHms  forall (s, 1) € [0, T]?.

Hamilton—Jacobi equation: There exists a Lipschitz® functionv : M x 10, T[ - R
which satisfies

alv+H(xaaXv7t) =< O’

with equality if and only ifx, 1) € 7 = {(y(¢),t) : y € F, t € ]0, T[}, and such that
X(x,1) =0,H(x, 0xv(x,1),1) for each(x, ) € 7.

Uniqueness: There may exist several different interpolations. However, one can choose
the vector fieldX, the familyF and the subsolution in such a way that the statements
above hold for all interpolationg, with these fixed, 7 andv. Foreachs < r €10, T[,

the measurgld x W!);u, is the only optimal transport plan ifC(u, ) for the cost.

This implies that

/M cy(x, We(x) djus (x) = Cy(pts, e

Let us comment on the preceding statement. Th& setT M x ]0, T[ is the image under
the Lipschitz mapx, ¢) — (X (x,t),t) of the set7 ¢ TM x ]0, T[. We shall not take
X(x,1) = 3,H(x, d:v(x, 1), 1) outside of7 because we do not prove that this vector
field is Lipschitz outside of . The data of the vector field outside of7 is immaterial:
any Lipschitz extension af |7 will do. Note also that the relation

Wi =7 oyyoX; C)

holds on7, whereX(-) = X (-, s).

The vector fieldX in the statement depends on the transported meagygrasd i7.
The Lipschitz constant ok, however, can be fixed independently of these measures, as
we now state (see Proposition| 13, Propositioh 19, Thepiem 3 ahd (11)):
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Addendum. There exists a decreasing functidh¢) : 10, 7/2[ — ]0, oo[, which de-
pends only on the tim& and on the Lagrangiat., such that, for each pairo, ur of
probability measures, one can choose the vector feld Theorem A in such a way that
X is K (¢)-Lipschitz onM x [e, T — €] for eache €10, T/2].

Proving Theorem A is the main goal of the present paper. In Section 2 we will present
some direct variational problems which are well-posed and for which the transport in-
terpolations are solutions in some sense. We believe that these variational problems are
interesting in their own right. In order to describe the solutions of the variational problem,
we will rely on a dual approach based on the Hamilton—Jacobi equation, inspired from
Fathi's approach to Mather theory, as detailed in Se€fion 3. The solutions of the problems
of Sectiorf 2, as well as the transport interpolations, are then described in $éction 4, which
ends the proof of Theorem A.

1.4. Case of an absolutely continuous meagwye

Additional conclusions concerning optimal transport can usually be obtained when the
initial measureug is absolutely continuous. For example a standard question is whether
the optimal transport can be realized by an optimal mapping.

A transport mapis a Borel map¥ : M — M which satisfieslsuo = u1. To any
transport mapl is naturally associated the transport pieohx W), 0, called theénduced
transport plan An optimal magpis a transport mag : M — M such that

f er (v, W) dpuo < / er (e, Fo)) dpto
M M

for any transport mag'. It turns out that, under the assumption thathas no atoms, a
transport map is optimal if and only if the induced transport plan is an optimal transport
plan (seel[l, Theorem 2.1]). In other words, we have

inf/ c(x, ¥(x)) dpo(x) = C(po, 1),
v oJm

where the infimum is taken over the set of transport maps frgno 1. This is a general
result which holds for any continuous cestt is a standard question, which turns out to

be very hard for certain cost functions, whether the infimum above is reached, or in other
words whether there exists an optimal transport plan which is induced from a transport
map. Part of the result below is that this holds true in the case of the@o‘ﬁhe method

we use to prove this is an elaboration on ideas due to Breniér [12] and developed for
instance in[[24] (see alsb [R3]) arid [16], which is certainly the closest to our needs.

Theorem B. Assume thatg is absolutely continuous with respect to the Lebesgue class
on M. Then for each final measuyer, there exists a unique interpolation, ¢ € [0, T],
and each interpolating measure, ¢+ < T, is absolutely continuous. In addition, there
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exists a familyy : M — M, t € ]0, T], of Borel maps such thatd x \Dé)ﬁuo is the
only optimal transfer plan irC(uo, 11,) for the cost functiorf. Consequently, we have

/ chx. WhH(x)) dpuo(x) = Ch(po. ). 0 <1 <T.
M

If wr, instead ofug, is assumed to be absolutely continuous, then there exists a unique
interpolation, and each interpolating measweg, ¢ € ]0, T'1, is absolutely continuous.

This theorem will be proved and commented in Sedtion 5.

1.5. Mather theory

Let us now assume that the Lagrangian function is defined for all timesC2(T M x
R, R), and, in addition to the standing hypotheses, satisfies the periodicity condition

L(x,v,t+1)=L(x,v,1)

forall (x,v,1) € TM x R. A Mather measurésee [38]) is a compactly supported prob-
ability measureng on T M which is invariant in the sense tw&)ﬁmo = mg and which
minimizes the action

Ag(mo) = / L(yh(x, v), 1) dmodt.
TM x[0,1]

The major discovery of_ [33] is that Mather measures are supported on the graph of a
Lipschitz vector field. Let us denote lythe action of Mather measures—this number is
the value at zero of the function defined by Mather in [33]. Let us now explain how this
theory of Mather is related to, and can be recovered from, the content of our paper.

Theorem C. We have
a = minCy(u, ),
7

where the minimum is taken over the set of probability measurel ofthe mapping
mo — mymg iS a bijection between the set of Mather measurgsand the set of proba-
bility measureg. on M satisfyingcg(u, ) = a. There exists a Lipschitz vector fietg
on M such that all the Mather measures are supported on the grapfyof

This theorem will be proved in Sectifh 6, where the bijection between Mather measures
and measures minimizir@cl,(u, w) will be specified.

2. Direct variational problems
We state two different variational problems whose solutions are the interpolated trans-

ports. We believe that these problems are interesting in their own right. They will also be
used to prove Theorem A.
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2.1. Measures

This formulation parallels Mather’s theory. It can also be related to the generalized curves
of L. C. Young. Letug and ur be two probability Borel measures a. Let mg €

B1(T M) be a Borel probability measure on the tangent buddie. We say thatng is an

initial transport measuréf the measure) on M x M given by

n= (T x (o yg)mo

is a transport plan, where : TM — M is the canonical projection. We denote by
Z(1o, ur) the set of initial transport measures. To an initial transport measypyeve
associate the continuous family of measures

my = (I/I(I))ij’ te [07 T]?
onTM, and the measune onTM x [0, T] given by
m=m; Qdt = ((lﬂ(t))ﬁmo) ® dt.

Note that the linear mappingg +— m = ((l/fé)ﬁmo) ® dt is continuous fromB3(T M) to
B(TM x [0, T]) endowed with the weak topology (see Appendix).

Lemma 4. The measure: satisfies the relation
/ (O f (e ) + B £ (e ) - v) dm(x, v 1) =/ frdur —/ foduo  (5)
TMx[0,T] M M

for eachf € C1(M x [0, T], R), wheref; denotes the function — f(x, 7).

Proof. Setting f (x, v, 1) = f(x,1), g1(x, v, 1) =8, f(x,1) =9, f (x, v, 1) andga(x, v, 1)
=0, f(x,1) - v, we have

T
/ @ f(x,t)+0x f(x,1) -v)dm(x,v,t) = / / (g1+g2) o wédmodt.
TMx[0,T] o Jrm
Noticing that, in view of equatiori [1), we have

»(foyd) =grovh+ 820V,

we obtain

/ @0 f G 1) + B £ (r £) - v) dm(x, v, ) =/ (Fovd — Fydmo
TMx[0,T] ™

=[WdeMT—fM foduo

as desired. O
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Definition 5. A finite Borel measure: on TM x [0, T] which satisfiegD) is called a
transport measuréVe denote byM (g, r) the set of transport measures. A transport
measure which is induced from an initial measurg is called aninitial transport mea-
sure Theactionof the transport measure is defined by

A(m) = / L(x,v,1)dm € RU {oo}.
TMx[0,T]

The actionA (mg) of an initial transport measure is defined as the action of the associated
transport measure:. We will also denote this action bg/g(mo) when we want to indicate
the time interval. We have

ASMm)=‘/ LO(x, v), 1) dmodt.
TMX[0,T]

Notice that initial transport measures exist:

Proposition 6. The mappingz x (7 o wg))j s Z(uo, ) — K(uo, i) is surjective.
In addition, for each transport plan, there exists a compactly supported initial transport
measureng such that(r x (7 o wg))ﬁmo =nand

Amm=A4M£qun

Proof. By Propositior IL, there exists a compact&et T M suchthatify : [0, T] - M
is a minimizing extremal, then the liftingy (), y (z)) is contained inK for eacht €
[0, T]. We shall prove that, for each probability measyre B(M x M), there exists a
probability measureig € B(K) such thai(wr x (7 o wg))ﬁmo =nand

AW®=A4M£&JMW

Observing that

e the mapping®ig — (7 x (o 1/f0T))jm0 andmgo — A(mg) are linear and continuous
on the spac®;(K) of probability measures supported &n

e B1(K) is compact for the weak topology, and the actidis continuous on this set,

o the set of probability measures o x M is the compact convex closure of the set of
Dirac probability measures (probability measures supported in one point; see e.g. [10,
p. 73]),

it is enough to prove the result whenis a Dirac probability measure (or equivalently
whenu anduy are Dirac probability measures). bgbe the Dirac probability measure
supported atxg, x1) € M x M. Lety : [0,T] — M be a minimizing extremal with
boundary conditiong’(0) = xg andy(T) = x3. In view of the choice ofK, we have
(v(0), v(0)) € K. Letmg be the Dirac probability measure supported)ai0), y (0)). It

is straightforward that:, is then the Dirac measure supportedjatz), v (r)), so that

T T
A(mo)=/ Ldmtdtzf L(y(t),)}(t),t)dt:cg(xo,xl):/ b dn
0 0 MxM

and(r x (7t o Yd))gmo = 1. o
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Although we are going to build minimizers by other means, we believe the following
result is worth mentioning.

Lemma 7. For each real numbed, the setM“(uo, ur) of transport measures which
satisfyA(m) < a, as well as the sef”(ug, ur) of initial transport measures:g which
satisfyAg (mo) < a, are compact. As a consequence, there exist optimal initial transport
measures, and optimal transport measures.

Proof. This is an easy application of the Prokhorov theorem (see Appendix). 0O

Now that we have seen that the problem of finding optimal transport measures is well-
posed, let us describe its solutions.

Theorem 1. We have

cl (o, = min A@m)= min  A(mo).
o (Ho- pi7) meM (uo,ur) ) mo€eZ (o, 1r) (o)

The mapping
mo > m = ((Yp)zmo) ® dt

between the saDZ of optimal initial measures and the sé&M of optimal transport
measures is a bijection. There exists a bounded and locally Lipschitz vectoiXfield
M x 10, T[ — T M such that, for each optimal initial measurey € OZ, the measure
m; = (Y§)zmo is supported on the graph &, for eachr € 10, T'.

The proof will be given in Sectign 4.3. Let us just notice now that the inequalities

cluo,ur)= min A(mg)>= min  A(m)
mo€Z (1o, i1T) meM (o, 1)

hold in view of Propositiof6.

2.2. Currents

This formulation finds its roots on one hand in the works of Benamou and Brehier [6] and
then Brenier[[1B], and on the other hand in the work of Bangért [5]$2%t x [0, T])

be the set of continuous one-forms dhx [0, T], endowed with the uniform norm. We

will often decompose forms € Q°(M x [0, T]) as

="+ o'dt,

wherew”® is a time-dependent form oW andw’ is a continuous function o x [0, T1].
To each continuous linear formon Q°(M x[0, T]), we associate its time compone,
which is the measure ai x [0, T] defined by

/ Fduy = x(fdi)
M x[0,T]

for each continuous functiofi on M x [0, T]. A transport currentbetweenug andur
is a continuous linear form on Q°(M x [0, T]) which satisfies the two conditions:
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1. The measurg, is non-negative (and bounded).
2. dx = ur ® 87 — o ® 8o, which means that

X(df)Z/ deMT—/ foduo
M M

for each smooth (or equivalenty!) function f : M x [0, T] — R.

We letC(uo, ur) denote the set of transport currents fragto 7. Itis a closed convex
subset of 20(M x [0, T1)]*. We will endowC (o, ) with the weak topology obtained
as the restriction of the weékopology of [29(M x [0, T])]*. Transport currents should
be thought of as vector fields whose components are measures, the last component be-
iNg [y

If Z is a bounded measurable vector field &hx [0, T], and if v is a finite non-
negative measure a x [0, T'], we define the current A v by

Z ANv(w) = / w(Z)dv.
Mx[0,T]

Every transport current can be written in this way (see [22] of [25]). As a consequence,
currents extend to linear forms on the §gt, (M x [0, T]) of bounded measurable one-
forms. If I is a Borel subset of [Or'], it is therefore possible to define the restrictign

of the currenty to I by the formulay;(w) = x (1;w), where % is the indicatrix ofI.

Lemma 8. If x is a transport current, then
Ty = dt,

wherer is the projection ontd0, 7] (see Appendix). As a consequence, there exists a
measurable family,, r € ]0, T'[, of probability measures o such thaiu, = u, ® dt
(see Appendix). There exists a et ]0, T'[ of full measure such that

/ frdp, = f foduo + xou((df) (6)
M M

for eachC! function f : M x [0, T] — M and eachr € I.

Proof. Let g : [0, T] — R be a continuous function. Settir@(r) = fég(s) ds, we
observe that

T
/ gdpuy =X(dG)=/ GTdMT—/ God/L0=G(T)—G(0)=f g(s)ds.
Mx[0,T] M M 0

This implies thatr; ., = dt. As a consequence, the measurgcan be desintegrated as
1y = 1 ®dt. We claim that, for eacti™ function f : M x [0, T] — M, the relation[(p)
holds for almost every. Since the spac€l(M x [0, T1], R) is separable, the claim implies
the existence of a sétc ]0, T[ of full Lebesgue measure such tHat (6) holds for al
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andallf € CY(M x [0, T], R). In order to prove the claim, fix in CY(M x [0, T], R).
For eachg € C%([0, T], R), we have

x(d(gf)) = x(g' fdr) + x(gdf),

hence
T
¢(T) f frdur - g(0) / foduo = / ¢ / £ du di + x(gdf).
M M 0 M

By applying this relation to a sequence®f functionsg approximating f,:[, we get, in
the limit,

—/ foduo = —/ Sfrdu + xo,df)
M M
at every Lebesgue point of the functionr> fM fidu; . O

If o = ur, an easy example of a transport current is giver by) = [}, fOT w'dt dug.
Here are some more interesting examples.

Regular transport currents. The transport current is calledregular if there exists a
bounded measurable secti&rof the projectionT M x [0, T] — M x [0, T], and a non-
negative measurne on M x [0, T] such thaty = (X, 1) A u. The time component of the
current(X, 1) A w is . In addition, if (X, 1) A u = (X', 1) A u for two vector fieldsX
andX’, thenX and X’ agreeu-almost everywhere.

The currenty = (X, 1) A u, with X bounded, is a regular transport current if and
only if there exists a (unique) continuous family € B1(M), t € [0, T] (whereuo and
wr are the transported measures), such that = u, ® dr and such that the transport
equation

Orir + 0x.(Xpy) =0

holds in the sense of distributions & x ]0, T'[. The relation
| i [ i = xpaian)
M M

then holds for eaclt’ function f and anys < ¢ in [0, T7].

In order to prove that the family, can be chosen continuous, pick a functifne
cl(M,R) and notice that the equation

t
ffdut—/ fdl/LSZX[s,t[(df)zf / df - Xo duo do
M M K M

holds for alls < rinasubsef c [0, T] of full measure. Note that this relation also holds
if s=0andr € I andifs € I ands = T. Since the functiow +— fM df - Xy duy is
bounded, we conclude that the functior> [,, f du, is Lipschitz on/ U{0, T} for each
f e cY(M,R), with a Lipschitz constant which depends only [a#f ||so - | X |leo. The
family u, is then Lipschitz onv U {0, T'} for the 1-Wasserstein distance on probability
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measures (sek [39,117, 3] for example), the Lipschitz constant depending o/ an

It suffices to remember that, on the compact maniftdd the 1-Wasserstein distance
on probabilities is topologically equivalent to the weak topology (see for example [41,
(48.5)], or [39]).

Smooth transport currents. A regular transport current is said to smoothf it can be
written in the form(X, 1) A A with a bounded vector fiel®@ smooth onM x [0, T'[ and

a measure. that has a positive smooth density with respect to the Lebesgue class in any
chartinM x 10, T[. Every transport current iéi(i.o, ;7) can be approximated by smooth
transport currents, but we shall not use such approximations.

Lipschitz regular transport currents. A regular transport current is callddpschitz
regularif it can be written in the form(X, 1) A u with a vector fieldX which is bounded
and locally Lipschitz onM x ]0, T[. Smooth currents are Lipschitz regular. Lipschitz
regular transport currents have a remarkable structure:

If x = (X, 1) Auis aLipschitz regular transport current witki bounded and locally
Lipschitz onM x ]0, T, then
(Wzpts = i

whereV!, (s, t) € ]0, T[?, denotes the flow of the Lipschitz vector figldrom times to
timer, and i, is the continuous family of probability measures such that= u; ® dt.

This statement follows from standard representation results for solutions of the trans-
port equation (see for example [2] of [3]).

Transport current induced from a transport measure. To a transport measure, we
associate the transport current defined by

Am (@) =/ (@ x, 1) - v+ o' (x,0))dm(x, v, 1)
TMx[0,T]

where the formw is decomposed as = w* + w'dt. Note that the time component of the
currenty,, is wym. We will see in Lemm@l that

A(xm) < A(m)

with the following definition of the actiom () of a current, with equality ifz is con-
centrated on the graph of any bounded vector fMlc [0, T] — TM.

Lemma 9. For each transport curreng, the numbers

Al(X)= Sup (X(wxao)_/ H(-xawx(-xvt)’[)dux)s
M x[0,T]

weQ0

A2(x) = sup (X(w) —/ (H(x,wx(x,l),l)-l-wt)dﬂx),
M x[0,T]

weQ0

A3(x) = sup (X(w)—T sup (H(x,wx(x,t),t)er’)),
weO (x,H)eM x[0,T]
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As(x) = sup X (w),
weQO, ' +H (x,0*,1)<0
As(x) = sup x(w).

weQO, ' +H (x,0",1)=0

are equal. In addition the numbers™(x) obtained by replacing in the above suprema
the set? of continuous forms by the s@t,, of bounded measurable forms also have the
same value.

The last remark in the statement has been added in the last version of the paper and is
inspired by[[15].

Proof. It is straightforward thatd; = A2: this just amounts to simplifying the term
J o' duy. Sincep, is a non-negative measure which satisfigs ; ;; 1du, = T, we
have ’

/ (H, o' 0,0+ o )duy =T sup (Hix, o (6,0, 1) + o)
M x[0,T] (x,1)eM x[0,T]

so thatAs(x) < A2(x). In addition, we obviously havas(x) < Aa(x) < Az(x). Now
notice that, inA,, the quantity
X (w) —/ (H(x, 0" (x,1),1) + &) diy
M x[0,T]

does not depend an’. Consider the forni = (0", —H (x, 0", t)), which satisfies the
equality H (x, @*, 1) + @ = 0. We get, for each form,

(@, 0) —/ Hx, ' (e, 0, 1) djiy = 2(@) < As(x).
M x[0,T]

HenceA1(x) < As(x). Exactly the same proof shows that the numb&tgx ) are equal.
In order to end the proof, it is enough to check thatx) = A5°(x). Writing the current
x inthe formZ A v with a bounded vector field and a measure € B, (M x [0, T]),
we have

A2(x) = sup (f w(Z)dv —/ (H(x, 0" (x,1),1) +w’)dux>
Mx[0,T] Mx[0,T]

weQO

and

A (x) = sup (/ w(Z)dv —/ (H(x, 0" (x,1),1) + o) d,bLX).
Mx[0,T] Mx[0,T]

WER o
The desired result follows by density of continuous functions it + M) O

Definition 10. We denote by (x) the common value of the numbets(x) and call it
theactionof the transport currenj.
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The existence of currents of finite action follows from

Lemma 11. We have
AGO =[ L(x X(x.1), 1) du
M x[0,T]

for each regular currenty = (X, 1) A u. If m is a transport measure, and jf,, is the
associated transport current, thet(x,,,) < A(m), with equality ifm is supported on the
graph of a bounded Borel vector field. As a consequence,

Cd(uo,uT) > min A(mg)> min  A(m)> min  A(x).
mo€Z (o, it) meM(po.ur) x €C(po, i)

Proof. For each bounded measurable fapgmwe have

/ (@ (X) — H(x, 0 (x, 1), 1)) it < / L(x, X (e, ), 1),
M)([O,T] MX[O,T]
so that
A((X, 1)Mt)§/ LGx, X (e, 1), 1) .
M x[0,T]

On the other hand, taking the forg (x, 1) = 9, L(x, X (x, ¢), t) we obtain the pointwise
equality
L()C, X(.X, t)’ t) = Cl)é(X) - H(x7 w)é(x’ t)v t)

and by integration

/ L(x,X(x,t),t)du:/ (wp(X) — H(x, wpy(x, 1), 1)) dp
Mx[O,T] MX[O,T]

= A(X, D A ).

This ends the proof of the equality of the two forms of the action of regular currents. Now
if x» is the current associated to a transport measuyréhen, for each bounded form
w € Q%M x [0, T]), we have

Xm(w)—f (@' (x,1) + H(x, 0" (x,1), 1)) djiy
M x[0,T]

=/ (" (v) — H(x, 0" (x,1),1))dm
TMx[0,T]
by definition of x,,, so that
Altm) < [ Lz, v.tydm = A(m)
TMx[0,T]

by the Legendre inequality. In addition, if there exists a bounded measurable vector field
X : M x [0, T] — TM such that the graph of x r supportsn, then we can consider
the formwy, associated t& as above, and we get the equality for this form. O

Although we are going to provide explicitly a minimum af we believe the following
lemma is worth mentioning.
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Lemma 12. The functionald : C(uo, ur) — R U {+0o0} is convex and lower semicon-
tinuous, both for the strong and weatopologies ofQ°(M x [0, T])]*. Moreover it is
coercive with respect to the strong topology and hence it has a minimum.

Proof. First note thatA(x) < oo if x is the transport current corresponding to an initial
transport measure iM (no, nr) arising from a transport plan. Define the continuous
convex functiort7 : Q%M x [0, T]) — R by
Hy(w) =T sup (H(x, 0" (x,1),t) + o).
(x,HEM [0, T]

Then the action is the restriction ®(wo, ur) of the Fenchel conjugatd = H* :
[QO(M x [0, TD]* — R U {+o0}. In other words A is the supremum ovep of the
family of affine functionals

x = x(0) — Hr(w)
that are continuous both for the strong and wetdpologies. Hencet is convex and
lower semicontinuous for both topologies. Since

A(x) =z sup x(w) — sup Hr(w),

lol<1 lwll<1

A is coercive. The existence of a minimizer is standard: any minimizing sequgnce

is bounded (thanks to coercivity) and has a wea&nvergent subsequence (because
QO(M x [0, T]) is a separable Banach space). By lower semicontinuity, its ileak is

a minimizer. Note thaf (o, wr) is weak closed. ]
Theorem 2. We have
C§ (o, ur) = min  A(x)
x€C (1o, i)

where the minimum is taken over all transport currents fragto wr. Every optimal
transport current is Lipschitz regular. Let = (X, 1) A u be an optimal transport current,
with X locally Lipschitz onM x]0, T'[. The measure: = (X x t)su € B (TM x]0, T[)

is an optimal transport measure, andis the transport current induced from. Here
7:TM x[0, T] — [0, T] is the projection on the second factor (see Appendix). We have

Cg (o, 1) = A(m) = A(x) = / L(x, X(x,0), ) dpiy.
M x[0,T]
This result will be proved if 4|1 after establishing some essential results on the dual
approach.

3. Hamilton—Jacobi equation

Most of the results stated so far can be proved by direct approaches using Mather’s short-
ening lemma, which in a sense is an improvement on the initial observation of Monge (see
[33] and [5]). We shall however base our proofs on the use of the Hamilton—Jacobi equa-
tion, in the spirit of Fathi’s[[20] approach to Mather theory, which should be associated
to Kantorovich’s dual approach to the transportation problem.
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3.1. Viscosity solutions and semiconcave functions

It is certainly useful to recall the main properties of viscosity solutions in connection with
semiconcave functions. We will not give proofs, and instead refer to [20], [21], [14], as
well as the appendix in [8]. We will consider the Hamilton—Jacobi equation

o;u + H(x,dcu,t) =0. (HJ)

The functionu : M x [0, T] — M is calledK -semiconcavd, for each chart € ® (see
Appendix), the function

(x, 1) > u@x), 1) — K(|x|? +1?)

is concave orB3 x [0, T]. The functionu is calledsemiconcavé it is K-semiconcave
for someK. A functionu : M x ]0,T[ — M is calledlocally semiconcavdf it is
semiconcave on eacdld x [s,t], for0 < s < t < T. The following regularity result
follows from Fathi's work[[20] (see als6][8]).

Proposition 13. Let 1 and u2 be two K-semiconcave functions. Ldt be the set of
minima of the functiom + u». Then the functions; and u» are differentiable orA,
anddui(x,t) + dua(x,t) = 0 at each point of(x,t) € A. In addition, the mapping
duy : M x [0,T] - T*M is CK-Lipschitz continuous o, whereC is a universal
constant.

Definition 14. We say that: : M x]s, t[ — R is aviscosity solutiorof (HJ) if

u(x,o) = miﬁlj[(u(y, 2) +cg(y,x)) foralx e Mands <¢ <o <1t.
ye

We say thafi : M x]s, t[ — R is abackward viscosity solutioaf (HJ) if

u(x,o) = m«’;lwx(ﬁ(y, Z) — cf,(x, y)) foralxeMands <o <¢ <1t.
ye

We say that : M x]s, t[ — R is aviscosity subsolutionf (HJ) if
v(x,0) <v(y, Q) +cg(y,x) forallx,ye Mands <¢ <o <1.

Finally, we say thav : M x [s, ] — R is acontinuous viscosity solutiosubsolution
backward solutionof (HJ) if it is continuous omV x [s, t] and ifv|axs,[ IS @ viscosity
solution of(H J) (subsolution, backward solution).

Notice that both viscosity solutions and backward viscosity solutions are viscosity sub-
solutions. That these definitions are equivalent in our setting to the usual ones is stud-
ied in the references listed above, but is not useful for our discussion. The only fact
which will be used is that, for &' functionu : Mx]s,f[ — R, being a viscosity
solution (or a backward viscosity solution) is equivalent to being a pointwise solution of
(HJ), and being a viscosity subsolution is equivalent to satisfying the pointwise inequal-
ity d;u + H(x, dyu,t) <O0.
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Differentiability of viscosity solutions. Letu € C(M x [0, T[, R) be a viscosity solu-
tion of (HJ) (on the interval ]0T'[). We have the expression

t

u(x,t) = rr;/in (M(V(O),O) +/ L(y (o), )7(0),0’)610>
0

where the minimum is taken over the set of curyess C2([s, t], M) which satisfy
the final conditiony (t) = x. Denote byI'(x, #) the set of minimizing curves in this
expression, which are obviously minimizing extremald.oMe say thap € T)M is a
proximal superdifferentiabf a functionu : M — R at a pointx if there exists a smooth
function f : M — R such thatf — u has a minimum at andd, f = p.

Proposition 15. Fix (x, ) € M x]0, T[. The functiony, is differentiable atx if and only
if the setl"(x, r) contains a single elememt and therd, u(x, r) = 3, L(x, y(t), t).

Forall (x,1) €e M x]0,T[andy € T'(x,1), setp(s) = 3,L(y(s), y(s),s). Then
p(0) is a proximal subdifferential aig at y (0), and p(¢) is a proximal superdifferential
ofu,; atx.

We finish with an important statement on regularity of viscosity solutions:
Proposition 16. For each continuous functiowy : M — R, the viscosity solution

u(x,r) = yfTeliMn(uo(y) +cp(y, X))

is locally semiconcave of®, T]. If in addition the initial conditiorug is Lipschitz, then
u is Lipschitz or[0, T7.
For each continuous functioir : M — R, the viscosity solution

i(x, 1) = maxur (y) - el (x, )

is locally semiconvex ofd, T'[. If in addition the final conditiomr is Lipschitz, them is
Lipschitz o0, T1.

Proof. The part concerning semiconcavitywfs proved in[14], for example. It implies
thatu is locally Lipschitz on ]0 T'], hence differentiable almost everywhere. In addition,
at each point of differentiability of, we haved,u + H (x, 9,u,t) = 0 andd,u(x,t) =
p(t) = 9,L(x,y(t),t), wherey : [0,t] — M is the only curve inl(x, ¢). In order

to prove thatu is Lipschitz, it is enough to prove that there exists a uniform bound on
|p(1)]. It is known (see Propositidn [L5) that0) := 3,L(y(0), y(0), 0) is a proximal
subdifferential ofug at y (0). If ug is Lipschitz, its subdifferentials are bounded: there
exists a constank such thatp(0)| < K. By completeness, there exists a const&iht
which depends only on the Lipschitz constantgf such thati p(s)| < K’ forall s €

[0, #]. This proves that is Lipschitz. The statements concerningre proved in a similar
way. O
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3.2. Viscosity solutions and optimal Kantorovich pairs
Given an optimal Kantorovich paitpg, ¢1), we define the viscosity solution
1) := min !
u(x,r) yEIM(cbo(X) + co(y, X))
and the backward viscosity solution
ii(x, 1) i= max¢1(y) — ¢/ (x, y))
yeM

which satisfyup = o = ¢o, anduy = uur = ¢1. Note that bothp, and —¢o are
semiconcave, hence Lipschiizjs Lipschitz and locally semiconcave on J0], andi is
Lipschitz and locally semiconvex on,[@].

Proposition 17. We have

C (wo, 1) = max</ urdur —/ uoduo), (7)
u M M

where the minimum is taken over the set of continuous viscosity solutiand/ x

[0, T] — R of the Hamilton—Jacobi equatiofH J). The same conclusion holds if the
maximum is taken over the set of continuous backward viscosity solutions, or over the set
of continuous viscosity subsolutions@f J).

Proof. If u(x, t) is a continuous viscosity subsolution@f J), then it satisfies
ur (x) — uo(y) < cg (v, x)

for eachx andy € M, and so, by Kantorovich duality,

/ ur dpr —f uodpo < C§ (o, ur).
M M

The converse inequality is obtained by using the functioagadi:. O

Definition 18. If (¢0, ¢1) is an optimal Kantorovich pair, then we denoteBypg, ¢1) C
C2([0, T], M) the set of curveg (r) such that

T

$1(y(T)) = ¢o(y(0)) +/O L(y(t),y(r),1)dr.
We denote by (¢o, 1) C M x ]0, T[ the set

T (¢0, 1) = {(y(®),t) 1t €]0, T[, y € F(do, $1)}
and by7 (¢o, ¢1) C TM x 10, T[ the set

T (g0, $1) = {(y (1), ¥ (), 1) : 1 €]0, T[, y € F(do, p1)},

which is obviously invariant under the Euler—Lagrange flow.
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Proposition 19. Let (¢g, ¢1) be an optimal Kantorovich pair, and let and iz be the
associated viscosity and backward viscosity solutions.

1. We have: < u, and
T(¢o, 1) ={(x,t) e M x]0,T[: u(x,t) =u(x,t)}.

2. At each pointx, 1) € 7 (¢g, ¢1), the functions: andu are differentiable, and satisfy
du(x,t) = diu(x,t). In addition, the mappingx, ) — du(x, t) is locally Lipschitz

on7 (¢o, $1)-
3. If y(®) € F(po, p1), thenou(y(@),t) = d,L(y (), y(),t). As a consequence, the
set

T*(¢o, p1) :={(x, p,t) e T*M x]0,T[: (x,1) € T andp = dyu(x,t) = dyu(x, 1)}

is invariant under the Hamiltonian flow, and the restrictiorZgpo, ¢1) of the projec-
tion 7 is a bi-locally-Lipschitz homeomorphism onto its im&g@o, ¢1).

Proof. Fix (x, 1) € M x]0, T[. There existy, z € M such that(x, 1) = ¢o(y) +cf(y, x)
andii(x, t) = ¢1(z) — ¢! (x, z), so that

u(x, 1) — i(x, 1) = po(y) — $1(2) + ch(y, x) + ¢! (x, 2)
> cb (v, 2) — (91(2) — do(»)) > 0.

In case of equality, we must havg (y, z) = ch(y, x) + ¢! (x, 2). Letyr € C2([0, 1], M)
satisfy y1(0) = y, »1(t) = x and fé L(y1(s), y1(s),8)ds = cé(y,x), and lety, €
C2([t, T], M) satisfy (1) = x, y2(T) = z and [y L(ya(s), y2(s),5)ds = ¢l (x, 2).
The curvey : [0, T] — M obtained by pasting; andy» clearly satisfies the equality
fOT L(y(s),y(s),s)ds = cg(y, 2), itis thus aC? minimizer, and belongs t& (¢o, ¢1).
As a consequence, we haie t) € 7 (¢, ¢1).

Conversely, we have:

Lemma 20. If v is a viscosity subsolution ofH J) satisfyingug = ¢o andvr = ¢1,
thenu < v <u. If (x,1) € T(¢o, $1), thenv(x, t) = u(x, t).

Proof. The inequalityiz < v < u is easy. For example, for a given poiat ¢) there exists
y in M such that(x, 1) = ¢o(y) + c5(y, x), and for this value of, we havev(x, ) <
$o(y) + cf(y, x), hencev(x, ) < u(x,t). The proof thati < v is similar. In order to
prove the second part of the lemma, it is enough to proveuthat), r) = u(y(¢), t) for
each curves € F(¢o, ¢1). Sincev is a subsolution, we have

v(y(T), T) < v(y(0), 1)+l (v (1), y(T)).
On the other hand,

vy (@), 1) <uly(@®),1) < u(y(0),0) + cp(y(0), y (1)
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As a consequence,
o1(y (1)) = v(y(T), T) < u(y(0),0) + ch(¥(0), y (1) + ¢! (¥ (1), y(T))
< ¢o(y (0) + ¢ (¥ (0), y(T)),

which is an equality because € F(¢o, ¢1). Hence all the inequalities involved are
equalities, and we hawgy (1), ) = u(y (), t). O

The end of the proof of the proposition is straightforward. Point 2 follows from Propo-
sition[13 applied to the locally semiconcave functienand —i. Point 3 follows from

Propositiorj 1p. o

3.3. OptimalC? subsolution

The following result, on which a large part of the present paper is based, is inspired by
[21]], but seems new in the present context.

Proposition 21. We have

C8 (uo, 1) = max( [ ordur- [ voduo),
v M M

where the maximum is taken over the set of Lipschitz functiordd x [0, T] — R which
are Ct on M x 10, T[ and satisfy

dv(x,t) + H(x, dyv(x,t),t) <0 ateach(x,t) e M x]0, T[. (8)
Proof. First, letv be a continuous function a7 x [0, T] which is differentiable on

M x 10, T[, where it satisfies{]S). Then, for eac¢H curvey : [0, T] — M,

T T
/o L(y@®),y@®),t)dt Z/O @xv(y (@), 1) - y@®) — Hy @), v(y@),1),1)dt
T
> /0 @xv(y (@), 1) -y () + vy (@), )dt = v(y(T), T) — v(y(0), 0).
As a consequence(y, T) — v(x,0) < cg(x, y) for eachx andy, so that

/UT dur —/voduo < CE (o, ur).

The converse follows directly from the next theorem, which is an analog in our context of
the main result of [21]. O

Theorem 3. For each optimal Kantorovich paitpg, ¢1), there exists a Lipschitz function
v: M x[0,T] - R whichisC!onM x ]0, T[, coincides withu on M x {0, T} U
T (¢0. ¢1), and satisfies the inequalif@) strictly at each point oM x]0, T[—7 (¢o, ¢1).
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Proof. The proof of[21] cannot be translated to our context in a straightforward way. Our
proof is different, and, we believe, simpler. It is based on:

Proposition 22. There exists a functioi € C2(Mx[0, T], R) which is null onZ (¢o, ¢1),
positive onM x 10, T[ — 7 (¢, ¢1), and such that

T
$1(y) = min <¢o()/(0))+/ (L(y(t),?(t),t)—V(y(t),t))dt>. 9)
y(T)=y 0
Proof. Define the norm

lullz =" llu 0 0ll 2z, xo.11.R)
0e®

of functionsu € C2(M x [0, T], R), where® is the atlas of/ defined in the Appendix.
Denote byU the open seM x 10, T[ — 7 (¢o, ¢1). We need a lemma.

Lemma 23. LetU; C U be an open set whose closurg is compact and contained in
U, and lete > 0 be given. T_here exists a functioh € C2(M x [0, T], R) which is
positive onU1, null outside ofU;, and such tha@ holds withV = V4, and|| V1|2 < e.

Proof. Fix the open sel1, the pair(¢o, ¢1) andy € M. We claim that the minimum in

[ 0
y{?;gy <¢0(V( ) + /o

is reached at a patp whose graph does not me€i, provided thatVy is supported in
U1 and is sufficiently small in th€© topology. In order to prove the claim, suppose the
contrary. There exist sequencés (n € N) andy, such that

i 0
y(r;lggy(%(y( ) + fo

is reached ay,, the graph ofy, meetsUy, V, is supported iU (for all n € N) and
V,, — 0intheCP topology. As a consequence eaghs C? and the sequengg (n € N)
is a minimizing sequence for

T

(L(y @), y@),1) — Valy (1), t))dt>

T

LG, 7). 1) — Valy (0), t))dt)

T

¢1(y) = min <¢0(J/(0))+ / L(y(t),))(t),t)dt). (10)
y(T)=y 0

Hence this sequence is compact for tetopology and, by extracting a subsequence if
needed, it can be assumed to converge to spmeClearly y is a minimizer for [(ID)
with graph meetind/ 1. This contradictd/; ¢ U = M x 10, T[ — 7 (¢o, ¢1) and the fact
that the graph of is included in7 (¢o, ¢1) (See Definitio). O

LetU, c U,n € N, be a sequence of open sets covelihgith closures contained iti.
There exists a sequence of functidnse C2(M x [0, T], R) such that, for each € N:
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e V, is positive inU, and null outside ot/,.
o [[Vull2 <27"e.
e The equality[(P) holds for the function” = Y 7_; V.

Such a sequence can be build inductively by applying Lemma 23 to the Lagrahgian
v"=Lwith €, = 27"¢. Since||V, || < 2 "¢, the sequenc&” converges irC2 norm to a
limit V e C2(M x [0, T], R). This functionV has the desired properties. The proposition
is proved. O

In order to finish the proof of the theorem, we shall consider the new Lagradgian
L — V, and the associated Hamiltonidh = H + V, as well as the associated cost
functionsét. Let
i(x, 1) i= min(¢o(y) + (¥, X))
yeM

be the viscosity solution of the Hamilton—Jacobi equation
Ol + H(x, dyii, 1) = —V(x, 1) (HJ)

emanating frongo. The equality[(P) says thay = ¢1 = ur. The functioni is Lipschitz
on M x [0, T, as a viscosity solution ofH J) emanating from a Lipschitz function. It
is obviously a viscosity subsolution @# J), which is strict outside oM x {0, T} U
7 (¢o, 1) (whereV is positive). This means that the inequal[ty (8) is strict at each point
of differentiability of iz outside ofM x {0, T} U 7 (¢g, ¢1). We haver < i < u, this
relation being satisfied by each viscosity subsolutiori#f/) which satisfiesig = ¢g
andur = ¢1. As a consequence, we have- i = u on7 (¢o, ¢1), anda is differentiable
at each point off (¢, ¢1). Furthermoredu = dii = du on this set. We then obtain the
desired functior of the theorem froni by regularization, applying Theorem 9.2 bf [21].

O

4. Optimal objects of the direct problems
We now prove Theorem A as well as the results of Sedtjon 2. The following lemma
generalizes a result of Benamou and Breniéer [6].

Lemma 24. We have

Cluo,pr) = min A@mo)= min  A@m)= min A(x).
moeZ (jo, iT) meM (o, i1) x€C(10, 1)

Moreovery (dv) = A(x) for every optimalx, wherev is given by Theoref§

Proof. In view of Lemmd 1L, it is enough to prove that, for each transport cugreat
C(uo, ur), we haveA(x) > C§ (no. ur). Letv : M x [0, T] — R be a Lipschitz sub-
solution of (H J) which isC! on M x 10, T[, and such thatvo, vr) is an optimal Kan-
torovich pair. For each current € C(uo, i), we haveA(x) > x(dv) = Cg(uo, Uwr),
which ends the proof. O

From now on we fix:



Optimal mass transportation and Mather theory 25

e An optimal Kantorovich paif¢o, ¢1).

e A Lipschitz subsolution) : M x [0, T] — R of the Hamilton—Jacobi equation which
satisfiesvg = ¢o andvr = ¢1 and which isCt on M x ]0, 7.

e A bounded vector fielX : M x 0, T[ — T M which is locally Lipschitz and satisfies

X(x,1) =0pH(x,0v(x,1),1) onT(¢o, p1). (1))

4.1. Characterization of optimal currents
Each optimal transport current can be written as

X = (X, 1)/\/’LX7

with a measure:, concentrated orY (¢o, ¢1). The currenty is then Lipschitz regular,
so that there exists a transport interpolatipn, ¢ € [0, T], such thafu, = u; ® dr (see
Appendix) ande; = (¥]):u, for eachs andz in ]0, T'1.

Proof. Let x be an optimal transport current, that is, a transport curyeatC (o, (1)

such thatA(x) = Cg(uo, wr). Recall the definition of the actios(x) that will be used
here:

A(x) = sup (X(a)x, 0) —/ H(x,w"(x,1),1) dux>.
Mx[0,T]

weQ0
SinceH (x, d,v, t) + 9,;v < 0, we have
A(x) = x(dv) < x(dv) — /(H(x, xv(x, 1), 1)+ v)duy
= x(0yv,0) — / H(x, oxv(x, 1), )duy.
The other inequality holds by the definition af so that
x(dv) = x(dv) — /(H(x, Oxv(x,1),1) + 0 v) duy
—x@0.0) ~ [ He B0t 0.0 diy,
and we conclude thaf (x, d,v(x, t), t) + 9;v vanishes on the support gf,, or in other

words the measure, is concentrated off (¢o, ¢1). In addition, for all formsy = w* +
o'dt, we have

X(E)xv—i—wx,O)—/H(x,va—f—a)x,t)d,ux < X(BXU,O)—/H(x,axv,t)dMX = A(y).

Hence
X(w",o)=/3pH(x,8xv,t)(wx)d,ux
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for each formw. This equality can be rewritten as

x () = /(apH(x, v, 1)(@") + o) duy,
which precisely says that
X = (3pH(x, axv(x’ t)9 t)v 1) A MX = (Xv 1) A :u’)('

The last equality follows from the fact that the vector fieksandd, H (x, 9, v(x, 1), 1)

are equal on the support af, . By the structure of Lipschitz regular transport currents, we
obtain the existence of a continuous family, ¢+ € [0, T], of probability measures such
thatu, = u ® dr andu, = (¥!);u, for eachs andr in JO, T'[. Since the restriction to a
subinterval §, 7] C [0, T] of an optimal transport currentis clearly an optimal transport
current for the transportation problem betweenand ., with costc!, we conclude that
the pathu, is a transport interpolation. O

4.2. Characterization of transport interpolations
Each transport interpolatiom, satisfies
e = (WQ)g s
for each(s, r) € ]0, T[%. The mapping
e = (X, D) A (1 Q di)

is a bijection between the set of transport interpolations and the set of optimal transport
currents.

Proof. We fix a transport interpolatiop; and two timess < s’ in ]JO, T[. Let x1 be a
transport current oM x [0, s] between the measurgg andu; which is optimal for the
costcy, let x2 be a transport current aif x [s, s'] betweenu, andu which is optimal
for cj,’, and letyxs be a transport current oW x [s’, T] betweenuy and ur which is
optimal fOchT,. Then the curreng on M x [0, T] which coincides withy; on M x [0, s],
with x2 on M x [s, s’] and with x3 on [s’, T] belongs taC (o, 7). In addition, sinceu,
is a transport interpolation, we have

A(x) = CY(no, ts) + CS (s, ) + Cl(pyr, ur) = C& (1o, ).

Hencey is an optimal transport current for the ceét In view of the characterization of
optimal currents, this implies that= (X, 1) A u,, and

fy = (W9)zis) @ dt = (W))zps) ® dt.
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By uniqueness of the continuous desintegration pfwe deduce that, for eacte ]0, T7,
(W)gus = (W!)zue, and since this holds for aflands’, we have(W)); i, = u, for all
(s, 1) €10, T[?. It follows thatx = (X, 1) A (u; ® dr). We have proved that the mapping

pe = (X, DA (g ® dt)

associates an optimal transport current to each transport interpolation. This mapping is
obviously injective, and it is surjective in view of the characterization of optimal currents.
]

4.3. Characterization of optimal measures

The mapping
X = (X X T)guy

is a bijection between the set of optimal transport currents and the set of optimal transport
measuresy : M x [0, T] — [0, T] is the projection on the second factor; see Appendix).
Each optimal transport measure is thus invariant (f8eand Definitior{5). The mapping

mo > W = (7 0 Y)smo

is a bijection between the set of optimal initial measungsand the set of interpolations.
An invariant measure: is optimal if and only if it is supported on the sEt¢o, ¢1).

Proof. If m is an optimal transport measure, then the associated cygeistan optimal
transport current, and (m) = A(xn). Let u,, be the time component gf,,, which is
also the measurer x t)ym. In view of the characterization of optimal currents, we have
xm = (X, 1) A u,,. We claim that the equalith (x,,,) = A(m) implies thatn is supported
on the graph of. Indeed, we have the pointwise inequality

oxv(x,t)-V — H(x,0v(x,t),t) < L(x,V,1) (12)

for each(x, V,1) € TM x |0, T|[. Integrating with respect ta, we get

A(Xm) = xm(dv) = / Oxv(x, 1) -V +0v(x, 1)) dm(x, V, 1)
TMx[0,T]

:/ (Oyv(x,1) -V — H(x,d0yv(x,1),1))dm(x, V,1)
TMx[0,T]
=/ L(x, V,t)dm(x, V, 1) = A(m),

M x[0,T]

which means that: is concentrated on the set where the inequdlity (12) is an equality,
that is, on the graph of the vector figddH (x, 9. v(x, 1), t). Sincep,, is supported o7,
the measure: is supported o and satisfies: = (X x T)sim- Let u, be the transport
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interpolation such that,, = u,; ® dt. Settingm; = (X;)su¢, we havem = m; @ dt.
Observing that
X; 0 \I{ﬁ = ng o X,

on 7, we conclude, sincg; is supported o, that
(Y)gms = my,

which means that the measuneis invariant. ~
Conversely, letn = m; ® dr be an invariant measure supported Do, ¢1). We
have

T T
A(m) = / / L(x,v,t)dm;(x,v)dt = / / L(wé(x, v),t)dmo(x, v)dt,
o Jrm o Jrm

and by Fubini,
T
A(m)=f f L(yrg(x, v), 1) dt dmo(x, v)
TM JO

= f (91( 0 Yd (x, v)) — Po(x)) dmo(x, v),
™™

and sinceng is an initial transport measure, we get

A(m>=f ¢1dm—f doduo = C& (o, nr). u]
™™ ™™

5. Absolute continuity

In this section, we make the additional assumption that the initial measgliseabsolutely
continuous, and prove Theorem B. The following lemma answers a question asked to us
by Cedric Villani.

Lemma 25. If ug or ur is absolutely continuous with respect to the Lebesgue class, then
each interpolating measurg;, ¢ € ]0, T[, is absolutely continuous.

Proof. If u,, t € [0, T], is a transport interpolation, we have proved that

My = (o %t ° Xs)ﬁ,us

foralls € ]0,T[ andt € [0, T]. Since the functionr o ¥ o X, is Lipschitz, it maps
Lebesgue zero measure sets into Lebesgue zero measure sets, and so it transports singular
measures into singular measures. It follows that if, for semae]0, T'[, the measure:,

is not absolutely continuous, then none of the measufes € [0, T], are absolutely
continuous. O

In order to continue the investigation of the specific properties satisfied whén ab-
solutely continuous, we first need some more general result§¢bep1) be an optimal
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Kantorovich pair for the measures and .7 and for the cost! . Recall that we have
definedF (¢o, ¢1) C C2([0, T], M) as the set of curves such that

T

¢1(y(T)) =¢o(7/(0))+f0 Ly @), y(),1)dr.

Let Fo(¢o, ¢1) be the set of initial velocitiegr, v) € T M such that the curver— 7 o
wc’,(x, v) belongs taF (¢o, ¢1). Note that there is a natural bijection betweBs{(¢o, ¢1)
and.F (¢o, ¢1).

Lemma 26. The setFo(¢o, ¢1) is compact. The mapsandr o ¥} : Fo(go, $1) —> M
are surjective. Ifx is a point of differentiability ofso, then the setr ~1(x) N Fo(¢o, ¢1)
contains a single point. There exists a Borel measurablesset M of full measure,
whose points are points of differentiability ¢f, and such that the map

x> S(x) =771 x) N Foldo, d1)
is Borel measurable oix.

Proof. The compactness dfo(¢g, ¢1) follows from the fact, already mentioned, that the
set of minimizing extremalg : [0, T] — M is compact for the_? topology.

It is equivalent to say that the projectianrestricted taFo(¢o, ¢1) iS surjective, and,
for eachx € M, there exists a curve emanating framn F(¢o, ¢1). In order to build
such curves, recall that

T
$o(x) = myax(qbl(y(T)) —/0 L(y (1), ?(t),t)dt>

where the maximum is taken over the set of curves which satiély = x. Any max-
imizing curve is then a curve iff (¢o, ¢1) Which satisfieg/(0) = x. In order to prove
that the mapr o WOT restricted taFo(¢o, ¢1) is surjective, it is sufficient to build, for each
x € M, a curve inF(¢o, ¢1) which ends ak. Such a curve is obtained as a minimizer in
the expression

a

$1(x) = rT}j“(cbo()/(O)) +./O L(y (1), )?(t),t)dt)

Now consider a point of differentiability of ¢g. Applying the general result on the
differentiability of viscosity solutions to the backward viscosity solutigiwe find that
there exists a unique maximizer to the problem

T
$o(x) = myax(m(l/(T)) —/0 L(y (@), ?(t),t)dt>

and that this maximizer is the extremal with initial condition 9, H (x, d¢o(x), 0)). As
a consequence, there exists a single p8in) in Fo(¢o, ¢1) abovex, and in addition we
have the explicit expression

S(x) = 8, H(x, dgpo(x), 0).
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Since the set of points of differentiability @f has total Lebesgue measure—because
¢o is Lipschitz—there exists a sequenkg of compact sets such thag is differentiable
at each point ok, and the Lebesgue measureMf— K, converges to zero. For eagh
the setr ~1(K,) N Fo(¢o, ¢1) is compact, and the restriction to this set of the canonical
projections is injective and continuous. It follows that the inverse functois continu-
ous onk,. As a consequenc§,is Borel measurable oB :=  J, K,. O

Lemma 27. The initial transport measure:g is optimal if and only if it is an initial
transport measure supported dfy(¢o, P1)-

Proof. This statement is a reformulation of the resultin 4.3 stating that the optimal trans-
port measures are the invariant measures support&d¢g ¢1). O

Proposition 28. If ug is absolutely continuous, then there exists a unique optimal initial
measureng. There exists a Borel sectigh: M — T M of the canonical projection such
thatmg = Sz, and this section is uniqueg-almost everywhere. For eache [0, T],

the mapr o Yo S : M — M is then an optimal transport map betweenand ;.

Proof. Let S : ¥ — T M be the Borel map constructed in Lemma 26. For convenience,
we shall also denote hy the same map extended by zero outsid& pfvhich is a Borel
sectionS : M — T M. Since the sek is of full Lebesgue measure, and since the measure
wo is absolutely continuous, we haug(X) = 1. Consider the measungy = S:(uox).

This is a probability measure dhM which is concentrated offo(¢o, ¢1) and satisfies
mymo = po. We claim that it is the only measure with these properties. Indeéd, i$ a
measure with these properties, themio = no, henceng is concentrated on~ ()N
Foleo, #1). But then, sincer induces a Borel isomorphism from—1(X) N Fo(po, $1)

onto its imageX, with inverseS, we must haveng = S;uo. As a consequence;g =

Stuo is the only candidate to be an optimal initial transport measure. Since we have
already proved the existence of an optimal initial transport measure, this implies¢hat
is the only optimal initial transport measure. Of course, we could prove directlyrhat

is an initial transport measure, but as we have seen, this is not necessary. O

5.1. Remark

That there exists an optimal transport mapfis absolutely continuous could be proved
directly as a consequence of the following properties of the cost function.

Lemma 29. The cost functiomg(x, y) is semiconcave oM x M. In addition, we have

the following injectivity property for each € M: If the diﬁerentialsaxcg(x, y) and

drch (x,y') exist and are equal, then= y’.

In view of these properties of the cost function, it is not hard to prove the following lemma
using an optimal Kantorovich pair in the spirit of works of Brenier [12] and Caitlier [16].

Lemma 30. There exists a compact subgétc M x M such that the fibeK, = K N
yro‘l(x) is a single point for Lebesgue almost everyand such thatk contains the
support of all optimal plans.
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The proof of the existence of an optimal map for an absolutely continuous meagure
can then be terminated using the following result (5ée [1, Proposition 2.1]).

Proposition 31. A transport plany is induced from a transport map if and only if it is
concentrated on ap-measurable graph.

5.2. Remark

Assuming only thatg vanishes on countably! — 1)-rectifiable sets, we can conclude that
the same property holds for all interpolating measures < T, and that the assertion of
Propositior 2B holds. This is proved almost identically. The only refinement needed is that
the set of singular points of the semiconvex functignis countably(d — 1)-rectifiable
(seel[14)).

6. Aubry—Mather theory

We explain the relations between the results obtained so far and Mather theory, and prove
Theorem C. Up to now, we have worked with fixed measurgandu 7. Let us study the
optimal vaIung(uo, wur) as a function of the measurgg andcr.

Lemma 32. The function
(1o, 1)+ C§ (10, 111)
is convex and lower semicontinuous on the set of pairs of probability measurés on

Proof. This follows directly from the expression

Cd(uo, nr) = max( [ ¢rdur — | doduo
(90,00 \J M M

as a maximum of continuous linear functions. ]

From now on, we assume that the Lagrangiais defined for all timesL. € C3(TM x
R, R), and satisfies
L(x,v,t+1)=L(x,v,t)
in addition to the standing hypotheses. Let us restate Theorem C with more details. Recall
thata is the action of Mather measures, as defined in the introduction.

Theorem C. There exists a Lipschitz vector fiekp on M such that all the Mather
measures are supported on the graptXef We have

a = minCy(u, ),
s

where the minimum is taken over the set of probability measure® oifthe mapping
mo — mymo iS a bijection between the set of Mather measurgsand the set of prob-
ability measureg. on M satisfyingcé(u, u) = a. More precisely, ifu is such a proba-
bility measure, then there exists a unique initial transport measuydor the transport
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problem betweepo = n and 1 = p with costcé; this measure isng = (Xo)zu, and it
is a Mather measure.

The proof, and related digressions, occupy the rest of the section.

Lemma 33. The minima

1
ar = min T € N,
Ti= T C§ (i, ),
exist and are all equal. In addition, any measwre e B1(M) which minimizefé(u, w)
also minimize<'{ (11, p) forall T e N.

Proof. The existence of the minima follows from the compactness of the set of proba-
bility measures and from the semicontinuity of the functiqﬁ Let ! be a minimizing
measure for; and letm! be an optimal transport measure for the transportation prob-
lem Cé(ul, ub). Letm” be the measure ofiM x [0, T] obtained by concatenatinf
translated versions @i'. This means that” is the only measure ofiM x [0, T] whose
restriction toT M x [i,i + 1] is obtained by translation from, for each integer. It is

easy to check that” is indeed a transport measure betwggn= ! andur = uton

the time interval [077], and thatA] im”) = T A}(m?). As a consequence, we have

Tar < C§ (ut, uh) < Af ") = TCj(ut, uY) = Taa,

which impliesar < a1.
Let us now prove thak; > 4. In order to do so, we consider an optimal measure
n! for ar, and consider a transport interpolatipf, ¢ € [0, 7], between the measures

wo = n’ andur = . Consider, for € [0, 1], the measure
~T
Ky == 'u“t+t7
Ul
and note that' il = pul + S/t u! = pl + S u! = TAT. In view of the

convexity ofC3,

o 171
ci@al, nly = Co( Z(M, , N«,+1)> - Z il uly
i=0

1
= 2Co ' u") =ar.
Sincefiy = i, this implies thaty < a7, as desired. o
Lemma 34. We haver; < «.

Proof. If mg is a Mather measure, then it is an initial measure for the transport problem
betweenuo = mymo andpuy = mymg for the costcé. As a consequence, we have=

Ad(mo) = C3(no., po) > 1. o
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Lemma 35. Let ! be a probability measure oif such thatC3(ul, u1) = a1. Then
there exists a unique initial transport measurg for the transportation problem between
no = pntandpus = u! for the costed. This measure satisfigsy):mo = mo. We have
o] = Aé(mo) > «a, SO thate = a1 andmg is a Mather measure. There exists a constant
K, which depends only oh, such thatmg is supported on the graph of E-Lipschitz
vector field.

Proof. Fix a probability measurg® on M such thatCj(ut, u!) = 1. Let X : M x
[0,2] — TM be a vector field associated to the transport probigtut, 1) by The-
orem A. Note thatX; is Lipschitz onM with a Lipschitz constank which does not
depend onuy. We chooseX once and for all and fix it.

To each optimal transport measusé for the transport problem‘é(ul, ul), we asso-
ciate the transport measun@ on T M x [0, 2] obtained by concatenation of two translated
versions ofn!, as in the proof of Lemma 3. We have

A§(m?) = 2A5(m") = 201 = 202 = C§(u*, M.

The measuren? is thus an optimal transport measure for the transportation problem
C2(ut, ub). Letm,, t € [0,2], be the continuous family of probability measures on
TM such thatm? = m, ® dr. Note thatm, = (yHgmy for all s and¢ in [0, 2], and
thatmy is the initial transport measure for the transportation prob&gut, ut) asso-
ciated tom?®. Sincem? was obtained by concatenation of two translated versions of the
same measure®, we must haven, 1 = m, for almost allr 10, 1[, and, by continuity,

mo = m1 = m2. This implies thatng = (w(})jmo. Finally, the characterization of op-
timal measures implies thaty = m; = (X1);u1. We have proved thatXy);u? is the

only optimal initial transport measure for the transportation probfgtut, xt). O

Proof of Theorem CLetmg be a Mather measure, and Je§ = wymo. Note that we also
haveug = (o ’ﬁ&)nmo- As a consequencesg is an initial transport measure for the
transport betweepg and g for the costc}, and we have

a = Ag(mo) = Cg(uo. o) > a1

Sincex; = «, all these inequalities are equalities, so thais an optimal initial transport
measure, and’(wo, no) = a1. It follows from Lemm thatng is supported on the
graph of aK -Lipschitz vector field.

Up to now, we have proved that each Mather measure is supported on the graph of
a K-Lipschitz vector field. It remains to prove that all Mather measures are supported
on a singlek -Lipschitz graph. In order to do this, denote By c 7M the union of
the supports of Mather measures(if v) and(x’, v') are two points ofM, then there
exists a Mather measureo whose support containg, v) and a measure:;, whose
support containgx’, v'). But then(mo-+mg) /2 is clearly a Mather measure whose support
contains{(x, v), (x’, v")} and is itself included in the graph offa-Lipschitz vector field.
Assuming thak andx’ lie in the image) (B1) of a common chart (see Appendix), so that
(x,v) =dO(X, V) and(x',v') =do(X’', V'), we obtain

IV =Vl < Kllx —x'|.
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It follows that the restriction td\1 of the canonical projectiof M — M is a bi-Lipschitz
homeomorphism, or equivalently that the 3dtis contained in the graph of a Lipschitz
vector field. O

Appendix. Notations and standing conventions

e M is a compact manifold of dimensiah andx : TM — M is the canonical projec-
tion.

e We denote byt : TM x [0,T] — [0, T]or M x [0, T] — [0, T] the projection on
the second factor.

o If N is any separable, complete, locally compact metric space (for exavipd x
[0,T], TM or TM x [0, T])) the setsB1(N) C B+ (N) C B(N) are respectively
the set of Borel probability measures, non-negative Borel finite measures, and finite
Borel signed measures.df.(N) is the set of continuous compactly supported functions
on N, endowed with the topology of uniform convergence, then the sfpo® is
identified with the set of continuous linear forms 6p(N) by the Riesz theorem. We
will always endow the spacB(N) with the weak topology that we will also call the
weak topology. Note that the sBf(~NV) is compact ifN is. Prokhorov’s theorem states
that a sequence of probability measuRsse 51(N) has a subsequence converging in
B1(N) for the weak topology if for alle > O there exists a compact s€t such that
P,(N — K¢) <eforalln € N. See e.g/[39, 17, 10].

e Given two manifoldsV andN’, a Borel mapF : N — N’, and a measurg € B(N),
we define the push-forwarg . of by F as the unique measure oH which satisfies

F:u(B) = u(F~Y(B))

for all Borel setsB € N, or equivalently

| racw = [ sorau
N’ N

for all continuous functiong : N’ — R.

e A family u,, ¢t € [0, T], of measures i3(N) is calledmeasurabldf the mapr +—
fN fy du, is Borel measurable for each € C.(N x [0, T]). We define the measure
W ®dtronN x [0, T] by

T
/ fd(pu ®dt) Zf f Jrdu dt
N x[0,T] 0 JN

foreachf € C.(N x [0, T]). The well-known desintegration theorem states that, if
is a measure oV x [0, T'] such that the projected measure onqQis the Lebesgue
measurelt, then there exists a measurable family of measufesn N such thaju =
ur Q dt.



Optimal mass transportation and Mather theory 35

e The setlC(uo, ur) of transport plans is defined in Sectjon|1.2.

e The setZ(uo, ur) of initial transport measures is defined in Secfion 2.1.
e The setM(uo, nr) of transport measures is defined in Secfion 2.1.

e The selC(uo, ur) of transport currents is defined in Sectjon| 2.2.

e We fix, once and for all, a finite atla® of M, formed by chart® : Bs — M, where
B, is the open ball of radius centered at zero iR?. We assume in addition that the
setsf(B1), 0 € ©, coverM.

e We say that a vector field : M — T M is K-Lipschitzif, for each charty € 0,
the mappingl o (d8)"1 o X 00 : Bs — R? is K-Lipschitz on By, wherell is the
projectionBs x R? — RY,

o We mention the following results which are used throughout the paper. There exists
a constanCC such that, ifA is a subset oM, andX4 : A — TM is a K-Lipschitz
vector field, then there exists@K -Lipschitz vector fieldX on M which extendsX 4.

In addition, ifA is a subset oM x [0, T]and X4 : A — TM is aK-Lipschitz vector
field, then there exists @ K -Lipschitz vector fieldX on M x [0, T] which extends
X4. If Alis acompact subsetdf x [0,T]and X4 : ANM x]0,T[ > TM isa
locally Lipschitz vector field (which i (¢)-Lipschitz onA N M x [e, T — €]), then

there exists a locally LipschitZJK (¢)-Lipschitz onM x [e, T — €]) vector fieldX on

M x 10, T[ which extendsX 4,
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