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Abstract. Nonnegative measure-valued solutions of the continuity equation are uniquely de-
termined by their initial condition, if the characteristic ODE associated to the velocity field has
a unique solution. In this paper we give a partial extension of this result to signed measure-
valued solutions, under a quantitative two-sided Osgood condition on the velocity field. Our
results extend those obtained for log-Lipschitz vector fields in [6].

1. Introduction

Let T > 0 and let

V (t, x) : (0, T ) × R
d −→ R

d

be a Borel vectorfield. We associate to V the equations

(ODE) γ̇(t) = V (t, γ(t))

and (with the notation Vt(x) = V (t, x))

(PDE) ∂tµt + div(Vtµt) = 0.

A solution of (ODE) is an absolutely continuous curve γ(t) such that γ̇(t) = V (t, γ(t)) almost
everywhere on [0, T ]. We shall also consider generalized solutions in the sense of Filippov, see
more details below. The so-called continuity or Liouville equation (PDE) is considered in the
sense of distributions. We shall work with solutions in the class of measures. We denote by
M(Rd) the set of signed Borel measures with finite total variation on R

d, by M+(Rd) the
subset of non-negative finite measures, and by |µ| ∈ M+(Rd) the total variation of a measure
µ ∈ M(Rd). We shall consider only solutions µt satisfying |µt|(R

d) ∈ L∞(0, T ); this is not a
very restrictive assumption, because many approximation schemes do provide solutions µt with
this property. We shall also assume that

(I)

∫ T

0

∫

Rd

‖Vt‖d|µt|dt < ∞,

a property surely satisfied if ‖V ‖ is uniformly bounded. Under these assumptions the notion
of distributional solution is well defined, and it is equivalent to the requirement that, for all
φ ∈ C1

c (Rd), t 7→
∫

φdµt belongs to the Sobolev space W 1,1(0, T ), with distributional derivative
given by

∫

Rd

〈Vt(x),∇φ(x)〉 dµt(x).

Using this fact, and the uniform continuity properties of Sobolev functions on the real line, it
is easy to check (see for instance [4, Proposition 8.1.7]) that we can restrict ourselves (possibly
modifying µt in a negligible set of times) to weakly continuous solutions t 7→ µt, in the duality
with Cc(R

d). Moreover, the initial condition µ0 for (PDE) is defined in a weak sense:

lim
t↓0

∫

Rd

φdµt =

∫

Rd

φdµ0 ∀φ ∈ Cc(R
d).

So, from now on only weakly continuous solutions µt will be considered. Reversing the time
variable, also the final condition µT is well defined, still in the weak sense.
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Our goal in the present paper is to study the relations between uniqueness for (ODE) and
uniqueness for (PDE). It is known that uniqueness for (ODE) implies, via the so-called super-
position principle, that nonnegative solutions of (PDE) are uniquely determined by the initial
condition µ0, see [4, 2, 3, 10, 5]. The question turns out to be much more subtle if we work in
the class of signed measures. Of course, if µt is a solution, we can write it as the difference of the
two non-negative measures µ+

t and µ−
t . However, these measures need not solve the equation.

This remark is reminiscent of the notion of renormalized solutions, see [7, 1]: we may call renor-
malized a solution µt such that µ+

t and µ−
t are both solutions (or equivalently such that |µt| is

a solution). It is clear that there is uniqueness if all distributional solutions are renormalized,
and if there is uniqueness for (ODE), but renormalized solutions have been studied only under
weak differentiability assumptions on Vt, and only in the class of absolutely continuous measures
µt (see [2] for a survey on this topic). In this paper, we leave aside the question of the general
relations between (ODE) uniqueness and (PDE) uniqueness, and we focus on a particular class
of vectorfields for which (ODE) uniqueness is well-known, and derive some consequences at the
(PDE) level (and, in particular, that all solutions are renormalized).

We recall that a modulus of continuity is a continuous non-decreasing function ρ : [0, 1) −→
[0,∞), such that ρ(0) = 0. A modulus of continuity ρ is said to be Osgood if

∫ 1

0

1

ρ(s)
ds = +∞.

We will always extend the moduli of continuity to [1,∞) by ρ = ∞. Typical examples of Osgood
moduli of continuity are ρ(s) = s and ρ(s) = s(1 − ln(s)). Note that the moduli ρ(s) = sα,
α ∈ (0, 1), are not Osgood.

It is known that uniqueness holds for (ODE) if there exist a Osgood modulus of continuity ρ
and C ∈ L1(0, T ) such that

(O) |〈V (t, x) − V (t, y), x − y〉| 6 C(t)‖x − y‖ρ(‖x − y‖)

for all x, y ∈ R
d, and all t ∈ (0, T ). Condition (O) does not seem to imply continuity of

Vt: in the case when the modulus ρ is linear, (O) implies that the symmetric part of the
distributional derivative is bounded, hence Korn’s inequality gives that Vt is equivalent, up
to Lebesgue negligible sets, to a continuous function. Since we consider measures µt that are
possibly singular, even in the case when ρ is linear we can not apply this result to reduce
ourselves to a continuous vector field; therefore we will not investigate the continuity question
here (also because adding the continuity assumption would not lead to a great simplification of
the uniqueness proof).

In order to prevent blow-up of solutions, the following bound is useful:

(B) |V (t, x)| 6 D(t) ∀x ∈ R
d, ∀t ∈ (0, T ), for some D ∈ L1(0, T ).

The equation (ODE) is well understood under (O) and (B): There exists a unique flow map

X : [0, T ] × [0, T ] × R
d 7−→ R

d

which is such that X(s, t, ·) is a homeomorphism of R
d for each s and t; X(t, t, ·) = Id for each

t. In addition

t 7→ X(s, t, x)

is a generalized solution of (ODE) in the sense of Filippov (the definition is recalled below)
for each s and x. In the case when Vt is continuous, then generalized solutions in the sense of
Filippov are just ordinary solutions of (ODE). Uniqueness implies that X satisfies the semigroup
property

(1) X(t3, t2, X(t1, t3, x)) = X(t1, t2, x) ∀x ∈ R
d, ∀t1, t2, t3 ∈ [0, T ].

The main result of this paper is the following uniqueness result:
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Theorem 1. If the vectorfield V satisfies (O) and (B), then there is uniqueness for (PDE) in
the class of bounded signed measures. More precisely, if µt is a solution of (PDE) such that
|µt|(R

d) ∈ L∞(0, T ) then

(2) µt = X(0, t, ·)#µ0 for all t ∈ (0, T ).

In the particular case when Vt is continuous, (2) defines a solution of (PDE) with initial
condition µ0, so that Theorem 1 can also be read as an existence result.

The same proof would give uniqueness in the larger class of measures µt satisfying |µt|(R
d) ∈

L1(0, T ) if conditions (O) and (B) are given in a stronger form with C ∈ L∞(0, T ), we leave the
(easy) details to the reader.

If ρ(s) = s, the result is well-known. It has been proved by Bahouri and Chemin in [6] in the
case ρ(s) = s(1−ln(s)) (see also [10] for related results), under the additional assumption that V
has zero divergence. The proof in [6] uses Fourier analysis and Littlewood-Paley decompositions,
and it is not clear to us whether it can be adapted to our more general statement.

It might be tempting to think that uniqueness for (PDE) holds in the presence of a flow of
homeomorphisms solving (ODE), but we do not know whether such a result is true without an
explicit bound like (O).

Let us now return to the definition of the flow X associated to V . Since V is possibly
discontinuous, we consider its Filippov regularization (actually a multivalued function), namely

V(t, x) :=
⋂

r>0

co ({V (t, y) : ‖y − x‖ < r}) ,

where co denotes closed convex hull. By definition, a generalized solution of (ODE) in the sense

of Filippov is an absolutely continuous curve X(t) such that the inclusion Ẋ(t) ∈ V(t,X(t))
holds for almost every t. Since x 7→ V(t, x) is upper semicontinuous (i.e. xn → x, vn ∈ V(t, xn)
and vn → v imply v ∈ V(t, x)), and V(t, x) 6= ∅, by Filippov’s theorem, see [8] or [9, Theorem
1.4.1], for all t1 ∈ [0, T ] and x ∈ R

d there exists a Filippov solution X(t) : [0, T ] −→ R
d satisfying

X(t1) = x. Furthermore, V inherits (O) in the form

(3) |〈v − w, x − y〉| 6 C(t)‖x − y‖ρ(‖x − y‖) ∀v ∈ V(t, x), ∀w ∈ V(t, y)

and this can be used to show, by the standard argument, that X is unique. The flow X(s, t, x)
can now be defined by requiring that t 7→ X(s, t, x) is the only Filippov solution which satisfies
X(s) = x.

The following strong form of uniqueness is essential for the proof :

Lemma 2. Let V (t, x) be a vector-field satisfying (O) and (B). Let γ(s) = (t(s), x(s)) : [0, L] −→
[0, T ] × R

d be a Lipschitz curve such that

ẋ(s) = ṫ(s)V (t(s), x(s))

for almost every s. If
∫ L

0 |ṫ(s)|C(t(s))ds < ∞, where C(t) is the function appearing in (O), then

x(s) = X(t(0), t(s), x(0)).

Proof. Let us notice that the curve y(s) := X(t(0), t(s), x(0)) satisfies ẏ(s) ∈ ṫ(s)V(t(s), y(s))
for almost all s, and therefore (3) gives

|〈ẏ(s) − ṫ(s)V (t(s), x), y(s) − x〉| 6 |ṫ(s)|C(t(s))‖y(s) − x‖ρ(‖y(s) − x‖)

for all x ∈ R
d. In particular, we have

|〈ẏ(s) − ẋ(s), y(s) − x(s)〉| 6 |ṫ(s)|C(t(s))‖y(s) − x(s)‖ρ(‖y(s) − x(s)‖).

Denoting by d the quantity d(s) = ‖x(s) − y(s)‖, we get (taking into account that ḋ(s) = 0 a.e.
on {d = 0})

|ḋ(s)| 6 |ṫ(s)|C(t(s))ρ(d(s)) for a.e. s ∈ [0, L].
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Since the function |ṫ(s)|C(t(s)) is integrable, and since d(0) = 0, we conclude that d(s) = 0 for
all s.

The proof of the Theorem is now based on Smirnov’s decomposition of normal currents, see
[11]. We expose this theory in Section 2, and then conclude the proof of Theorem 1 in Section 3.

2. Decomposition of vector fields

Let us consider the metric space L := Lip([0, 1]; Rk) of Lipschitz curves γ : [0, 1] −→ R
k,

endowed with the uniform distance and the associated Borel σ-algebra. Note that the set L is
a Borel subset of C([0, 1]; Rk), being a countable union of compact sets. To each curve γ ∈ L,

we associate its length Lγ =
∫ 1
0 ‖γ̇(s)‖ds and the R

k-valued measure T γ = (T γ
1 , . . . , T γ

k ) on R
k

defined by
∫

gdT γ
i =

∫ 1

0
g(γ(s))γ̇i(s)ds i = 1, . . . , k

for each bounded Borel function g : R
k → R. Making the supremum among all Borel functions

with ‖g‖ 6 1 we get

(4) |T γ |(Rk) 6 Lγ .

Furthermore, it is easy to check that, if γ is simple, equality in (4) holds and |T γ | is the image
of ‖γ̇‖ds under γ.

Let now T = (T1, . . . , Tk) ∈ [M(Rk)]k. By polar decomposition we can write T = Wη, with
W : R

k → R
k Borel unit vectorfield and η ∈ M+(Rk) (η is the total variation of T and W is the

orienting vectorfield, uniquely determined up to η-negligible sets); we also assume that div(T )
is (representable by) a measure θ ∈ M(Rk), namely

∫

〈W,∇φ〉dη = −

∫

φdθ ∀φ ∈ C1
c (Rk).

Notice that this assumption is fulfilled by T γ , and

div(T γ) = δγ(1) − δγ(0).

We say that a measure ν ∈ M+(L) is a decomposition of T = Wη by simple curves if:

(i) We have

(5) T =

∫

L

T γdν(γ),

which explicitly means that
∫

〈W,f〉 dη =

∫

L

(
∫ 1

0
〈f(γ(s)), γ̇(s)〉ds

)

dν(γ)

for each bounded Borel function f : R
k −→ R

k.
(ii) We have

(6) η =

∫

L

|T γ |dν(γ)

and

(7) |θ| =

∫

L

(

δγ(1) + δγ(0)

)

dν(γ).

(iii) ν-almost every curve γ(t) is simple.

Notice that condition (6) can be interpreted by saying that no cancellation occurs in (5).
Analogously, by applying (5) to a gradient vectorfield f , we get

(8) θ = div(Wη) =

∫

L

div(T γ)dν(γ) =

∫

L

(

δγ(1) − δγ(0)

)

dν(γ).
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So, also (7) implies that no cancellation occurs in the integrals in (8).

Proposition 3. Let ν ∈ M+(L) be a decomposition of Wη by simple curves. Then, for ν-a.e.
curve γ, we have |T γ | = γ#(‖γ̇‖ds) and

(9) γ̇(s) = ‖γ̇(s)‖W (γ(s)) for a.e. s ∈ [0, 1].

Proof. The equality |T γ | = γ#(‖γ̇‖ds) follows from the fact that ν-almost every curve is
simple. Inserting f = W in (5) and taking (6) into account we get

∫

L

(

|T γ |(Rk) −

∫ 1

0
〈W (γ(s)), γ̇(s)〉ds

)

dν(γ) = 0.

Since ν-almost every curve is simple, we have equality in (4), and we get
∫

L

(

Lγ −

∫ 1

0
〈W (γ(s)), γ̇(s)〉ds

)

dν(γ) = 0,

so that
∫

L

(
∫ 1

0
‖γ̇(s)‖ − 〈W (γ(s)), γ̇(s)〉ds

)

dν(γ) = 0.

The integrand being nonnegative, we get (9).

We can now state Theorem C of [11]:

Theorem 4. Any T = Wη as above can be decomposed as η = η0 + η̃, where div(Wη0) = 0 and
Wη̃ admits a decomposition ν ∈ M+(L) by simple curves.

It turns out that also the divergence-free part Wη0 admits a decomposition in “elementary”
vector fields T γ , but the underlying curves γ need not be in L: in order to obtain the decompo-
sition, also curves associated to Bohr quasiperiodic maps γ : R → R

k should be considered, see
[11] for a precise discussion.

3. Proof of Theorem 1

Let µt be a solution of (PDE) with initial condition µ0 and let S ∈ (0, T ]. We want to prove
that µS = X(0, S, .)]µ0.

Let σ(t, x) : (0, T ) × R
d −→ {−1, 1} be the sign of µt. By this we mean a Borel map such

that σµ = |µ|. Note that we really consider here a functions σ defined at each point, and not
only a class of functions up to |µ|-almost everywhere equality. There is not a unique choice for
the function σ, but we pick one once and for all. Let us define the vectorfield

W (t, x) =
σ(t, x)

‖(1, V (t, x))‖
(1, V (t, x))

and the Borel non-negative measure

η(t, x) = χ(0,S)×Rd‖(1, V (t, x))‖(dt ⊗ |µt|)

on R
d+1 = R × R

d. Note that (PDE) with initial condition µ0 at t = 0 and final condition
µS at t = S can be rephrased as div(Wη) = θ in the sense of distributions in R

d+1, where
θ = δS ⊗ µS − δ0 ⊗ µ0.

Let now η = η0 + η̃ be the decomposition provided by Theorem 4, and let ν ∈ M+(L) be a
decomposition of Wη̃, with k = 1 + d. By Proposition 3, ν-a.e. curve γ = (t, x) satisfies

ṫ(s) = ‖γ̇(s)‖
σ(t(s), x(s))

‖(1, V (t(s), x(s)))‖
, ẋ(s) = ‖γ̇(s)‖

σ(t(s), x(s))

‖(1, V (t(s), x(s)))‖
V (t(s), x(s)).

Let us prove that for ν-a.e. curve γ = (t, x) the integrability property
∫ 1

0
|ṫ(s)||C(t(s))|ds < ∞
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holds. Indeed, take f(t, x) = C(t)/‖(1, V (t, x))‖ and observe that (6) gives
∫

L

∫ 1

0
|ṫ(s)||C(t(s))|dsdν(γ) =

∫

L

∫

fd|T γ |dν(γ) =

∫

fdη̃

6

∫

fdη =

∫ T

0
C(t)|µt|(R

d)dt < ∞.

In view of Lemma 2, we conclude that ν-almost every curve (t, x) in L satisfies

(10) x(s) = X(t(0), t(s), x(0)).

Since ν-almost every curve is one to one, we conclude that t(s) is one to one for ν-almost every
curve. By (7) we know that t(0) ∈ {0, S} and t(1) ∈ {0, S} for ν-almost every curve γ = (t, x),
and therefore, either t(0) = 0 and t(1) = S, or t(0) = S and t(1) = 0.

Denoting by L+ the Borel subset of L formed by curves γ = (t, x) such that t is increasing
on [0, 1] and satisfies t(0) = 0 and t(1) = S, and by L− the Borel subset of L formed by curves
γ = (t, x) such that t is decreasing on [0, 1] and satisfies t(0) = S and t(1) = 0, we conclude that
ν(L+ ∪ L−) = 1. We denote by ν± the restrictions of ν to L±. The measures ν± are mutually
singular, non-negative, and ν = ν+ + ν−. Let

Bi : L+ ∪ L− −→ R
d

be the Borel map defined by Bi(γ) = x(0) if γ ∈ L+ and Bi(γ) = x(1) if γ ∈ L−. Similarly, we
define Bf : L+ ∪ L− −→ R

d by Bi(γ) = x(0) if γ ∈ L− and Bi(γ) = x(1) if γ ∈ L+. Note that

Bf = Bi ◦ X(0, S, ·)

ν-almost everywhere by (10). Since θ = δS ⊗ µS − δ0 ⊗ µ0, it follows from (8) that µ0 =
(Bi)](ν

− − ν+) and µS = (Bf )](ν
− − ν+). As a consequence, we have

µS = X(0, S, ·)]µ0.
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[9] L. Hörmander : Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques et Applications 26
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