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DECOMPOSITION OF SOLENOQIDAL VECTOR CHARGES
INTO ELEMENTARY SOLENOIDS
AND THE STRUCTURE OF NORMAL ONE-DIMENSIONAL CURRENTS

5 K. SMIRNOV

ABSTRACT. We investigate the siruciure of vecior charges whose divergency is a mea-
sure (i.c.. the siructure of nermal one-dimensional flows), We prove that every vector
charge with divergency 0 can be decomposcd into elementary solenoids, i.e., the sim-
plest charges of this kind {representable as an “averaged circulatinn™ along a suficiently
geud embedding of R inte R" ). The technigues used are those of the geometric
measure theory, but 1the knowledge ol this theory is not necessary to understand the
statements and proonfs.

§1, INTRODUCTION

1.1. Introductory notes, Let I be an R"-valued countably additive set Tunction
defined on the Borel a-algcbra 28, of RB”:

T(E) = (TUE), ..., 1.E)), E ¢,

1, being real measures on ¥, (scalar charges). We call T a vector charge. We
cndow the set of all vector charges with the norm

var{ T} 1= sup Z |£{E;},
i

where the supremum is taken over all Borel subdivisions of R®. Then we may
identify this sct with the space of currents of finite mass ([1], 4.1.7). The last term
refers to lincar functionals t defined on the normed space ZFYR") of all (™
veolor [elds @ = (py, ..., p,) with compact support; Z'(R") is endowed with the
uniform norm

We oilen do not distinguish between r and T and consider the space Ch of all
charges as the conjugate space 24 (R") of S1(R"). The weak topology induced in
Ch will be calied the (#-topology.

Selencidal charges {or simply solenoids) mentioned in the title of the article are
divergence free charges T:

div T 1),
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This relation is understood in the scnse of distributions; namely, it means that

L 1
/ S 2% g1y =0
E" Jf:iaxj

for every u € C°(R™). The set of all solenoidal charpes will be denoted by the
symbol Sol.
Of particular inter¢st is the space N 1(R") of all charges enjoying the following
Propertics:
spt I 1s compact, var(div 7)) < +00

(spt1 denotes the closcd support of ¥ }. The latter property means thal the distri-
bution div T defined by the formula

div 2'(a) == - T(Vw), ucC CERY,

is a scalar charge, and var{div T) is the total varation of this charge. Using the
terminology of [1], we call the charges of class N, normal, Clearly, M, contains the
set Sol- of all solenoids with compact support,

The problem of geometric structure of normal charges and solenoids arises in
the geometric measure theory ([2], Problem 3.8) and in the homology theory with
real coefficients [3]. The author has met this problem when studying approximation
properties of various classes of vector fields and differential forms, as well as extension
properties of fields and forms (see {4], where normal currents and solenoids arise in
a natural way as dual objects).

Restncting ourselves to solenoidal charges first, we start with a heurstic discussion
of their structure.

The simplest example of a solenoidal charge is an oriented closed curve of finite
fength. Roughly speaking, this is the circulation of a test field along an oriented
rectifiable curve ¥ of finite length:

T) = [ (1), ey dxix), pess,
¥

7 being the vector ficld of unit tangent vectors (the orientation of y}; we denote by
A7 the m-dimensional Hausdorff measure. If a,. b € R" are the endpoints of the
curve, then

(div Ty)(u) = = 1,(Vu) = - f (r(x), p(x)) 4 (x) = - j #d# (x) = ula) — u(b).
¥ ¥

where £ is the derivative of the function u & CiP(R") along p. Il ¥ is closed, then
the divergency of 7, is 0.

Is the stock of these simplest solenoids rich enocugh to create aff solenoids? Is it
possible to represent an arbitrary solenoid 7 € Sol as a “continuous convex combi-
nation” of loops? We mean a representation of the form

(L.1) 7= [1au0,
where g is a nonnegative measure. “Convexity™ means that
(1.2) var(1) /var{i';}dyty}

(var(T,) is the variation of the charge Ty, i.e., the length of y). The last relation
implies, in particular, that g-almost all curves y stay in sptT. Such a decompo-
sition can be belicved to exist because il does exist locally for smooth charges and,
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furthermore, veclor measures with zero rotation do admit a decompaosition into “hy-
persurfaces™ {sec the Fleming—Rishel formula below), which implies the existence
ol a féiccmnpositiﬂn ol an arbitrary solenoidal charge into closed curves in the case
of B~

However, for n > 2 formulas (1.1} and {4.2) should be¢ renounced. 1n the general
case the sel of “elementary solenoids™ must include, besides closed curves, some of
their generalizations (hke an irrational winding of the torus or the Smale—Williams
solenoid, see below). Then it turns out 1o be possible to justily the analogs of (1.1)
and {1.2).

Before giving a rigorous formulation of the problem, we introduce the necessary
notation and terminology.

The term measure will always meuan a nonnegative countably additive set function
defned on a o-algebra of subscts of a space X .

We shall need not only charges, but also focal charges, i.c., countably additive R"-
valued se¢t functions T dcfined on the ring of all bounded Borel sets in " . The
total variation of a local charge can be infinite; nevertheless, the following measure
| 7] s defined on /&, (and is finite on each ball):

ITIE) == sup ) [T(E)i,
1

Lthe supremum being taken over all finite Rorel subdivisions of # . The set of all
local charges 15 denoted by Chyo (l"}. Any charge 7" is absolutely continuous with
respect 1o [ 7). Hence, by the Radon-Nikoadym theorem 7' = T7||. where T is
a Borel measurable field of unit veetors in R? defined ||1-a.c. In other words,

(1.3) Fle)= | (plx), ) 4|T|{x), ¢ F' R
Rn

With any (local) charge  and with any Borel £ ¢ R" , we associale the restriction
T E of T w F . Thisis the {local} charge yz T, where X1 denotes the characteristic
function of F;

(TLENGY = T{ENG)
for every {bounded) ¢ %, . Clearly,

{T..Ej{g:}:fg{qx,T}df, P ZUR.

We shall also usc the cartesian product Tx8 € Ch (R"*) of a charge 1 ¢ Chig. (B
and a scalar charge S on R':

TxS:=(Tx8,...,T,xS5,0,..,0),
R
i

where T; x5 18 the usual product of (real} measurcs and the 75 are the “coordinate”
charges of 7. It is easy to see that

(1.4) div(T xS} =divT = &

The same wdentity holds if 7 is a scalar charge and & is a charge (with an obvious
definition of 7°x 5 ). A local charge T 1s called locally normal if div T (understood
as a distribution) is a local {scalar) charpe: in this case we write T € My joc. B
div ¥ = 0, then we write T C | ,loc - The sct of local charges with zero divergeney
1s denoted by Sol,,. .
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The symbol fiz will stand for the image of a measure x4 under the mapping [
(this image is defined on a suitable o-algebra):

Sy EY = g7 E).

Some of the statements presented here are easier to formulate and prove if one
makes use of the notion of the image AT & Chy (R®) of a charge T under a
Lipschilz mapping f: R — R" (for this image to exist it suffices, c.g., that 1° be of
compact support or of finite variation; sce |1, 4.1.7, 4.1.14] for more dctails).

Suppose f is a proper C°-mapping of RY into B" (“proper” means that the
limit lim g | f{X)] = c0; an arbitrary C""‘-diffmnmrphism of R" omnio iisclf is
proper). Let Df be its Jacobi matrix. Then for ¢ € ZHR™)

(15 Stiey= [ 5T e dITi= [ (T @) iy,

ar
LT (e} = T(fYe),

where by flp we denote the inverse tmape of a vector field ¢ under a €*-smooth
mapping f:

(Fo)x) = (D (e(Fx)) (xR
In precisely one case {namely, f: R — R" } we shall need a nonsmoaoth but Lipschitz
mapping . Then ||7({#) is a function {whose absolute value is 1 a.e.), and instead
of (1.5) we use

(1.5 fiT(e) -~ [R TG, o) dITIE . @ & MR,
It can casily be verified that in thesce cascs

(1.6) (foghT = figT,

(i.7) varl 1T} < Lip( f) vac (1),

(1.8) divifyT) = fildiv 7)

{Proofs under more gencral assumptions can be found in [1]).
We denote by 4, the Dirac measure at the point x and by 7" the Lebesgue

measure in B" . Let [u; #] denote a charge in Ch(R) defined as follows: if a < #,
then

1]
ey
@i bloy = [ Ao edr, peim,
a
andif b a, then [a; bl:==1b:a] (e, ..., e, are the coordinate unil veclors in
R" ).

1.2. Statement of the problem. We return Lo the guestion of decomposilion of a
charge inlo simplest ones. This will be understood in the following precise meaning:
a charge T £ Chy, (R") decompases into charges lying in J C Chy [R") if there is a
measure g on J such that

(1.9) T=j;Rdﬁ{R},

(1.10) e f |R| d(R)
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If, moreover, T & Ny 1o (R"), J ¢ Ny 1,.(RB"), and the following additional condition
holds

(L1 [l div 7| =_/J||diVR||dﬂ[R},

we say that T completely decompuoses inio charges lying in J |

Remark 1. A measures considered below will be Borel with respect to the %-topao-
logy, therefore, the integrals in (1.9), (1.10}, {1.11) will be undersicod in the weak
sense. For example, [, Rdjt(R) is a charge S defined by S(g) = [, R(@)dp(R) for
every field ¢ C & (R"),

Remark 2. 1f (1.9) holds, then {(1.10) and (1.11) are equivalent to the following
relations (respectively):

(1107 var[T}=/var{R]d;i[R),
g

(1.11%) var{div ) = f var{div R} du{ R).
J

Remark 3. The gencral theory of convex sels guarantees the existence of a set J such
that any solcnoid can be decomposed into elements of J . Indeed, consider the unit
ball By, 1nthe space Sol. This ball is metrizable (in the 2 -topology}, as a bounded
set in the space Ch, conjugate to a separable space. So, the set cxtr Byy of all its
extreme points 1s Borel and nonemply (by the Krein—~Milman theorem) and one can
apply the Choquet theorem {[3]). 1t [ollows that Tor every T ¢ Sol there cxists a
representing measure supported on oxir By, - For this measure statements {1.9) and
(1.11Y) hotd. Hence there 1s at lcast a possibility 1o take exir By, for J, and the
problem of finding J reduces to that of describing extr Bg, .

By remark 3, the elements of ¢xtr By, are natural “elementary™ solenoids. We
[partly] describe them and ohtain a “concrete”™ decompaosition formula. From the
samie poiat of view, we also consider the structure of normal charges.

1.3. Examples and results. We start with scveral important examples of solenoids,
and then state the resuolts.

Example 1. A closcd curve. The simplest example of a one-dimensional solenaidal
charge is a simple oriented closed curve T of finite length var{T) mentioned above
(all integer valued charges with zero boundary are decomposable into an at most
countable sum of such curves, see [1], 4.2.18). This term is attributed to any charge
T ¢ M (R") for which there exists a function f: [0 var{73}] — B" such thal

{1.12) Lip(f) <1,

{1.13) T = {0} var(T)],
(1.14} f is one-to-one on [0; var({T}),
(1.15} S0} — fivar(T)).

It follows fram (1.13) that

var{ Tl
T(¢}=f0 (PG5, olfNdt, o € BH(RY).

If (1.14) (or (1.15)) does not hold, we shall omit the word ‘simple’ (resp., ‘closed’).
We recall that, if a curve is closed, then the boundary of the corresponding charge iy
ZCro.
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Example 2. An irrational winding on the torus. The idea of this classical example is
as [oliows (see, e.g., [6. pp. 92-94}). Consider the charge ¢#% Cyl in B, where
Cyl 1= [0 1] = {x? t+ x} = 1} is the cylinder surface. Clearly, its divergency 1s
supported by {0; 1} x {x3 +x3 = 1}.

To “annihilale” the divergency, we “glue™ our cylinder inio a torus. We gluc up the
1wo boundary circles turning onc of them by a z-irrational angle. To be a bit more
precise, we put Sg := [0, 1) x [0, 1) and takc a C™-transformation f:R* - B’
t-periodic in x; and x; and such that f|Sq is a bijcction onto a torus. Consider
the charge

T .= ﬁ{eﬁ.fflu_.ﬂq} »

where €9 = (cosf)ep + (sinf)ex, sin@ being irrational. Jt is not hard to see Lhat
divT = 0. If we try to decomposc I Into curves by “gluing” local decompositions
(which exist near every point of the torus), then, instead of loaps, we obtain infinite
curves, each one coiling round the torus and constituting its “irrational” winding.
Finally, we remark that using this cxample 1t is not hard to censtruct a (™-smooth
charge in E* not decomposable into loops.

Fxample 3. The Smate—Williams solenoid. This example is based on a construction
of a well-known attractor. A detailed discussion of the method of constructing charges
related 10 stable or nonstable manifolds of some diffecomarphisms can be found 1n
[3] (see also [7] and a discussion of fractal structure of T,,, in [8]). Therefore, we
give only a bricf intvitive descnption.

Consider a diffecomorphism  fof a sohid torues Tor into itself such that f{Tor)
“turns twice™ inside Tor. The object Tor,, :=(; , f*(Tor} is known in the theory
of dynamical systems as the Smale-Williams solenoid. Locally Tor., is (topologi-
cally) the Cartesian product of a Kantor set by a segment {tuming once around the
axis of the solid Lorus, we mix these scgments up and glue them together in a different
order). We can orieni 1hese secgments (i.e., preseribe u direction ol rotation on Tor )
and dehine a dyadic measure g on the Kantor set. This gives rise 1o a solenoid T,

which coincides locally with g x fa; #] (up Lo a Lipschitz homeomorphism). Thus,
locally we can decompose T into curves. But mixing the scgments up vnder “gluing”
constitutes an obstacle to a glohal decomposition (a result of this mming is, e.g., the
fact that the Smale—Williams solenoid contains no loop}.

Example 4. Almost periodic solenoids. Let /1 R — R” be a Bohr almost periodic
vector function. We assume for simplicity that the vector function f° is umiformly
continuous and its absolute value does not exceed | everywhere. We define a charge
T by the formula

L S
Tie) :=_Jl_rg23/5(f (). el AN} dt, peZ'(R7).

The limit exists, since the function {f*(z], ¢(f{¢))} is almost periodic and, conse-
quently, admits averaging. For ¢ € 2#1{R") wc have

1(0)] < limsup, 5 [ 70, oUr0)] de

. 1 £
<timsup, ey [ 0O AL < ol
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whence var(T) < 1. Finally, for every u C 2o(m™y

F— Il

— div T(u) — T(du) = lim %/_'Swf{:), u(f () di

= [im ifs {%u{f{rj}dr

§ oo 28

= lim L (L f(5))- u(f(=s1)) — 0.

L Iy ] 25‘

50, the above charge 77 is normal and of divergence 0, and var(¥) < t. Itis casy
to sec that all preceding examples fitf into this pattern. The first onc (for a curve of
lenpth 1) corresponds to a periodic function J (with period 1) in cxamples 2 and 3
a suitable function f can be constructed by gluing topether the local decompositions.

This suggests taking the charges of Example 4 as “basic”. I is natural to consider
not only almost periodic functions /), but all functions for which the average exists.
This leads to the following definition.

Definition, A charge 7" is called an clementary solencid il there is a Lipschitz vector-
function f: R — R" enjoying the fallowing propertics:

(1.16) Lip(f) <1,
(1.17) T =~ tim ;—kﬁ[—k; K1,
{1.18) var{d) = 1,
(1.19) SR C splLt

Remark 4. Conditions ((.16Y and {1.17) are similar to the first lwg conditioms in the
definition of a curve; (1.17) means (hat for cvery hield ¢ € “91{R"} the mean

] I T .
(1.20) flp) = lim 5 f (S0, ety () di

exists.  Condition (1.1%) guarantees that after passage to the limit in {1.17) the
solenaid will not “selfcancel”, and {1.19) guarantces that when making our decom-
positions into solenojds we do not leave the support.

Now we state our main results. Denote by €, the set of all oriented curves of
length / with £ -topology.

Theorem A, Let [ 0. If T'eSol, then T cun be decomposed into elements of ¢
Yo be more precise, there exists a finite Borel measure poon & with var g — vac(T) /!
such that for J — &, relations (1.9) and {(1.10} hold, and, moreaver,

2., ]
(1.21) 212> [ 1 div Ry iRy,
€,

e
(1.2 B = [ syt = [t duiry

T T
(B(R) is the origin of the curve R, c(R) Is its end, the two parts of (1.21} are
MICASHIES).
Theorem RB. Every solenoid can be decomposed into elementary solenoids.

Ry virtuc of Remark 3, Theorem B is equivalent to Theorem B':
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Theorem B'. He have extr iy, C elem, where elem denotes the set of alf elementary
sofenoids.

Theorem C. Any charge T € F{(R®) can be completely decompoased into a sum of two
charges P and Q such that div P = 0 (and Theorem A is applicable to P) and
can be completely decomposed into simple oriented curves of finite fength (we prove
in fact Theorem C for charges T € [y 1, (B™'} of finitc variation).

Remark 5. Once more we emphasize the fact thal the suppaorts of p-almost all curves
involved in the decomposition in Theorem A fie in spt T, This 1s very important tor
applications. The same is true for Theorems B and C.

Remark 6. Theorem A yields only a "noncomplete™ decompasition {1.9)-{1.10}, but
it 13 often more convenien for applications, hecause only charges of simple structure
{curves) are involved, and for big / there is a pood estimate {1.22) for the variation
of the divergence.

1.4. Corrents of an arbitrary dimension. Our theme can be generalized to normal
currents of an arbitrary dimension s {the question scitled by theorems A-C cor-
responds to m = 1), In this more general setting the role of normal charpes gocs
to the space M,,(R") of m-dimensional normal currents {1.c., functionals defined on
differcntial forms of degree m ). The vanation of a charge becomes the mass of a
current; the divergence of a charge becomes the boundary (sec the details in [1]):

div 1{¢) — L {de),

where o is the ordinary exterior dillerential of the form . The role of “simple™
charges played (for mi — 1) by curves goes Lo the "inlegral currents™ (rechiliable cur-
rents with rectiliable boundary: sce |1 4.1.24, 4.1.28] for a several olher equivalent
definitions are discussed. The space of all integral mi-dimensional currents in BY s
denoted by L,(R"}. In accordance with [1. 4.2.25], in the case thal we are study-
ing here { # = 1) an arbitrary 7 € L;(R") can be completely decomposed ints a
countable sum ol simple oricnted curves R; | /€ M, of [inite length:

71

varf R} — Z var{R,],
i=1
[y ]

var(divR) =y var(div R,).
Il |

Hence the decomposahility of a one-dimensional current into integral currents (see
below) 15 eguivalent to its decomposabilily inlo curves.

Let us bnefly discuss decomposition problems for an arbitrary m.

We ask whether every T C M, {R"} {or T < Sol, } can be decomposed into
“simple” currents lying in a set J C [,(R") {in other words, whether we have
extr By < T, (R} or extrfigy < 1, (R} ). If the answer 1s negative, it is desirabie 1o
find a description of admissible sets J .

The degenerate cases m =0 and m=n, AT =0, are not interesting (if 7 -0,
then we can decompase into poinl unit masses; if w1 =», then T = 0D}.

Ifm—_n- |, divT =0, then T — divy, where § is a current of dimension »
with finite mass, which allows one to reduce this case to the ¢ase m — n. Here §
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can be identitied with a (scalar) locally summabic [unction and 7° with its gradicnt;
S turns out to belong to the class BV of functions with bounded variation (see [9]).
The decormnposition we are looking for is piven by the Fleming-Rishel formuls (sec
(9, 10] and [1], 4.5.9 (13}):

+i

":"S = vxh‘ d{,

—ra:

+ o
w81 = [ Ivaslar,
e

which yields a decompasition of § (and henec of 1) into currents corresponding
to the charactenistic funciions of the Lebesguc sets £, of the function S

If m_—nr—1and divl # (O, then T can bc decomposed into integral currcnts
provided that its boundary is rectifiable; div ¥ € I, _>(R"); see [11). Butif divi ¢
T, 2(R"}, then this is impossible {in gencral), and, probably, no simple description
of the extreme points of the corresponding unit ball exists. A counterexample (sce
the details in [12]) 15 based on the fact that for the current

T=dxhrdzn s +dyadz 23z >0} € Ny (R

the decompositions into integral currents represented by “half-plancs”, naturally aris-
ing in the half-spaces {z <. 0} and {z > 0}, lail 10 “merge” on the bordcer (1he plane
2 =10)

It 1< m<n-2, then no decomposition into integral currents exists in general,
even if div? = 0. Already for m =1, n — 3 counterexamples can casily be given
for (" -currents (scc Examples 2, 3). “Merging” in K* the two counterexamples of
the preceding parapraph disposed al a certain angle to cach other, we can construct
a current from Ny 5 (R*} with zero boundary that cannot be decomposed even lo-
cally near the points of some 2-dimensional subspace in B*. Moreover, Zwarski
have shown that for 2 < m <2 2 2 local decompositions of ’™-currents invoke
some compatibility conditions (like in the Frobenius theorem emerging in these prob-
leras; see [87); so, 2 ("™-current can he nondecomposable into integral currents {even
locally].

1.5. Sketch of the preof.  There is a well-known correspondence between veetor fields
of zero divergency (smooth solenoidal charges) and noncompressible flows (they are
also called “currents’, but we use the term ‘flow” to avoid confusion), If a smooth
solenoidal charge is given, then the functions determining the elementary solenoids
it can be decomposed into, arc trajeclories of points moving in the corresponding
llow with velocity one,

Therefore, it is desirable to learn to “(ruce the trajectories” for arbitrary 7 € Sol .
If we simply smooth I* oul, then we will have problems with singular points of the
corresponding vector ficld (it is difficull to follow the trajectories there). To avoid
these difticulties, we extend 7" to a charge 77 in B"'', so as if we want to add the
time coordinate to the corresponding flow {whose exisience is not clear as yet) in order
that the (74 1)-th coardinate of a moving point change uniformly. After smoothing
in an appropriate way the charge obtained, we do not get singularities (the {r+1)-th
component of the carresponding vector ficld is always positive), and a decomposition
into “trajectories” presents no problem. Moreover, the angle between the vectors and
the (# + L)-th coordinate axis will not cxceed 45°, which will immediately imply
that a giobal decomposition of T' into trajcclonies “almost parallet” 1o the (7 + 1)-
th axis cxists. After that, approximating ¥ by smoothed charges, we arrive at a
decomposition of 77 itself, and it remains Lo project this decomposition to B",
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ohiaining a decomposition of T (in fact, the matter is somewhat morc complicated:
we prove Theorem A in this way, and then obtain elemenltary solenoids with the help
of Birkhoff-Khinchin ergodic theorem).

In case div T £ 0 {Theorem C) our flow has a positive and a negative source (the
boundary of T, and we prove Theorem C by checking {with the help of simple
estimates) that almost every point coming from the “positive source™ arnves even-
tually at the “negative™ one (preciscly the sum of such curves will give the sccond
charge). This is done with the help of Theorem A, but at the beginning we add a
charge of simple structure to T {embedded into R™ Ly, to ensure the triviality of
the boundary.

We conclude wilh some words concerning a way 1o formalize intuitive arguments
about flows. If ¥ is a smooth solenoidal charge, then it does give rise to a flow
(a group of transformations of R") preserving the measure |[7]]. The geacrator of
this group in the complex space L{|{T|]} is a selfadjoint extension of the following
symmetric operator A:

Aflx) — l_(vf, TH{x) = ld—f f e CEiRTy.

] P aT
This definition of 4 makes sense for every solenoid . 11 is natural to try to con-
struct an approprialc unitary group and to abtain a “low™ in the general case, thus
solving our main problem, Unfortunately, in the case of an arbitrary solenoidal
charge 7 the opcrator A is only symmetric, butl nol sclfadjoint (which would he
necessary 10 construct a semigroup). Elowever, it is possible to return to the prob-
lem of existcnee of a group or a semigroup after we have Theorem B: then with
every solenoidal charge T, one can associale a certain Markov process with invari-
ant measure |27 (an analog of a flow) and the semigroup of operators related to
this process.

Acknowledgement. Texpress my gratitude to my adviser V. P. Havin for his constant
aid and support, and M. Lyubich and D._ Sullivan for an (indirect) consultation.

£2. THE PROOF OF THEOREMS A AND B

2.1. Notation. We work with lwo spaces, B® and B! The generic notation of
points of B"'' will be capital letters (X, Y, Z, ...}, whereas points of R will be
denoted by small letters (x, v, z,...). We identify E™' with 8" x K. 8o, the
relation X = (x, 1}, where x = (x(, x3., ... .Xr) € K", mcans that

'Yht;rl!"'}xn+]]1 jr'l =-'\‘-.]s-'-:j-’n=-xngX;-J{l:I.-

we identify a vector ¢ £ K with (v, 0} € R"' . Accordingly, a set {a measurc, a
charge} ExF in B! will mean the cartesian product of sets (measures, charges) E
and F in R" and R, respectively. We denote by &2 and @ orthogonal projections
of R"*! onto B" and K (the latier is oflen interpreted as the “time axis™).

2.2. The class & . We call a local charge X in R™*' aimost parailel 10 R if for
|| R||-almosl every X & R**'

(2.1) (PR(X)| = FR(X}

(-] denotes the Euclidean norm in E™'). If R is a curve (see 1.3, Example 1),
then {2.1) means that the angle between the unit tangent vector R(X) and E docs
nol exceed 45°.
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We say that a charge R € N | {R""") befongs to the class & il it is almost
parallel to R and if there is a Lipschitz vector funcuon F: R — B"'' such that

(@) IF'(w)) - 1,
(22) (b) R=F{—o, +},
(c)  Jim SF(u)=toc, lm &F) - —ox.

Retatian (b) means that for every g € Z{E"")

(2.3} Rip) = fI%(FF{I{], p(F{u)) du.

Putting N{= Nip}) i~ max{[}FX| : X espty}, Ry = H[ N: N1, we rewrite
2.3} in the foltowing form:

Rig) = Rulgp).
Thus, R acts locally as a curve, Clearly, & C Soli,, since for every function
G c C™({R"'} with compact support

o T AGUE(D) . -
R(VG) = f_ﬁ Tdr — GF(NY)) - GIF{-N)=10

it a positive number N 15 sufliciently large.
If Rew' and £ is the corresponding parametrization of K. then

Fan{w)( - (@ F ) = JZ(E}'(N}]E
F

a.c.on B (because R is almost parallel to B). Hence F/ | =0 ae,and F,, (v) =

For (1 L: ol dr s a strictly increasing function of © mapping B onto itsell
(sce (2.2 (¢}}). Taking f — £, (%) as a new parameter, we easily prove the existence
of a Lipschitz vector function f/: R — E" such that

(2.4) Lip(f) <1, R=g-; to0), whereg:—(f(1), 1).

Conversely, every Lipschitz function f: B — R" with Lip(f} < 1 {ic., every [ &
Lip; ) gmives nise to a local charpe.
Trying 10 project an element B € % 1o R", we put formally

(FR)(p) = RiPY), pe (M),
But this relation is scnscless since %g ¢ 9Y(B"*Y}, whercas R s only a local

charge in B!, To avoid this difficully, we consider “pieces” R, of R correspond-
ing to compact segments A = {a, b] ¢ B". Namely, we put

Ry =y R (= R S54),
where Sy denotes the strip R” x A, I[' R is defined by (2.4), then KR, = ¢4a; §].
Cicarly, R, is a curve; AR, Is also a curve:
FARs — fila; b},

We make some important obscrvations:

(@) varRy < V2{b a);
(2.5) (b) varFRs <{b-a);

(¢) if varSQRy =h - g, then R, 1s a curve of length (b - ).
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Indeed, var R, = varg(a; 5], and we have {a) {see (1.7}}; the same estimate gives
(b) since f € Lip,; (c) follows from our definition of a curve of given length (see
Example L 1n 1.3}, O

2.3, Slow motions in K"*'. Lel Lip]. denote the class of all Lipschilz veclor
functions f: R — R" with Lip{f} < €. We take some f € Lip} and consider the
vector-function

g2 (f(0), 8
We call it a slow mation in R™! and write ¢ € Slow(R"''). The term “stow” refers

1o the fact that the speed |¢(2)| does not exceed an absolute constant { — /2 ), while
its dircetion docs nol change essentially since the vectors @(f} remain almost paraliel
to R, Every ¢ € Slow(R"*'} pives rise 1o an element R, of &

—
Ry — (- x5 4o0).

The mapping ¢ »— R, {¢ € Slow(R"'')) is a parametrization of & , because (2.4)
implies that 11 is surjective. Now our aim is to endow Slow (R"*') by the structure
of a compact metric space.

2.3.1. Let R stand for the one-poinl compactification of R™ ;

ﬁ’" = B U,
T{)I}Ulugll:ﬂll}-’, the space B is 8™ ¢ ﬂ{”"l Transferring thf.‘ natural meteic of §™

-

to R , Wi oblain 4 melric « on R : with this melric lli 15 4 compacl metrc
Spacgc.

We also need the set C, of all continuous funclions R R” such that cither
I{R} C B Or f{ﬂ} {ﬁu}‘ . We set

Ai(f, m—ﬂlax{ﬂ’(f[ffl gty ee{-4, 017,
Alf. g) —Zz AL WL AL, 2). fLg€

j-1
The convergence corresponding 1o the distance A is the uniform convergence on
every compact subset of B. Let Lipf_irm :— Lipg ] oo} (here £, denotes the
constant function fo. = =), and let €, = O\ { S ).

2.3.2. Lipf‘fim iy a compuct subset of E‘m Indeed, if f, € Lip) ,,, [ © Co
fi 2= fand f # f.,then f is a continwous R™-valued vector function and

Sl

Now we lake an arbitrary sequence (/) lying in Lip{'; we shall show that there is
a subsequence (f;,} converging in . We can assume that i # fuo for all k
If (fx) 13 vniformly bounded on every compact interval {i.c., sup{ |/ (6} : |¢] <
k—1,2, ...} < 4o0, j=1,2,...), then we apply the Arzcla-Ascoli lhr:{:-rem lu
each segment [—4, f]. f =1, 2,..., and the standard diagonal process yields the
desired sequence (Ay). If (/) is unbounded on a segment [—/*, j*], then there is
a sequence of integers (&) and a sequence {#,), |f] < j", such that f;{¢) > {. This
implies that for j > /* and ¢ € [—/, j] we have

|felEN 2 U ()] = 108} = £ 2] > 1 2C,.
Therefore, A fi, fa) r— O, whence A{f, ., fx) = 0.

&, Sty for every t € K, hence f € Lipd; so, Lip{: ,, is closed in Cin .
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-

2.3.3. We define “the improper slow motion” g.. in & x R by
@o{t) = (oc, 1)

Let §:i=Slow(B™) U {goc}, Plg) = Plp) if ¢ ¢ SlowR™), Plpe,) = foo . If
a metric A in 5 is defined by

E(ljﬂ, W}i=ﬂ[ﬁ¢!ﬁwJ‘* ?!WE‘§:

then the mapping @ becomes an isometry of S onto Lip“f‘_n. Hence, hy 2.3.2, §
is @ compact metric space.

24. The continnity of the mapping ¢ — R,. Here we endow & with the 2-
Lopology and show that the above mapping 1s conlinuous.

24.1. Puling & = & U {0}, we make & a topological space taking the 7
topotogy from Chy,. . The space . is metrizable, Indeed, let a countable set T ¢
ZYR"!Y be uniformly dense in 21(R"™'). We can assume, moreover, that for any
triple (N, ¢, &), where N > 0 is an integer, ¢ € Z'(R"'"), splg © S vy =
R" % [~N, N}, and & » 0, there is y € " with support in S| ~.a7 such that
Maxg. . |¢ — | < £. We fix some Ty € . Every neighborhood of Ty contains is
neighborhood of the form

v{To, A, 0)={T ¢ t;]&aji“l —ThMe) < ¢},

where A ¢ TR s finite, ¢ > 0. We choose a large tnleger N — N4 such
that U, 45pte C S » n. For cvery ¢ € A we can pick some ¥e € I' satislying
the following conditions: spty, C S xop and max|g — yp| < £/8NV2. Let TV
(= I"(A, £) ) be the set of all functions p,, ¢ ¢ 4. Then

myi=w{Ty, T ef)cw(Ty, 4, &)

To prove this inclusion, we take 7 € vy and put R (= T Ty clearly, for every
peA

[R(@)] < [R(y) + {R{g) — K(yp)]
< &f24+ (var T . n w4 var{Ty)_n yp) max @ — v,
< gf24 4V2IN -maxlp —y,l < ¢

(we use {2.5 (a))). Hence, the & -topology on & coincides with the T-topology {1the
latter can be defined by the metric

IR
d{T = et
(T Tohi= 2 2 TG,

where I'={y,, m,...} .
2.4.2. Now we consider a mapping 8: § — & defined by
B(p) := Rpl{g € Slow(R™' ")), B{go} =10

(see 2.3.3}, and prove its continuity. The spaces S and & belng moetric, 1t sulfices
lo prove the sequential continuity. We take ® € ZYR"'"), » < Slow(R"™'), and
a sequence (¢} of slow motions tending to ¢ (in Slow(R"'!}, ie, in Cypq). To
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prove that R, (®) — Rg(e), for an arbitrary scquence jj < jp < ... we shall find a
sequence ki < ky « ... such that

Riﬂjm{‘p} "") R#‘(@} »

where J{I} = ji, . Let f; = #(p;), then p,(1) = (f;(7}, #). Clearly, ¢(t) = (f(2}, 1},
where f, <2, f. We denote Ny, = max{|&X| : X € spt(p)} and choose (&;} in

such a way that fy; converges weakly in LEH([-Np, N,}) to a vector-function 4.
This is possible, since |f'| < | a.e. Passing to the limit in the 1dentity

Lo — fra(®) + [ﬂ fa0de,  vel-Ny, Ny,

we see that f(v) = f(0)+ fy Al dr, v & [-Ny, Np], whence 4~ [7 ac. Thus,

N, Ny
R, (9] — y (P L0, ellun, 0)dt +£ ennln(). Dt

hf
Now et ¢; —» ¢, in S and ¢ € ZYR™"). Then
A(F(p;{)), x) ——- 0
J—o

uniformly on [-N,, N,]. Hecnee spte nsptR, - @ for large values of j, and
Blg;)(¢) = 0. But this means that B(g,) - Ble.) - 0

2.4.3. Hemg the image of a compact spacc S under a continuous mapping 5,

the space & is cornpact (in the #-topology). In what follows, we shall also need
restrictions of slow motions o compact time intervals A = (g, #). For R we
put ra(R) = RiSa, where 54 1= R x A we also put rﬂ{gﬂm} = 0, Tt 15 easy (o see

that rs 1s cOnlinuous on o Conscqucntly, w’}., = @) is @-compacl. The set
& = ralt? ) consists of curves. If R € &, , then sptiR)  Su, &M R) =a, Fe(R) =
h.

Now we tum 1o the proof of Theorems A and R.

2.5. T'he first step: extending 7 to a locad charge on R"''. Let 7 € Sol(R") be the
given nondegenerate solenoid in R™'L.
We define a local charge T° on R™! (“the extension of 7 7) by

T = T x F 4 (| T % eqgr
= {T+en J{[ThxF") = (Hh x 3, L x2, Tx2").

In other words,

[ g=d] D
(r o= [ rendes [ a( [ otx 0atin). pepi@™,
—m = K"

where ¢(x) ;= @{x, #). Since the unit vectors T and e, are orthogonal {||77] x
Z1)-a.e,, we obtain

(7] = V2| T = %!, T+ ent).

1
_ (1
ﬂ{
Also, we need the following propertics of T7:
1} T € Sol; 1oefR™H);
2y T is almost parallel to R,

b
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N A—fa, b}, Sa=R"xA, T :=1'L8,, then
divTy = ||T|| = {(&a — ds) , varTh = IV2var 1,
4) A1l =(b-a)T.

Proaf. Property 1} follows from ( + ), where we put ¢ = Vi, ¥ being a (*-funclion
on R"' with compact support (onc can also use (1.3), (1.4)).

Property 2) is obvious (since T — T/V2, &T = ¢,.,/v2). To prove 3}, we
note that

divT, = divT x %" + 4T xdivia; b] = [|TH * (6 — ) :
var(T}) = | T'I(73) = (V2| T|| x 2" )(53)
= V2|1 |(R")F [a, bl = V2var(I Wb — a) = IV2var{T).
To prove 4), we recall that
(PloHX ), o Xy X =0l X0, 0, X)), e e @R,

hence for every charge R in R"*!

(FARYp) = R(.Fp) — /H (R(Xy, ..., Xy Xy n), @0 X0, ., X)) AIIRI(XD.
For R — 1, wt get
{:ﬂ?l)w]:'/;n | _M{T’, (T XV d||T7] % 2 X)

.
=/ /“ (T, P XY d|TH X dt — 1T(p). O

2.6. The second step: a regularization of 7. The charge T and the scalar mcasure
7] will be regulanzed separately. We choose an everywhere positive function @ ¢
CE(R") satisfying [y, ®(x)d"(x) = | . If we put

Py(x) = & D (%) ,

then a standard argument shows that lor every veclor charge T of finite vanation
we have

var(T «d,) < var(T);
Tw® - g, where ais 2 C%-smoath vector field,
Ta®, T uase— 0.
W denoie
1], =T e @, = 0,27",
T'g = T*"-Il‘c - fi__fzfg”*

where ¢, is an everywhere positive C™-fuaction (because |17 # 0 and P, is cvery-
where positive), and 1} is a C°“-smooth vector field on R". Finally, we introduce
a charge 77 on R™' by setting
1= T x 4 | T, % 1!
= (T x 1, (T = EV T, x 2N = {1, )",
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Precisely this charge will be regarded as a reguiarization of 77
We shall use the following properties of T :
1} T & Soljg;
2) T! — 1., where 1, is a C™-smoath vector field on ™M,
3) for every X ¢ B!

T.(X}#0, [Pt (X)) = &7 (X).

Property 3} means that 1, 15 almost parallel to the {# + §)-th axis. Next, putting
T , = 1.¥, wechave

4) T L CNy oe(R"H), var(TY ) < {VZvar(T}, var(div T7 o)< 2var(T),

5) 1] . =Ty as &= 0.
Proaf. Clearly, divT, = div(T +®,) = {dav T') » D, = 0; now the prool of 1) can be
completed as the proof of property 1} of 7Y, To prove 2, one can simply pul 1, 1

(th, 1), Then 1 (X} # 0 since £(X} > 0. Moreover, ||| — |6l <1 — &1,
and we have 3}). The first part of 4} is obvious. To prove the second, we notice that,

by 3},
Il = Vil + 52 < v2i,

».-araf;ﬁ_n?‘“usﬂ):f |T.| 427" < Jﬁf t(xyd "X
A S

whence

V2 () d R x) = IV 2var [T, < [V2var 1
R."I
To fimish the prool of 4} 11 remains {o note that
divT) p = N1, % (30— 3).

To prove 5), we obscrve that

voa =L (A + | T, x [a: bl

Ti=T < {SWAY T < {a; 6]
But 7, = 7" and | 7] -2 |1, whenee 17, =5 1.

2.7. The third step: s decompusition of the smooth charge 77 into elements of & .
The field t, is solenoidal and almost parallel 1o the {n 4 1)-th axis. Wc siart analyzing
it with the following obvious remark. H a (*-smooth vector ficld o on R"' is
solenoidal and parallel to R (ie, i S#a{X) — 0}, then o is conslant on every
line z x K. Indeed, dive = §2 hence 6{X) = (0, .... 0, gna1(X}) dopends on

X.41 only. Therefore, the solenoidal charge ¢.%°"+! corresponding 10 the Leld o
can be decomposed into oriented lines parallel to the (# 4 1j-1th axis. Marking every
such line by the point at which it intersects R", we can say that the corresponding
“decompaosition measure™ 18 @,y .2" .

2.7.1. Now wc return to the solenoidal vector field 1, , almost parallel to the (n+1})-
th axis. We arc going to show that a suitable rectifying diffeomorphism (¢ makes it
paralicl to K (but still solenoidal). Applying the inverse transformation /f — 77,
we decompose 7] into (infinite) curves, namely, into the images of the limes parallel
to the (n + 13-th axis.
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Since 1. 15 almost parallel to the (» + |)}-th axis {property 3) of 77), such a
global rectificalion does exist, i.e., there is a C™-diffeomorphism G: R - r™!
preserving the (n 4 1)-th coordinate and such that the field o := DG - 1, is parallel to
the (n 4 |)-th axis (DG is the Jacobi matrix of G).

Froof. We consider the foltowing Cauchy problem:

Vit — Y, ek, ¥*eR"™,
{2.6)

. . . T
Y =¢(Y}, 7, = = ]"* -
cin+

It 1s equivalent Lo

[

(2.7) dy,

—= ) = (%), (N, ... . Y1), j=1,..,n,

since {2.6} implies Y, ; = 1. Trom the obvious estimate

PREATES TAKES

j=1

and the Picard theorem it follows that the Cauchy problem (2.7) has a unique (7™'-
sclution defined cverywhere on K. Hence the same is true for the problem {2.6); its
solution will bc denoted by Y, 4o .

The transformation

GG:Y —— (:FY};,.,Y({}J« }J,H|) = R"”

is a (™-diffeomorphism of R"'' onto itself preserving the (# + 1)-th coordinate
and transforming the trajectory of every solution of {2.6) into a linc parallel 10 B,
since for ¥" € B"'' we have

FG(Yy, yo () = PV, ye(0), (R
Differentiating this identity in ¢ and pulting £t yields
PDGY°) 5 {¥°)) — 0

for every Y € R™'. Hence the held 6 := D¢ - 7. is orthogonal to the hyperplane
K" . The same 15 true for & := D/ -1, .

2.7.2. Substituling ¢ and ¥} — 1.7 to (1.5) and changing the variable under
the intcgral sign, we can wrnle
(T, ) (@) = f (DG 1, (&) d2"!
Rﬂ:
- / (DG(H) - 1,(H), p)|3H|d.Z™ ",
RH

where H ;= ¢! and JIT is the Jacobian of 7. In other words,
G T] = DG« T, (H) « |FH| 2",

The field on the right-hand side is parallel to the (# + 1}-th axis {(wc have proved this
for a similar field without the factor J/F ). Besides, this ficld is solenoidal, since, in
accordance with (1.8),
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Hence, by the remark at the beginning of Section 2.7, this field does not depend on
Xn+l :
DG st (DY TH = p{23d Xy, zeR",

and we get a decomposition of GyT; into lines parallel 10 R
(2.9) Gy = | 8, x{—oo;00) - p(z)dF ()
RN

2.7.3. Recalling that, by (1.6,
HG T, — (G T, = TdyT; = T},

we apply H 1o the two sides of {2.9):
2.9) 1~ [ hep@d®z, =g
Rﬂ

here ki, := Hy(8:(—=; +oo}) € & is alocal charge corresponding to the slow motion
W,

(2.10} g:(8) = H(z, ) =(fz, 0. 1)

The point f(z, ) = H{z, ) 15 determined by ¢he conditions
(2.11) fa, o=z, 0) (z,)cR"Y, f(z,0) = z),
where @ :— Pr- (8-, R, L1 ) (see (2.6} and (2.7)).

2.7.4. Now we “cmbed” the decomposition (2.9') into the space N of slow motions
(see 2.3.3). The mapping ®: R” 5 Slow(R" ) S} defined by

z g, (ZERT)

15 continuows, because f{z, t} — f(zyp, t} uniformly in ¢ € |a, ] as z — z, {for
every segment [«, b]). Putting O} := ., we sce that @ becomes a conlinuous

mapping of R into §. This mapping is one-to-one, hence it 1s a homeomorphism.
The image v(= v,) of the measure p.%"'! under ® is

(2.100) P (£ = f pd ™ | e BES)
Ll

Clearly, » 15 a Borel mcasurc on 5 supported by a nite-dimensional compact subset
®(R") of § (parameterized by B via @)
Now we can rewrite (2.9} as

211 7= [ Ryduy),
A

where R, —: B(y) € & denotes the local charge on R**! corresponding to y € S
(see (2.4.2)).

275, The measure v depends on ¢ (v = r; ); we shall show that the variation of
vy i uniformily bounded:

{2.12) vary, < varT forallg > 0.
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For a local chatge ¢ on R™! | we put o, := a (R" x [0, +ood) . Identifying the slow
molion ¢, with the local charge B(g.) (see 2.4.2), we have

var v, = var®y(p, , ") —] O
Rﬂ

- varf dp(0VdF " z) — var/ divig:) + p(2Yd.Z"(z)
K" K"
= vardiv] ()4 p(2)d2M(z) = vardiv(T]), < var T
R-r

(the latter inequality was proved in 2.6.2). 0O

2.76. Wih every ¢ C B one can associate Lhe shift r,: S - 5. Mamely, if
& < Slow(B™1), @iy = ({1}, 1), and 1,B,, i 9o, then (2.() 1= (F(r + a), £)
(t € B). We shall prove that the measure i, defined by (2.15) is shift invariant.
First of all, if f(f) = ¢*(f{n)}, then f(z 1 @) = t°(f(t + @) (soe (2.11) for the
definition of 1 ). Hence the set ®(R") C Slow(R"' '} is shift invariant. We denote

gz} = f(z. a)

and take a Borel set & c ®{R"). This set consists of motions wr, el ={fe). 8},
where f — *(f) {scc {2.113). 1f

=@ U&= {Pp(0):p e &)= { f(0): f=1"1N), 9, € &},

then v(#) = [ pd?" . Clearly, ©7 (1, (F)) — { fla) - [ = (), P, ¢} =
gY9EY, and (g (8} . fe:‘*f'-' pd.r" = Ha, L}

So, we must prove that f{a, £) does not depend on g. To do this, we look at i
{ = p. } more carefully. We have

(2.13)  piz)=UDGWIH(z, ) - 1{H{=z, )y, "INz, 6)] (zeR", feR),

where [, is the (# + 1)-th coordinate of w € B™! But since (7 preserves
the {# 4 1)-th coordinate, the expression in the square brackets in (2.13) is equal to
(v(07(z, 1})]arr . and t(H{z, 1)) = 1(z) (since H(z, 0) = z). Moreover, H{z, £ =
{."r{z" I}! l.‘:]:r

0 ]

But f{z,0) = r and JH{z,0) = 1. Taking ¢ = Qin (2.13) yields p = 1,,,.
Muluplying the field 7* (which determines the group g) by 1,1, we abtain F7,
which is a solenoidal ficld in R" . Hence divz,, ;7" =0, and the Liouville theorem
{113] or [14]} implics that the function g — [{a, E) is constant.

DIz, 1} = ('f;{z’” U) , JH{z, ty=det f]{z, 1)

2.8. The [inal step: the weak limit of the measures v, . We have a lamily {i}.g
of Borel measures on S, which are shift invariant and uniformty bounded (see 2.7.5
and 2.7.6). Now our aim is to pass to the limit in (2.1 ') as £ tends to zero along a
suitabile sequence,

2.8.1. We take a sequence (¢,), &, — 0, ¢ > 0 and denate v, := 17, . The weak

compactness of the uait ball in the space of real Borel measures on S atlows us to
assume that

{2.14} v = 1 weakly,



i6d 5. K. SMIENOY

where v is a Borel measure on § (since v({@..}} = O, this measure is supported
on Slow). The limit relation {2.14) means that

lim { adw = /ﬂ ady forall o e C(5).
s J§ §

Every w; is shift invariant; therefore,

ﬁu{ra}’]drq(}’] = ﬁadv-, J=1,2, ..., acC(&).
¥ k)

By (2.14),
ﬁn[ray}dv{y] =ﬁud:f, i £ C{S’j,
IS

5
whence v 15 also shift invartant. In accordance with {2.12},

(2.15) vary < liminfvary; < varT.

J o0
To pass to the imit in {2.11}, we take a vector field ¢ € Z'(R") and put afy) =
Ry{p)= By{p)), a{po) =0. Clearly, o & C(S); by {2.14) and (2.11'} we have
(2.16) T (9) = [ ndv; —— [ adv.
g v

J = 5

But in 2.6.1 we proved thal 'I;’)_.ﬂ -, 17 for every segment A = [a, b}, whence

12 -4 7. Combining this with (2.15), we conclude tha

(2.17) 77 = quydp(;u}_

Eh

2.8.2. Now we finish the proof of Theorem A.
Having fixed / > 0 and a scpgment [2, 8] = A of length {, we put Ty~
T/.8a; Sa=R" x A. Formula {2.17) means that

(2.18) T'(p) = L.R}-fwdv{ri

for every test field ¢ € ZYR™'). Since T is a local charge, {2.18) holds for cvery
Borel measurable bounded vector ficld ¢ on R™!. Hence, we can apply {2.18) to
xa+ @ {instead of ¢ € @YR™")), where x4 is the characteristic funclion of the
stp 8, . We get

(2.9) T;.=é,(ﬂy}ﬁd:f{y)=éﬂyﬁdv{y},

. ———— 1
where (R,), = R,LA, ya:— v a,and R, isthe curve wla: d] in B" | We define
a mapping &£, 1.5 — o by

Ea(yy =R, (ycSlow(R*}), EnlPas) = 0.

Then & (Slow(R™')} = &4 (se¢ 2.4.3). The mapping &, is continuous and trans-

forms 1 into a Borel measure A 1= (&) on 94, {Aa{{@e}) =0, varis = varv <
var T ). Now, {2.19) becomes

(2.20) 1;:[ RdAAL(R).

a
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Taking asscrtion 5) in 2.5 into account, we obtain
(2.21) IT = AT =f ARAAL(R).
=,

Let p(= ps) := {7 (Fhda (ic, u is the image of /-14, under F: o — B,
where B := { I/ C Ch(R") : varU < I}; we have A, By by virtue of (b) in
(2.5)). It 15 clear that

(2.22) - / Rdu(R), fvarpg —varly = vard < varT.
&

But then

var}"gj vatRAW(RY < | 1dp(R)=tvarp < varT,
& B

whence fo varRdu(R) = f;;f [du(RY, Ivary =var T, and
varR=1{, v-ae on R,

it follows that g, 1s supporied on € (this is the set of all curves of length !, which
is a Borel set). Therefore,

T={ raun, varI':/vaerH[R},
L iy

and we have (1.9) and {1.10) (scc the statement of Theorem A). It remains to prove
{1.21}) and (1.22). In accordance with a property of 7, (see 3) in 2.5),

i Tah = [T x da 1+ 1 TH x 85, Al div T3] = 207,
By (2.20),

v T = ]

f didei{R]H
%
(223) _ ” [ dumarr) - [ b dﬂ{m”

A y

(we have used the fact that the measures _[% Sarry dA(R) and Jl'% doipy dA(R) are

supported oo nonintersecting hyperplanes of R™!'  because EH{RY=a, Fe(R)=h
for R w4 ).
Applying 7 | we find

Aldiv 131 = | dnmy A0+ [ ey dhi)
(2.24) # Ha

oy f Spery A(R) + 1 f Serry dA(R).
A Sy
Using {2.23) and fact that divZ =0, we get
O=divi = L {Jﬂrfﬂ] — Je{ﬂj}dﬂ{ﬂ},
!
whence (by (2.23) and (2.24))

17| ==’[€ Sy ry dp(R) =:"]E Seir) Af(R),
! i
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and we arrive at {1.22). Finally,

I f [ div Rl dp(R) = f | div. AR dA(R) < f 147, div Rl dA(R)
(2.25) ; o 5
= [ ean + S dAR) = [ by B iRy = 2071,
bt i
and we have {£.21). (The inequaliiy in (2.25) mcans that S4R may be a closed curve,
and then divFR — 05 if P4R is oot closed, then div 4R = F4div R). Theorem
A is proved.

2.9. The proof of Theorems B’ and B. Woe take a solenoid 7 ¢ Sol(R") and consider
the corresponding shifit invariant measure r = vy defined in 2.8 (see (2.13}}. Ouwr
prool will be based on the Birkhofi—Khinchin ergodic theorem ([15]). We apply 1t to
the measure space (8§, r) with § = Slow(®”*!). Let t denote the shift 7: $— §
delned by

(p)(e) = (U + 1), 8, where y(N = {f,(N, 1), vEN.

Since T is an antomorphism of the measure space (S, v}, the ergodic theorem asserts
that for cvery 7« LYS, v) and for p-almost all y € § the limit

K

—i
(2.26} lim (! y) - 8(y),
-k

Eoorma 2;& i
i)

cxists, and

(2.27) fﬂa‘u [udy_
Y Y

2.9.1. With every motion 7 € Slow(R™ ") we associate its “first hour part” yy —
¥ | Sio.1) {see 2.8.2) and the corresponding charge Ry = #B{yy) € %o, . W take a
test field ¢ € ZHR™) and put #,(3) = (F Ry} g) (= the circulation of ¢ along the
curve ARy ).

The function #, 1s continuous and bounded on Slow({R""") . Consequently, {4, «
LY§, ), and we can apply the ergodic theorem to 8 — 0, . Tet y be aslow motion,
y(t}=(f(, 1), f ¢ Lip,(R"). Thea

Bol iy = (L0li J+ Lle),

and ihe cxpression under the limit sign in (2.26) becomes (2k)~' Al &5 k)e) =:
K., (9}. Hence there is a set N, © § such that »{N,;) = 0 and the timit R,(g) :=
limyg_.., K, (@) cxists for every 7 € S\ N, .

Now we choose a countable st I* ¢ Z(R") uniformly dense in 2'(R") and
pult N = Uggp- Ny . Then »(N} =0, and for y € S\ N the limit R,{p) exists for
every ¢ € D*. Fora hxed K — 1, 2,..., we have

T :
varR, < ﬂl.ip{f},} 2k <1

(see (1.7)). Henee, by the Banach—Steinhaus theorem, for a fixed ¥ € §, the existence
of R,(p) forali ¢ € D* implics its existence for all ¢ C &'(R"}, and R, isacharge
inm B" with varR_}.g 1.

We have obtained the following result: for v-almost all ¥ € Slow{R"' Yy, the limit
R,{¢) exists for all ¢ C.9'(R").
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2.9.2. Now we recall formola (2.21):
T(0) = (it e) = [(FR)o)artr) = [(0,dv.
Combuning this with (2.27), we see that
(2.28) T - /?R_,dv[}-}, v .
This is a decomposition of T ; indeed,
var T < [ﬁyar?ﬂ?du[ﬂ < fs dv —vary = vari’,

whence var B, = 1 for wv-almost all ¥, and var 7 — JovarR . dv{y).

29.3. Now, let I' be an extreme point of the unit hall Bg, . We have obtained a
decomposition of 1" into charges R, , which, clcarly, are alsa solenoidal. Hence [see
[51) R, =T for almost cvery v .

2.9.4. The preceding statement implies Theorem BY.
Indeed, if 7" C Sol{R"}, then ry-almost all mations y € Slow(R"' ) satisfy

SRy CsptT, f= Ay

This follows from {2.19) and (2.21), where we can take A = [—& | Kl, k- L,2, ...
(excluding a countable union of cxceptional sets of measure () alterwards), For
a fixed K, the relations vard, — varf, (2.21), and {2.19) imply the inciusion
o ©sptT for p-almost all 'y ¢ Slow(R™ ') - see 1.2,

So, if T s exireme in Sol;, then, by 2.9.3, T = Rfr for somie 7 C Slow(R" ).
But we may aiso assume that (2.29) holds, so that all the conditions (1.16)~{1.19) are
lTutfilled. Hence 7 ¢ extrSol;, = ¥ ¢ elem. This proves Theorem B and hence
Theorem B,

43. THE 'vo0F OF THEOREM C

3.1. Reduction to the Approximate Decomposition Lemma. We deduce Theorem C
from the following assertion.

Lemma 3. Every charge T < N((R®) can be decomposed into the sum of charges
P QCN((RY) such that Q is completely decompasable into simple curves and

var(div (J) > % var{div 7).

Suppaose the lemma proved; applying it to T, we obtain charges Py and 3, . Now
we apply the lemuna to Py to obtain #; and (J2, then apply the lemma to P, and
50 0n. As a resull, we obtain two scquences of normal charges {£} and {O} such
that for every natural number &

(3.1) Q+Cr+ -+ G+ =T,

(3.2) I+ 0Qail + -+ {1l + 1B = HTH,

(3.3} Fdv Qi+ 1 div ol + - + [ div Qilf + || div Pefl = || div T,
(3.4) var(div ) < (%)kvar(div T).
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By (3.1) and {3.2}), the series (4 + {82 + ... converges (in the variation norm} to
a normal charge ¢, whereas £y tends {in the same norm) 1o a normal charge P
satisfying

(3.5) P+Q=T, WEH+ 12l = T
By (3.4}, var{divly) »0 as &  » oc, whence
{(3.0) divf =0, div}=divT.

It follows from (3.1), (3.2}, (3.3) that Q 1is completely dccomposable 1nto charpes
Oy, K =1,2,... and, since every . 15 completely decomposable into simple
curves, s0 15 Q. Together wath (3.5) and {3.6), this proves Theorem C, and now we
must prove our lemma.

3.2. The proof of Lemma 3. We assumec that div/ # G, since otherwise we can pul
P=T, Q=0. We take 2 number { > ﬂ&‘l% and apply Theorcm A with thas {

var ¥
to the charge S € N(R**") defined by

8= Tx (8- 6)+divT x{0; 1]

It can casily be checked that its divergency is zero. We obtain a decomposition

(3.7) S—_f Rdu(R),
L4
(3.8) ISt = [ IR du(R),
(3.9) i1 f Sy du(R) = / (R

Up to a setl of || div {{|-measure O, the support of ithe charge div ¥ in B® splits

into two sets E, and E_, where {Erl"(x) = +1 and r_mif‘(x) = —1 ,respectively.
Then for || 5]-almost every X € Ey x (0, ) we have 8(X) = 2d X471, and, up to a
[|SH-null set,

sptSNR x (0 ) c (F,UE ) x{0; 1)

Tt follows that the restriction of p-almost every curve R to the “sprip™ RB" x (0 )
i5 representable either as an oriented vertical interval

+d, x [a: b]
{where z € I’y and @ =0 or b=/} or as the union of two such intervals. Let

Mi={Red :b{RYe E_x{0:])},
M= {Rc:MRYe F_x(0;1), e(R)CR" x(0;{}};

then for w-almost all R € 9\9R

RR" % (03 1) = pnmy % [GB(R); 0],
whence (because R € M, PH(R) < 1)

>

Pad | ==

var (R.R" x {0}) = var(R) - var(RR" < (0; 1)) = —&FH(R) = 1 ~ %
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for p-almost cvery R € . Hence,

var(1'} = var{SLR" = {0}) — / var{R R" x {0}) du(R)

Z;
> f var(R.R" x {0}) du(R} > f idu{f{] = -{;L(ETI\HJI}.
T am P L 2’ '2'
Thus,

2 _ i
T YAl = g verlT)
var{div I}

(3.10) (PO < %var{}") <

(hete we have used the lower bound for / stipulated at the beginning ol the proof}.
But, on the other hand, it follows from (3.9} that

% var(div {') = % var{divToFE_} = var(ﬁ. E_ = (U: .’;"2))
— 1 var(du) du(R) = (),
1€, (M) = Fi var(div I') . Subtracting {3.10) from this identity, we obtain

H > MO = g (M) — (NI > i var{div 1) — 11—[} var{div 1) = %J var{div T},

whence
(3.11) ) = 1_15 var{div 1)

Now we put
P = f (RUR" x {0} du(R),
e
Qi [ (R (@) duiR),

and check the desired propertics. Clearly P, @ € Nj(R"). Restricting (3.7} and (3.8)
to B" x [0}, we get

T SR"x {0} = [ RLR" x {0} du(R),

L

71~ ISR x (0} = [ 1RR" x {OH) i)
!

Henee, 7= P+ and ||T|| = P +Qll; @ is dccomposable into curves R R" x {0}
(not necessarily simple, but we can assumc them to be simple, since otherwise we
decompose them into simple curves and “move” “extra™ closed curves into PP ). For
u-aimost all R, the charge R+ R" x {0} is a curve with the origin °5{R) € E_ and
the end ZFe(R) € £, . Therefore

|| div R|| = div RLE, — div RLE
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for p-almost all R € 9t, whenee
I div Q| = nf div{R.R" x {0}} dﬂfﬂ}“

am

_ (f div(R.R" x {0}) du(R)) E,
mt

—{ / div(Ri B" x {0} du(R) ) E-
o

_ f (div(RUE, x {0)) ~ div (R E- {OD) d(R)

a1

- f | div(RLR" x {O})]| du(R)
m

(we have used the relation F, N E- = @, which implics that the negative and the
positive part of the diverpence of Lhe curves RUR" x {0} cannot mutually cancel
out). We scc that @ is not only decomposable, bul also completely decomposable
into simple curves.

Now it remains to verify that

ydiv Tl = [divPl+ IdivQl,  vardivQ)> 117} var{div T).
The last estimate follows from (3.11):

var{div{) = ] var { div(RLR" > {0}}) dui(R).

o
To prove the firsi one, we introduce

M_—{Ree HRCFE x (0D},
M, = Re e(R)e b~ (0; 1) }-
Clearly, 9t = SR_ M, . We define a new charge P’ ¢ M {R") by the lormula

P ‘@ﬂ (f (SE[R] dIH(R] - f ﬁb{RJ dIII{R:]),
DURRL Wi\

By the definition of (),
divQ = 7 ]m (o — Snigy) AR(R).

Summing the last two identities and recalling {3.10), (3.11], we gel

av g+ P = A [ o dnth) - T dui))
K, mm

3.12
(3.12) = LAQSIE. % (0: )= ISIE x (0:D)

- || div 7Y E. — [ div T{E_ — div T.
Hence div @+ 2 — div?". Combined with Q+P — T, this implies that P’ = div 1 .
But we can also write an identity similar to (3.12} for variations and obtain

|| div Q) + 1Pl = | div Tl

and
I div @l + | div || = || div T).

Our lemma is proved, and hence also Theorem C.




LECOMPOSITION OF SOLENOIDAL YECTOR CHARGES 867

BIRLIOGRAVHY

- 1. Vederer, Geomeiric measure theary, Springer-Yerlag, Berlin, 1969
- I B. Bruthers, Some open problemy in geomerric micasure theory, Geometric Measurg Theory and

the Calculus of Variations {W. K. Allard and F. J. Almgren, eds.), Amer. Math, Soc., Providence,
El, 1486,

1 D Ruelle and T¥. Sullivan, Currensy, fows and difeomorphisms, Topology 1d (| 975, 319-327

. ¥.F. Havin and 8. K. Smimav, Approximation and extension for sume elasses af vector fields, 1992,

1O appear.

5. R. R. Fhelps, Lectures on Choguet's theorem, 1. Van MNosirand, Princeton, N1, 1966,

- V. Amold, Supplementury chaprers of the theory of ordinary differential efraations, “Mir”, Moscow,

1980; English transl, Geomerrical methods in the theory of ardinary differential equations, Springer-
Verlag, Rerlin and New York, 1982,

1. D. Ruelle, Klements of differentiable dynamics and bifurcation theary, Academic Press, Wew York

and London, 1385

- k. Talconer, Fractal geometry, mathematical frundutions and applications, Wiley, Chichester, 1990,
. ¥, Maz'va, Sobolev spaces, Sprioger-Verlag, Berlin and New York, 1945,
- W. H. Fleming and R. Rischel, dn inteeral formula for toral gradicns variation, Arch, Math. 11

(1960), 218-222.

- BoM.Hardtand ), 7, Pitts, Sofving Plateau problem for hypersurfaces withour compactness theorem
Sor taregral cureents, Geometric Measure Theory and Calculus of Variations (. K. AHard and

FoIL Almgren, eds ), Amer, Math. Soc., Providence, B, 1944,

- M. Zwarski, Decompaosition for normal currents, Proc. Amer. Math, Soc. 102 (1988), 831-43y9.
- VOV, Nemytskii and ¥. V. Stepanov, (ualitasive theory of differential squutions, ¥rinceton Ty,

Vress, Princewsn, NT, 1960,

Yo L Arnold, Mathemancal methds of clasyical ricchanics, Second editian, Springer-Yerlag, Herlin

and New York, 1959

L P Comfeld, 8. ¥. T'omin, and Ya. (7. Sinai, Ergodic thory, Springer-Verlag, Berlin and New

York, 1982
Received 19/JUINE/1992

Translated by THE AUTTHOR




