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abstract. We study the evolution, under convex Hamiltonian flows on cotangent bundles of com-
pact manifolds, of certain distinguished subsets of the phase space. These subsets are generalizations of
Lagrangian graphs, we call them pseudographs. They emerge in a natural way from Fathi’s weak KAM
theory. By this method, we find various orbits which connect prescribed regions of the phase space. Our
study is inspired by works of John Mather. As an application, we obtain the existence of diffusion in a
large class of a priori unstable systems and provide a solution to the large gap problem. We hope that
our method will have applications to more examples.

Résumé. Nous étudions l’évolution, par le flot d’un Hamiltonien convexe sur une variété compacte,
de certains ensembles de l’espace des phases. Nous appelons pseudographes ces ensembles, qui sont des
généralisations de graphes Lagrangiens apparaissant de manière naturelle dans la théorie KAM faible de
Fathi. Par cette méthode, nous trouvons diverses orbites qui joignent des domaines donnés de l’espace des
phases. Notre étude s’inspire de travaux de John Mather. Nous obtenons l’existence de diffusion dans une
large classe de systèmes à priori instables comme application de cette méthode, qui permet de résoudre
le probleme de l’écart entre les tores invariants. Nous espérons que la méthode s’appliquera à d’autres
exemples.
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Introduction

In all this paper, M denotes a connected compact manifold without boundary, of dimension d,
and TM and T ∗M are its tangent and cotangent bundle. We shall consider the periodic time-
dependent Hamiltonian system generated by a function H : R × T ∗M −→ R, and denote by φt

s

the flow from time s to time t.

(0.1) In order to motivate our discussion, we begin with a precise question: Given two La-
grangian manifolds G and G ′ in the cotangent bundle, which are graphs over the base M , does
there exist a trajectory which connects G and G ′, or in other words does there exist times s < t
such that the Lagrangian manifold φt

s(G) intersects G′?

(0.2) This question formulates some well known problems. As an example, let us suppose that
M = Td, and identify the cotangent bundle T ∗Td with Td ×Rd. Let us consider the Hamiltonian
H0 = h(p), where h : Rd −→ R is a real function. Such Hamiltonians will be called fully integrable
in the sequel. It is known that they leave invariant the tori Tp := T

d × {p}, for p ∈ R
d. As a

consequence, the answer to the previous question is obviously negative for G = Tp and G′ = Tp′ ,
when p 6= p′. What happens for Hamiltonians H which are close to H0? For example, it is known
that the solar system can be described by a fully integrable Hamiltonian H0 if the interactions
between planets are neglected. In this example, the variables p ∈ Rd encode the parameters of
the elliptic trajectories of the planets. It is well known that these parameters would not change
in time if the interaction between planets did not exist. Understanding for which values of p and
p′ the question (0.1) has a positive answer with G = Tp and G′ = Tp′ , amounts to understand
to what extent the elliptic trajectories will deform under the influence of mutual interactions. In
other words, it amounts to understand the secular dynamics, and the stability of the solar system.
We will not treat these specific examples in the present papers, although they are parts of our
motivations. See [1] and [22] for beautiful and deep examples of perturbations of fully integrable
systems.

(0.3) Question (0.1) is especially interesting when the Lagrangian manifolds G and G ′ have
different Liouville classes (which corresponds to the case p 6= p′ in the discussion above). In this
case, we have a problem of non exact Lagrangian intersection, and it seems that the powerful
tools developed to deal with exact intersections provide no interesting insight. In order to study
this problems, we make strong assumptions on the Hamiltonian H , namely that it is convex,
super-linear, periodically time-dependent, and complete, see details in (1.1). We will define an
equivalence relation, called forcing relation and denoted by a` on the set H1(M,R) of cohomology
classes of Lagrangian graphs, in such a way that, if ca`c′, (we will say that c and c′ force each
over) then the answer to question (0.1) is positive for each Lagrangian graphs G of cohomology c
and G′ of cohomology c′. The definition of this equivalence relation is one of the major ideas of
the present paper. The key point in considering an equivalence relation is that local informations
on the equivalence classes can be put together to obtain global information. On the other hand,
most of the mechanisms known so far to study questions related to (0.1), the theorem of Birkhoff
for twist maps, the geometric construction of Arnold, as well as the variational construction of
Mather, can be expressed in this unified setting as local informations on the forcing classes (the
classes of equivalence of the relation a`). Our main goal in the present paper will be to detail this
fact and to study the local properties of the forcing classes.

(0.4) In order to demonstrate the usefulness of our theory, let us provide an example. Proofs
and more general statements are given in section 11. We take M = T × Td−1, and denote by
(q, p) = (q1, q2, p1, p2) the points of T ∗M , where q1 ∈ T, q2 ∈ Td−1, p1 ∈ R, p2 ∈ Rd−1. We
consider the time-periodic Hamiltonian

H(t, q, p) = H1(t, q1, p1) + |p2|
2 − V (q2)F (t, q)
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and we assume that the conditions of convexity, super-linearity and completeness are satisfied.
In addition, we assume that F : T × Td −→ R takes positive values, and that V : Td−1 −→ R

takes positive values except at a single point, say 0, where its takes the value 0. The manifold
T × R := {q2 = 0, p2 = 0} is then invariant under the Hamiltonian Flow. The restricted flow is
generated by the restricted Hamiltonian H1. Under these hypotheses, it is not hard to prove (we
will do it) that each rotational invariant circle of the restricted dynamics H1 admits a homoclinic
orbit. We make two additional non-degeneracy assumptions:

(H1) The Hamiltonian H1 is generic in the sense that its irrotational invariant circles of rational
rotation number are completely periodic. (We allow periodic circles in order to include the case
where H1 is integrable).

(H2) We assume a non-degeneracy hypothesis on the set of action minimizing homoclinic
orbits to the invariant circles of H1. This hypothesis is detailed in section 11, it should be seen as
analogous to the classical hypothesis of transversality of the stable and unstable manifolds in the
construction of Arnold. Although we expect in the future to prove that this condition is generic
in some sense, we do not discuss any genericity issue here.

Under these hypotheses, our abstract results imply the following.

Theorem If P and P ′ are given real numbers, there exists a Hamiltonian trajectory (q(t), p(t))
and an integer t ∈ N such that p1(0) = P and p1(t) = P ′.

(0.5) The systems described in example (0.4) are a priori unstable according to the terminology
in use in the world of Arnold’s diffusion. This is due to the presence of the distinguished invariant
manifold {q2 = p2 = 0}, which in many situations is normally hyperbolic. It appears clearly in
the fundamental paper of Arnold, [1] that the presence of such a hyperbolic invariant manifold
intersecting G and G′ greatly favors a positive answer to question (0.1). A priori unstable sys-
tems have been widely studied because they appear naturally in the perturbation of completely
integrable systems, and are easier to deal with.

In the work of Arnold, it is also assumed that the restriction of the dynamics to the hyperbolic
manifold is integrable, say H1 = |p1|2 in our example. This means that this invariant manifold
is foliated by invariant tori which he called whiskered tori because of the presence of hyperbol-
icity. These whiskered tori are the building blocks of Arnold’s construction, so that this second
hypothesis was very important. The main point in our application is that we do not make this
assumption. We only assume that the restricted dynamics is generic, in a clearly specified sense.

In the context of perturbations of fully integrable systems, the restriction of the flow to the hy-
perbolic manifold is close to integrable, and KAM theory implies the existence of many whiskered
tori. However, when computing precisely the various quantities that appear in Arnold’s construc-
tion, one observes that there does not exist enough tori in general. More precisely, the gap between
tori is too big, this is the Large Gap problem, see for example [21] for a more precise explanation.

Overcoming this problem has long been considered as a major challenge. While the classical
approaches based on refinements on the scheme of Arnold were worked out in that direction, new
variational methods were introduced, by John Mather in [24]. It is also worth mentioning the
work of Bessi, [7], where the results sketched by Arnold are proved using variational methods.
This paper contains one on the first relevant achievements of variational methods in these kind
of questions, and it has been very influential. However, these variational methods were facing the
same kind of difficulties as classical methods. In several special instances, the Large Gap problem
can be bypassed because for specific reasons there exist more whiskered tori. This remark has been
exploited to obtain many non-trivial results from Arnold’s construction or variational methods.
For example, orbits of unbounded speed where built in [8] using the scheme of Arnold. A similar
result had previously been obtained by John Mather, [25], using variational methods, see also [19].
Other works exploit the same remark in different directions, see for example [6], which elaborates
on [7], and many other texts.

Solutions to the Large Gap problem have recently been given by Delshams, de la Llave and
Seara, see [13], and by Treschev, see [29] using elaborations on Arnold’s method. The details in
these works are far from simple. Cheng and Yan have also proposed a solution using elaborations
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on the variational methods initiated by Mather, see [9], and [10], as well as Z. Xia, see [30] and
[31]. Compared to these papers, the spirit of our work is different. We present mechanisms of
instability which are more general, but more abstract. We present some examples for illustration,
and in order to give the reader a hint of how the abstract mechanisms can be used, but we do not
try at that point to describe the more general applications. Neither do we discusss the genericity
of our hypotheses.

The influence of John Mather’s published and unpublished works on the developpement of
variational approaches could not be overestimated. He has announced in [26] very deep results
on the perturbation of fully integrable systems in dimension 2, and given indications on proofs in
various talks and lectures. I hope that the tools developed in the present paper will contribute to
clarify and extend these results.

(0.6) Let us now enter more precisely into matter. Given a Lipschitz function u : M −→ R and
a closed smooth form η on M , we consider the subset Gη,u of T ∗M defined by

Gη,u =
{

(x, ηx + dux), x ∈M such that dux exists
}

.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a closed smooth form η
and a semi-concave function u such that G = Gη,u. See Appendix A for the definition of semi-
concave functions. Each pseudograph G has a well defined cohomology c(G) ∈ H1(M,R), see
(2.2), which is just the De Rham cohomology [η] of the closed form appearing in the definition of
G. We denote by P the set of overlapping pseudographs. If M = T is a circle, then overlapping
pseudographs are graphs of functions which have only discontinuities with downward jumps, or in
other words functions which can be locally written as the sum of a continuous and a decreasing
function. Such sets were introduced in [20], where they are used in very elegant proofs of many
known properties of Twist maps. In higher dimension, overlapping pseudographs naturally arise
from Fathi’s approach of Mather theory.

(0.7) We define the forcing relation a` on H1(M,R) as follows: We say that c and c′ force
each other (in short ca`c′) if there exists an integer N ∈ N such that, for each pseudograph G of
cohomology c (resp. c′), there exists a pseudograph G ′ of cohomology c′ (resp. c) such that

G′ ⊂
⋃

16i6N

φi
0(G),

where G′ is the closure of G′ in T ∗M . This definition is certainly one of the most important novelties
in the present paper. Note that, if ca`c′, if G is a Lagrangian graph of cohomology c, and if G ′ is a
Lagrangian graph of cohomology c′, then there exists a Hamiltonian orbit which connects G and G ′.
As a consequence, understanding the equivalence classes of this relation is a useful tool in the study
of our motivating question. Our main goal in the present paper will be to find sufficient conditions
for two classes to be equivalent. It turns out that, although the definition seems very strong, the
existence of non-trivial forcing classes can be proved in many interesting situations, as example
(0.4). In fact, many of the known constructions of orbits connecting prescribed regions of phase
space (Birkhoff’s theory of twist maps, Mather’s variational construction of connecting orbits,
Arnold’s geometric construction of diffusion) can be adapted to this framework, and rephrased as
the existence of large forcing classes.

(0.8) We shall define, following Fathi, an operator Φ : P −→ P in (2.5), with the following
fundamental properties:

Φ(G) ⊂ φ(G),

where φ := φ1
0 is the time-one map of the Hamiltonian flow, and c(Φ(G)) = c(G). Fathi’s weak

KAM theorem, [16] states that, for each c ∈ H1(M,R), the operator Φ has fixed points of coho-
mology c. We call Vc the set of these fixed points, see section 3 for details. The fixed points G
satisfy

G ⊂ φ(G),

4



and give rise to compact invariant sets

Ĩ(G) :=
⋂

i∈N

φ−i(Ḡ).

This provides a new way, due to Albert Fathi, to define various invariant sets previously introduced
by Mather in [23] and [24].

(0.9) More precisely, to each cohomology c ∈ H1(M,R) we associate the non-empty compact
invariant sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c),

where
Ã(c) :=

⋂

G∈Vc

Ĩ(G) and Ñ (c) :=
⋃

G∈Vc

Ĩ(G),

are respectively called the Aubry set and the Mañé set, and M̃(c), called the Mather set, is the
union of the supports of the invariant measures of the action of φ on Ã(c) (or equivalently on
Ñ (c)), see (3.5) for more details. A standing notation will be to denote by X̃ subsets of T ∗M ,
and by X their projection on M .

Beyond answering question (0.1), understanding the forcing relation a` has many dynamical
consequences:

(0.10) Proposition.

(i) Let G and G′ be two Lagrangian graphs of cohomologies c and c′. If ca`c′ then there exists
a time t ∈ N such that φt

0(G) intersects G′.

(ii) If ca`c′, there exists a heteroclinic trajectory of the Hamiltonian flow between Ã(c) and
Ã(c′).

(iii) Let ci, i ∈ Z, be a sequence of cohomology classes all of which force the others. Fix, for each
i a neighborhood Ui of M̃(ci) in T ∗M . There exists a trajectory of the Hamiltonian flow
which visits in turn all the sets Ui. In addition, if the sequence stabilizes to c− on the left,
or (and) to c+ on the right, the trajectory can be assumed negatively asymptotic to A(c−)
or (and) positively asymptotic to A(c+).

The proof is given in section 5. Let us now state our main results which, as announced above,
describe the local structure of the forcing classes.

(0.11) For each G ∈ V, we define the subspace R(G) of H1(M,R) as the set of cohomology
classes of smooth closed one-forms whose support is disjoint from I(G). For each cohomology
class c ∈ H1(M,R), we define the subspace R(c) as

R(c) =
⋂

G∈Vc

R(G) ⊂ H1(M,R).

The following Theorem reformulates and extends results of John Mather, see [24] and also [3] and
[9]. It is proved in section 8.

Theorem. For each c0 ∈ H1(M,R), there exists a positive ε such that the following holds: Each
class c ∈ H1(M,R) such that c− c0 ∈ R(c0) and ‖c− c0‖ 6 ε satisfies c0a`c.

In order to illustrate this result, it is useful to consider the case of twist maps M = T. In this
case, the reader should check that R(c) = R or 0, and that R(c) = 0 if and only if there exists a
rotational invariant circle of cohomology c, see (few) more details in section 10. The above result
then roughly says that rotational invariant circles are the only obstructions to the evolution of
action variables, and recovers the theory of Birkhoff. We will explained in section 11 how this
result allows to overcome the possible absence of invariant circles in example (0.4).
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(0.12) There is a natural partition of the Aubry set Ã(c) into compact invariant subsets S̃ called
the static classes, see section 4. A generalized version of the following theorem is proved in section
9.

Theorem. Assume that there exists only finitely many static classes in Ã(c), and that the
set Ñ (c)− Ã(c) is not empty and contains finitely many orbits. Then the cohomology c is in the
interior of its forcing class.

This result may be seen as a reinterpretation in our langage of the geometric construction
of Arnold. We explain in section 11 how it allows to take into account the possible presence of
invariant circles of H1 in example (0.4). We mention that, for a generic Lagrangian, all the Aubry
sets A(c), c ∈ H1(M,R) have finitely many static classes, see [5].

(0.13) Let us now present the content of the paper. The whole paper heavily relies on the notion
of semi-concave function and of equi-semi-concave sets of functions. These notions are presented
in Appendix A. In Appendix B, we prove some background results, essentially due to Mather and
Fathi, about the properties of the Action.

Mather-Fathi Theory.
This first part is a survey of the theory of Mather, Mañé and Fathi of globally minimizing orbits,
from a point of view very close to the one of Fathi. This survey is presented not only for the
convenience of the reader, but also because we need various variations on existing results,and
also we need to recast the theory in our framework. In section 1, we present the context, detail
the standing hypotheses, and recall some known results of the calculus of variations which will
be of constant use (proofs are given in Appendix B). Pseudographs are defined and their basic
properties studied in Section 2. In Section 3, we use these pseudographs to present Fathi’s point
of view on Aubry-Mather theory. The theory is continued in section 4, where we explain Mañé’s
decomposition in static classes of the Aubry set, and the construction of homoclinic orbits, due to
Fathi [18], Contreras and Paternain [11], (see also [2]) which will play a central role in section 9.

Abstract mechanism.
This part contains the main novelties of our paper. In section 5 we define the forcing relation a`
and explain how various orbits can be built once this relation is understood. We prove Proposition
(0.10). We then introduce and study evolution operators on P, which are elaborations around the
Lax-Oleinik operator, in section 6. Section 7 is a parenthesis where we study the action of taking
finite Galois covering, which will be essential for applications. The idea of taking finite Galois
coverings comes from Fathi [18]. In section 8, we prove and comment Theorem (0.11). In section
9 we study the case where there exist only finitely many static classes. We generalize and prove
Theorem (0.12).

Applications.
In this short part, we detail some straightforward applications of the results obtained before. We
hope that it is possible to obtain much more applications by applying our results with Hamiltonian
methods such as normal form theory, but this aspect is not discussed here. Section 10 briefly
mentions the application to twist maps. Section 11 details (0.4) above.

Mather-Fathi Theory

This part is an overview of the theory of Mather, Mañé and Fathi of globally minimizing orbits,
which is oriented towards our future needs. We introduce our main objects. Our point of view is
close to the one of Fathi. Most of the material exposed here is a small deformation of results in
[23], [15], [27], [12], or [11].

1 Calculus of variations

(1.1) We shall consider C2 Hamiltonian functions H : R × T ∗M −→ R. We will denote by
P = (x, p) the points of T ∗M . The Cotangent bundle is endowed with its standard symplectic
structure. We denote by X(t, P ) or X(t, x, p) the Hamiltonian vector-field of H , which is a time-
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dependent vector-field on T ∗M . We fix once and for all a Riemannian metric g on M , and use it to
define norms of tangent vectors and tangent covectors of M . We will denote this norm indifferently
by |P | or by |p| when P = (x, p) ∈ T ∗

xM . We assume the following standard set of hypotheses.

1. Periodicity. H(t+ 1, P ) = H(t, P ) for each (t, P ) ∈ R× T ∗M.

2. Completeness. The Hamiltonian vector-field X generates a complete flow of diffeomor-
phisms on T ∗M . We denote by φt

s : T ∗M −→ T ∗M the flow from time s to time t, and by
φ the flow φ1

0.

3. Convexity. For each (t, x) ∈ R ×M , the function p −→ H(t, x, p) is convex on T ∗
xM ,

with positive definite Hessian. Shortly, ∂2
pH > 0.

4. Superlinearity. For each (t, x) ∈ R ×M , the function p 7−→ H(t, x, p) is super-linear,
which means that lim|p|−→∞H(t, x, p)/|p| =∞.

(1.2) We associate to the Hamiltonian H a Lagrangian function L : R× TM −→ R defined by

L(t, x, v) = sup
p∈T∗

x M
p(v) −H(t, x, p).

The fiberwise differential ∂pH of H can be seen as a mapping

∂pH : R× T ∗M −→ R× TM,

this mapping is a diffeomorphism, whose inverse is given by

∂vL : R× TM −→ R× T ∗M.

We have the relationsL(t, x, v) = ∂vL(t, x, v)(v)−H(t, x, ∂vL(t, x, v)) andH(t, x, p) = ∂pH(t, x, p)(p)−
L(t, x, ∂pH(t, x, p)). The Lagrangian L satisfies the following properties, which follow from the
analogous properties of H :

1. Periodicity. L(t+ 1, V ) = L(t, V ) for each (t, V ) ∈ R× TM.

2. Convexity. For each (t, x) ∈ R×M , the function v 7−→ L(t, x, v) is a convex function on
TxM , with positive definite Hessian. Shortly, ∂2

vL > 0.

3. Superlinearity. For each (t, x) ∈ R×M , the function v 7−→ L(t, x, v) is super-linear on
TxM .

See Appendix B for comments related to these hypotheses. The hypotheses listed above are very
suitable to use the calculus of variations.

(1.3) Let us fix two times s > t in R and two points x and y in M . Let Σ(t, x; s, y) be the set
of absolutely continuous curves γ : [t, s] −→ M such that γ(t) = x and γ(s) = y. As usual, we
define the action of the curve γ as A(γ) =

∫ s

t
L(σ, γ(σ), γ̇(σ)) dσ. It is known that, for each C,

the set of curves γ in Σ(t, x; s, y) which satisfy A(γ) 6 C is compact for the topology of uniform
convergence. As a consequence, there exist curves minimizing the action. Let us define the value

A(t, x; s, y) = min
γ∈Σ(t,x;s,y)

∫ s

t

L(σ, γ(σ), γ̇(σ)) dσ,

and let Σm(t, x; s, y) be the set of curves in Σ reaching the above minimum. The set Σm(t, x; s, y)
is not empty, and it is compact for the topology of uniform convergence. Each curve γ(σ) ∈ Σm

is C2 and satisfies the Euler-Lagrange equations. Setting

p(σ) = ∂vL(σ, γ(σ), γ̇(σ)),

which is equivalent to
γ̇(σ) = ∂pH(σ, γ(σ), p(σ)),

these equations are
ṗ(σ) = ∂xL(σ, γ(σ), γ̇(σ)) = −∂xH(σ, γ(σ), p(σ))

Hence the curve (γ(σ), p(σ)) is a trajectory of the Hamiltonian flow.
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(1.4) For each minimizing curve γ ∈ Σm(t, x; s, y), we have

−p(t) = −∂vL(t, x, γ̇(t)) ∈ ∂+
x A(t, x; s, y),

where ∂+
x A(t, x; s, y) denotes the set of proximal super-differentials of q 7−→ A(t, q; s, y) at point

q = x, see Appendix A. We also have

p(s) = ∂vL(s, y, γ̇(s)) ∈ ∂+
y A(t, x; s, y).

For each t′ > t, the set of functions (x, y) 7−→ A(t, x; s, y), s > t′ is equi-semi-concave on M ×M ,
hence equi-Lipschitz, see Appendix A. In addition, the three following properties are equivalent:

(i) The set Σm(t, x; s, y) contains only one point.

(ii) The function A(t, .; s, y) is differentiable at x.

(iii) The function A(t, x; s, .) is differentiable at y.

If these equivalent properties hold, and if γ(σ) is the unique curve of Σm(t, x; s, y), then setting
p(σ) = ∂vL(σ, y, γ̇(σ)), we have

p(t) = −∂xA(t, x; s, y) and p(s) = ∂yA(t, x; s, y).

(1.5) Let η be a smooth one-form. We will see the form η sometimes as a section of the
cotangent bundle η : M −→ T ∗M and sometimes as a fiberwise linear function on the tangent
bundle η : TM −→ R. If the form η is closed then the diffeomorphism φη : (x, p) 7−→ (x, p + ηx)
of T ∗M is symplectic. The Hamiltonian

Hη(t, x, p) = H ◦ φη(t, x, p) = H(t, x, p+ ηx)

satisfies our hypotheses. The associated Lagrangian is (L− η)(t, x, v) = L(t, x, v)− ηx(v), where
η is considered as a function on TM . The following diagram commutes for each t.

T ∗M
H

""EE
EE

EE
EE

TM

∂vL
;;vvvvvvvvv

∂v(L−η) ##HH
HH

HH
HH

H R

T ∗M

φη

OO

Hη

<<yyyyyyyy

(1.6) We will also consider the modified action

Aη(t, x; s, y) = inf
γ∈Σ(t,x;s,y)

∫ s

t

L(σ, γ(σ), γ̇(σ)) − ηγ(σ)(γ̇(σ)) dσ,

which of course satisfies all the properties of (1.4), with the modified expressions

ηx − p(t) ∈ ∂
+
x Aη(t, x; s, y) and p(s)− ηy ∈ ∂

+
y Aη(t, x; s, y)

when (γ(σ), p(σ)) : [s, t] −→ T ∗M is the Hamiltonian trajectory associated to a curve γ ∈
Σ(t, x; s, y) minimizing Aη .

(1.7) Let Ω be the set of closed smooth forms on M . It is useful to fix once and for all a linear
section S of the projection Ω −→ H1(M,R). In other words, S is a linear mapping from H1(M,R)
to Ω such that [S(c)] = c. We shall abuse notations and denote by c the form S(c), in such a
way that the symbol c denotes either a cohomology class or a standard form representing this
cohomology class.
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(1.8) The following consequence of Appendix B will be useful. See appendix A for the definition
of equi-semi-concave.

Proposition. If C is a bounded subset of H1(M,R), and ε is a positive number, the functions
Ac(s, .; t, .), c ∈ C, t > s+ ε are equi-semi-concave on M ×M .

2 Overlapping pseudographs.

We present the main objects, overlapping pseudographs, and study some basic properties. The
relevance of semi-concave functions to this kind of problems was noticed by Albert Fathi.

(2.1) Given a Lipschitz function u : M −→ R and a smooth form η on M , we define the subset
Gη,u of T ∗M by

Gη,u =
{

(x, ηx + dux), x ∈M such that dux exists
}

.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a smooth form η and a
semi-concave function u such that G = Gη,u. See Appendix A for the definition of semi-concave
functions. We shall denote by P the set of overlapping pseudographs. Given a pseudograph G,
and a subset U ⊂M , we will denote by G|U the set G|U := G ∩ π−1(U).

(2.2) It is not hard to see that if an overlapping pseudograph G is represented in two ways
as Gη,u and Gµ,v , then the closed forms η and µ have the same cohomology in H1(M,R). As a
consequence, it is possible to associate to each pseudograph G a cohomology c(G), in such a way
that

c(Gη,u) = [η].

We will denote by Pc the set of overlapping pseudographs of cohomology c. If G is an overlapping
pseudograph of cohomology c, then G can be represented in the form G = Gc,u, where c is the
standard form defined in (1.7). The function u is then uniquely defined up to an additive constant.
As a consequence, denoting by S the set of semi-concave functions on M , and by P the set of
overlapping pseudographs, we have the identification

P = H1(M,R)× S/R.

This identification endows P with the structure of a real vector space. Let us endow the factor
S/R with the norm |u| = (maxu −minu)/2, which is the norm induced from the uniform norm
on S. More precisely, we have |u| = minv ‖v‖∞, where the minimum is taken on functions v which
represent the class u. We put on P the norm

‖Gc,u‖ = |c|+ (maxu−min u)/2 6 |c|+ ‖u‖∞.

The set P is now a normed vector space. It is also useful to define, for each subset U ⊂ M , the
number

‖Gc,u‖U := |c|+ (sup
U
u− inf

U
u)/2.

We define in the same way the set P̆ of anti-overlapping pseudographs Ğ, which are the sets Gη,−u,
with η a smooth form and u ∈ S. This set is similarly a normed vector space.

(2.3) Lemma. Let G be an overlapping pseudograph, and Ğ be an anti-overlapping pseudo-
graph. If G and Ğ have the same cohomology, then they have nonempty intersection.

Proof. Let us write G = Gη,u and Ğ = Gη,−v. Let x ∈ M be a point minimizing the continuous
function u+v. Since they are semi-concave, both u and v are differentiable at x, and dux = −dvx.
It follows that the point (x, ηx + dux) = (x, ηx − dvx) belongs both to G and to Ğ.
It is natural to introduce the following definition.

9



Definition. Let G be an overlapping pseudograph, and Ğ be an anti-overlapping pseudograph.
If G and Ğ have the same cohomology c, write them G = Gc,u and Ğ = Gc,ŭ. We denote by

G ∧ Ğ ⊂M

the set of points of minimum of the difference u− ŭ, and by G∧̃Ğ ⊂ G ∩ Ğ the set

G∧̃Ğ := G ∩ π−1(G ∧ Ğ) = Ğ ∩ π−1(G ∧ Ğ) = G ∩ Ğ ∩ π−1(G ∧ Ğ) ⊂ T ∗M.

This set is compact, not empty, and it is a Lipschitz graph over its projection G ∧ Ğ.

Proof. We have proved already that the set G ∧ Ğ is not empty. It follows from Appendix (A.8)
that both u and ŭ are differentiable on G ∧ Ğ, and that the map x 7−→ dux = −dŭx is Lipschitz on
this set. This makes the definition meaningful. The set G∧̃Ğ is compact because it is the image
of the compact set G ∧ Ğ by a Lipschitz map.

(2.4) Let us fix a closed form η. We define the associated Lax-Oleinik mapping on C0(M,R)
by the expression

Tηu(x) = min
q∈M

(

u(q) +Aη(0, q; 1, x)
)

Let us recall some important properties of the Lax-Oleinik mapping, which are all direct con-
sequences of the properties of the function A given in (1.4). For each form η, The functions
Tηu, u ∈ C(M,R) are equi-semi-concave, see Appendix A. The mapping Tη is a contraction:

‖Tηu− Tηv‖∞ 6 ‖u− v‖∞.

To finish, the mapping Tη is non-decreasing, and it satisfies Tη(a+ u) = a+ Tη(u) for all real a.

(2.5) There exists a unique mapping Φ : P −→ P such that

Φ(Gη,u) = Gη,Tηu

for all smooth form η and all semi-concave function u. We have

c(Φ(G)) = c(G).

The mapping Φ is continuous (see (6.2) for the proof of a more general result). For each cohomology
c, the image Φ(Pc) is a relatively compact subset of Pc, as follows directly from the properties
of the Lax-Oleinik transformation recalled above. Note that this implies the existence of a fixed
point of Φ in each Pc, this is how Fathi proved the existence of fixed points. See (3.2) for another
proof. We call Vc the set of these fixed points, and V = ∪cVc. We also define the sets

O :=
⋂

n∈N

Φn(P) =
⋂

n∈N

Φn(P)

and Oc := O∩Pc. Note that Oc is compact and invariant under Φ, and that V ⊂ O. A pseudograph
G ∈ Pc belongs to O if and only if there exists a sequence Gn ∈ P, n ∈ Z of pseudographs such that
Φm−n(Gn) = Gm for all m > n, and such that G0 = G. Note that we then have Gn ∈ Oc for each
n ∈ Z.

(2.6) The mapping Φ satisfies
Φ(G) ⊂ φ(G).

This inclusion is a consequence of the following Proposition, which will be central througrought
the paper.
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(2.7) Proposition Let us fix a pseudograph Gη,u ∈ P, an open set U ⊂ M and two times
s < t. Let us set

v(x) = min
q∈Ū

u(q) +Aη(s, q; t, x),

where Ū is the closure of U . Let V ⊂M be an open set and let N ⊂M be the set of points where
the minimum is reached in the definition of v(x) for some x ∈ V . If N̄ ⊂ U , then

Gη,v|V ⊂ φ
t
s

(

Gη,u|N̄

)

and Gη,u|N̄ is a Lipschitz graph above N̄ . In other words, the function u is differentiable at each

point of N̄ , and the mapping q 7−→ duq is Lipschitz on N̄ .

Addendum. In addition, the Hamiltonian trajectories (x(σ), p(σ)) : [s, t] −→ T ∗M which
terminate in Gη,v|V , i. e. such that (x(t), p(t)) ∈ Gη,v|V satisfy

v(x(t)) = u(x(s)) +

∫ t

s

L(σ, x(σ), ẋ(σ))− ηx(σ)(ẋ(σ))dσ

= u(x(s)) +Aη(s, x(s); t, x(t))) = min
x∈U

u(x) +Aη(s, x; t, x(t))).

Proof. Let us fix a point x ∈ V , and consider a point q ∈ N minimizing in the expression of v(x).
Since q is a point of local minimum of the function u+Aη(s, ., t, x), the semi-concave functions u
and Aη(s, ., t, x) are differentiable at q and satisfy duq + ∂qAη(s, q, t, x) = 0. In view of (1.4), we
have ∂qAη(s, q, t, x) = ηq − p(s), where

(x(σ), p(σ)) = (x(σ), ∂vL(σ, x(σ), ẋ(σ))) : [s, t] −→ T ∗M

is the Hamiltonian trajectory associated to the unique minimizing curve x(σ) ∈ Σm(s, q, t, x).
Uniqueness follows from the differentiability of Aη(s, ., t, x) at q, see (1.4). We have

(x(s), p(s)) = (q, duq + ηq) ⊂ Gη,u

and therefore
(x(t), p(t)) = φt

s(q, duq + ηq) ∈ φ
t
s

(

Gη,u|N

)

.

Since the functions Aη(s, ., t, x), x ∈ M are equi-semi-concave, they are all K-semi-concave for
some K. It follows that the function u has a K-sub-differential at each point of N , and therefore
at each point of N̄ . We conclude using (A.7) that the function u is differentiable on N̄ , and that
the map q 7−→ duq is Lipschitz on N̄ . As a consequence, we have

Gη,u|N̄ = Gη,u|N ,

and this set is a Lipshitz graph over N̄ . Still exploiting (1.4), we get that the function Aη(s, q, t, .)
is differentiable at x, and satisfies ∂xAη(s, q, t, x) = p(t) − ηx. Noticing that the function v −
Aη(s, q, t, .) has a local maximum at x, we conclude that dvx = p(t)− ηx if v is differentiable at x,
and therefore that

(x, ηx + dvx) = (x(t), p(t)) ∈ φt
s

(

Gη,u|N

)

for each point of differentiability x ∈ V of v. In other words, we have the inclusion Gη,v|V ⊂

φt
s

(

Gη,u|N

)

, hence

Gη,v|V ⊂ φ
t
s

(

Gη,u|N

)

= φt
s

(

Gη,u|N̄

)

.
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(2.8) Let G = Gc,u be a fixed point of Φ. And let n < m be two relative integers. Following
Fathi, we say that a curve x(t) : [n,m] −→M is calibrated by G if

u(x(n)) +

∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt = T n−m
c u(x(m)),

note, since u is a fixed point of Φ, that T n−m
c u = u+(m−n)α(c), where α(c) is a constant (which,

as we will see below depends on c but not on u). A consequence of the addendum in (2.7) is
that the curve x(t) is calibrated by G if the curve (x(t), p(t) = ∂vL(t, x(t), ẋ(t))) is a Hamiltonian
trajectory satisfying (x(m), p(m)) ∈ Ḡ. Conversely, if x(t) is calibrated by G, then (x(k), p(k)) ∈ G
for each integer k ∈ [n,m[.

(2.9) The following Corollary is the reason why we have called the elements of P overlapping.

Corollary All overlapping pseudographs G ∈ P satisfy π ◦ φ(G) = M.

Proof. We have Φ(G) ⊂ φ(G), and π(Φ(G)) is dense in M , so that π
(

Φ(G)
)

= M.

(2.10) It is useful, still following Fathi, to define ”dual” concepts. We define the dual Lax-
Oleinik operator associated to a closed form η by the expression

T̆ηu(x) = max
q∈M

(

u(q)−Aη(0, x; 1, q)
)

, u ∈ C(M,R)

and we associate to this operator a mapping Φ̆ : P̆ −→ P̆ by the expression Φ̆(Gc,−u) = Gc,T̆c(−u) ∈

P̆. We have
Φ̆(Ğ) ⊂ φ−1(Ğ)

if Ğ ∈ P̆. We denote by V̆ the set of fixed points of Φ̆. Let Ğ = Gc,−u be a fixed point of Φ̆, and

let n < m be two relative integers. We say that a curve x(t) : [n,m] −→M is calibrated by Ğ if

u(x(m))−

∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt = T̆m−n
c u(x(n)).

(2.11) It is useful to collect a few remarks. We have

T̆cTcu 6 u

for all continuous functions u. Writing T̆n+1
c Tn+1

c u = T̆n
c T̆cTcT

n
c u, we observe that T̆n

c T
n
c u is a

non-increasing sequence of functions. Conversely, T n
c T̆

n
c u is non-decreasing for each continuous

function u.

3 Aubry-Mather sets

We use the overlapping pseudographs to recover various invariant sets introduced by Mather,
and to study their major properties. We also establish the equivalence between the different
definitions of the same sets given in the literature. Most of the section follows Fathi [15], with
some minor variations.

(3.1) Proposition There exists a function α : H1(M,R) −→ R such that, for each continuous
function u and each form η of cohomology c, the sequence T n

η u(x) + nα(c), n > 1 of continuous
functions is equi-bounded and equi-Lipschitz. The function c 7−→ α(c) is convex and super-linear.
More precisely, there exists a constant K(c), which does not depend on the continuous function u,
such that

minu−K(c) 6 T n
c u(x) + nα(c) 6 maxu+K(c).

for each n ∈ N and x ∈M .
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Proof. Let us fix a cohomology class c, and define the sequences

Mn(c) := max
x∈M

Tn
c (0)(x) and mn(c) := min

x∈M
Tn

c (0)(x),

where 0 is the zero function on M . Since the functions T n
c (0), n > 1, are equi-semi-concave, see

Appendix A, there exists a constant K such that

0 6 Mn(c)−mn(c) 6 K

for n > 1. We claim that Mn+m(c) 6 Mn(c) +Mm(c). This follows from the inequalities

Tm+n
c (0)(x) = Tm

c (Tn
c (0))(x) 6 Tm

c (Mn(c))(x) 6 Mn(c) + Tm
c (0)(x).

Hence by a classical result on subadditive sequences, we have limMn(c)/n = inf Mn(c)/n. We de-
note by −α(c) this limit. In the same way, the sequence −mn(c) is subadditive, hencemn(c)/n −→
supmn(c)/n. This limit is also−α(c) because 0 6 Mn(c)−mn(c) 6 K. Note thatm1(c) 6 −α(c) 6

M1(c), so that α(c) is indeed a finite number. We have, for all n > 1,

−K − nα(c) 6 mn(c) 6 −nα(c) 6 Mn(c) 6 K − nα(c).

Now far all u ∈ C(M,R), n ∈ N and x ∈M , we have

min
M

u−K 6 min
M

u+mn(c) + nα(c) 6 T n
c u(x) + nα(c) 6 max

M
u+Mn(c) + nα(c) 6 max

M
u+K,

and we obtain the first conclusion of the Proposition. The explicit definition of the value mn(c) is

mn(c) = min
γ∈C1([0,n],M)

∫ n

0

L(s, γ(s), γ̇(s))− cγ(s)(γ̇(s))ds.

As a consequence, the function c 7−→ mn(c) is concave, as a minimum of linear functions. Hence
each of the functions c 7−→ mn(c)/n is concave, so that the limit −α(c) is concave, and the function
α(c) is convex. Since α(c) > K−m1(c), it is enough to prove that −m1 is super-linear as a function
of c in order to prove that α is. For each homology class h ∈ H1(M,Z), let γh : [0, 1] −→M be a
closed curve representing this homology class. We have

−m1(c) > c(h)−

∫ 1

0

L(s, γh(s), γ̇h(s))ds.

This implies that −m1, hence α, is super-linear. Indeed, in order that a function f : Rn −→ R is
super-linear, it is enough that there exists, for each y ∈ Z

n, a value ay such that f(x) > y · x− ay

for each x.

(3.2) Proposition. Let us fix a closed form η and a continuous function u. Let us set

v := lim inf
n−→∞

(

Tn
η (u) + nα([η])

)

,

then v is a fixed point of Tη + α hence Gη,v is a fixed point of Φ.

Proof. The one-form η is fixed once and for all in this proof, we omit the subscript η, and
denote by α the number α([η]). Let us first prove that Tv + α 6 v. In order to do so, we fix
x ∈M and consider an increasing sequence nk of integers such that T nku(x) + nkα −→ v(x). Let
qk be a point such that T nku(x) = Tnk−1u(qk) + A(0, qk; 1, x) or equivalently, T nku(x) + nkα =
Tnk−1u(qk) + (nk − 1)α + α + A(0, qk; 1, x). We can suppose that the sequence qk has a limit q.
Taking the lim inf in the equality above gives

v(x) > v(q) +A(0, q, 1, x) + α > Tv(x) + α

where we have used the equi-continuity of the functions T nu, n ∈ N.
In order to prove that Tv+ α > v, just notice that T nu(x) 6 Tn−1u(q) +A(0, q; 1, x) for each

q and x, or equivalently that T nu(x) + nα 6 T n−1u(q) + (n− 1)α+A(0, q; 1, x) + α and take the
liminf.
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(3.3) Lemma Let us fix a closed form η of cohomology c. Let M ⊂ C(M,R) be a family of
fixed points of the Lax-Oleinik operator Tη + α(c). Assume that the infimum v(x) = infu∈M u(x)
is finite for one (and then each) x ∈M . Then the function v is a fixed point of Tη + α(c).

Proof. For all functions u ∈M and all points x and y in M , we have u(x) 6 u(y)+Aη(0, y; 1, x)+
α(c). It follows that v(x) 6 v(y) +Aη(0, y; 1, x) + α(c), so that

v(x) 6 inf
y

(

v(y) +Aη(0, y; 1, x)
)

+ α(c).

In order to prove the other inequality, let us fix ε > 0, take a function u ∈ M such that u(x) 6

v(x) + ε, and consider a point y ∈M such that u(x) = u(y) +Aη(0, y; 1, x) + α(c). We obtain

v(x) > u(x)− ε > u(y) +Aη(0, y; 1, x) + α(c) − ε > v(y) +Aη(0, y; 1, x) + α(c)− ε.

As a consequence, we have v(x) > Tηv(y)α(c) − ε, and, since this holds for all ε > 0, the desired
inequality follows.

(3.4) Fixed points of the Lax-Oleinik operator Tc + α(c) will be called weak KAM solutions,
following Fathi. We denote by V ⊂ P the set of fixed points of Φ, and Vc ⊂ Pc the set of fixed
points of Φ of cohomology c. Sometimes, we will also denote by VC the set of fixed points of Φ
whose cohomology belongs to the subset C ⊂ H1(M,R). The set Vc is non-empty for each c. If
G ∈ V, then it follows from (2.6) that

G ⊂ φ(G).

It is then natural to define the set
Ĩ(G) =

⋂

n∈N

φ−n(Ḡ),

which is a non-empty compact φ-invariant subset of T ∗M . We also define

I(G) = π(Ĩ(G)) ⊂M.

More generally, for each G ∈ P, we define the set

Ĩ(G) :=
⋂

n∈N

φ−n
(

Φn(G)
)

.

Since φ−n(Φn(G)), is a non-increasing sequence of compact sets, the set Ĩ(G) is compact and not
empty for each G ∈ P.

(3.5) For each G ∈ V, we define the set M̃(G) as the union of the supports of invariant measures
of φ|Ĩ(G). If G ∈ V and G′ ∈ V have the same cohomology c, then it is known that

M̃(G) ⊂ Ĩ(G′)

hence M̃(G) = M̃(G′). As a consequence, the set M̃, usually called the Mather set, depends only
on the cohomology c. It will be denoted by

M̃(c),

and as usual, we will denote by M(c) the projection π(M̃(c)). We also define the Aubry set in a
usual way by

Ã(c) =
⋂

G∈Vc

Ĩ(G)

and A(c) = π(Ã(c)). The Mañé set is defined by

Ñ (c) =
⋃

G∈Vc

Ĩ(G)
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and N (c) = π(Ñ (c)). A bigger set will be useful in some occasions, defined by

Ẽ(c) =
⋃

G∈Oc

Ĩ(G),

where Oc is as defined in (2.5). As an intersection of Lipschitz graphs, the Aubry set Ã(c) is a
Lipschitz graph over A(c). Note however that the Mañé set is not a Graph in general. The sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c) ⊂ Ẽ(c)

are compact and invariant under φ. The compactness of Ñ (c) and Ẽ(c) is mentioned here for
completeness, it will be proved later in this section, in (3.12) and (3.13) below. These Lemma also
prove that the Mañé set is indeed the set of orbits called c-minimizing by Mather and semi-static
by Mañé, and that the set Ẽ is the set of minimizing orbits, called G̃ in [3].

(3.6) It is possible to associate to each dual fixed point Ğ ∈ V̆ the invariant set

Ĩ(Ğ) =
⋂

n∈N

φn
(

Ğ
)

and its projection I(Ğ) on M . The following is due to Fathi, [17].

Proposition. Let us fix a cohomology c, and consider pseudographs G ∈ Vc and Ğ ∈ V̆c. The
set G∧̃Ğ is non-empty, compact and invariant by φ. In addition, this set intersects the Aubry set
Ã(c), and satisfies

G∧̃Ğ ⊂ Ĩ(G) ∩ Ĩ(Ğ)

so that
G ∧ Ğ ⊂ I(G) ∩ I(Ğ).

Furthermore, for each pseudograph G ∈ Vc, there exists a pseudograph Ğ ∈ V̆c such that

G ∧ Ğ = I(G) = I(Ğ).

In a symmetric way, for each pseudograph Ğ ∈ V̆c, there exists a pseudograph G ∈ Vc such that
this relation holds. As a consequence, we have

Ã(c) =
⋂

G∈Vc

Ĩ(G) =
⋂

Ğ∈V̆c

Ĩ(Ğ)

and
Ñ (c) =

⋃

G∈Vc

Ĩ(G) =
⋃

Ğ∈V̆c

Ĩ(Ğ).

Proof. We have already proved that the set G∧̃Ğ is compact and not empty, see (2.3). Let us
prove that it is invariant. In order to do so, we consider a weak KAM solution u and a dual weak
KAM solution ŭ such that G = Gc,u and Ğ = Gc,ŭ. Let (x(t), p(t)) : R −→ T ∗M be an orbit of the

Hamiltonian flow, such that (x(0), p(0)) ∈ G∧̃Ğ. Clearly, both u and ŭ are differentiable at x(0),
and p(0) = cx(0) + dux(0). For each m 6 n in N, we have

u(x(n)) = min
x∈M

u(x)−Ac(m,x, n, x(n)) + (n−m)α(c)

6 u(x(m)) +Ac(m,x(m), n, x(n)) + (n−m)α(c).

On the other hand, we have (x(0), p(0)) ∈ Ğ hence, in view of (2.7),

ŭ(x(n)) = ŭ(x(m)) +Ac(m,x(m), n, x(n)) + (n−m)α(c).
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As a consequence, the sequence n 7−→ (u− ŭ)(x(n)) is non-increasing on N. Since its initial value
(u − ŭ)(x(0)) has been chosen to be a minimum of the function u − ŭ, the sequence must be
constant, so that x(n) is a point of G ∧ Ğ for each n > 0. A symmetric argument shows that
this is also true for n 6 0. In addition, we obtain that the inequality u(x(n)) 6 u(x(m)) +
Ac(m,x(m), n, x(n))+ (n−m)α(c) is in fact an equality for 0 6 m 6 n. Since this formula is true
in view of (2.7) for m 6 n 6 0 in Z, we obtain that, for all m 6 n in Z,

u(x(n)) = u(x(m)) +Ac(m,x(m), n, x(n)) + (n−m)α(c).

In other words, the curve x(t) is calibrated by G and by Ğ, see (2.8). This implies that (x(n), p(n)) ∈
G ∩ Ğ for each n ∈ Z, and, since x(n) ∈ G ∧ Ğ, we get (x(n), p(n)) ∈ G∧̃Ğ. This proves that G∧̃Ğ
is invariant by φ and contained in I(G) and in I(Ğ).

Every compact invariant set of Ĩ(G) carries an invariant measure. As a consequence, every
compact invariant set of Ĩ(G) intersects the Mather set M̃(c), see (3.5). Since M̃(c) ⊂ Ã(c),
the set G∧̃Ğ, which is a compact and invariant subset of Ĩ(G), intersects Ã(c). Let us now

fix the Pseudograph Gc,u ∈ Vc, and prove the existence of a pseudograph Ğ ∈ V̆c such that

G ∧ Ğ = I(G) = I(Ğ). In order to do so, we set

ŭ := lim
n−→∞

T̆n
c u− nα(c) = lim

n−→∞
T̆n

c T
n
c u.

It follows from (2.11) and (3.1) that the limit exists and that ŭ 6 u. Let (x(t), p(t)) : R −→ T ∗M
be a Hamiltonian orbit satisfying (x(0), p(0)) ∈ Ĩ(G). The orbit x(t) is then calibrated by G, see
(2.8), so that the relation

u(x(n)) − u(x(m)) = Ac(m,x(m);n, x(n)) + (n−m)α(c)

holds for all m 6 n in Z. It is clear from this relation that, for each n ∈ N,

T̆n
c u(x(0)) > u(x(n)) −Ac(0, x(0);n, x(n)) = u(x(0)) + nα(c),

So that T̆n
c u(x(0)) − nα(c) = u(x(0)), hence ŭ = u on I(G). As a consequence, the set of points

minimizing u− ŭ contains I(G). Since we have already proved that this set is contained in I(G),
we can conclude, as desired, that

Gc,u ∧ Gc,ŭ = I(G).

Setting u′ = lim Tn
c ŭ+ nα(c) = limT n

c T̆
n
c ŭ, the same proof gives that

Gc,u′ ∧ Gc,ŭ = I(Gc,ŭ).

We claim that u′ = u, so that we have proved

Gc,u ∧ Gc,ŭ = I(Gc,u) = I(Gc,ŭ).

In order to prove that u′ = u, we first recall that ŭ 6 u, so that T n
c ŭ+ nα(c) 6 T n

c u+ nα(c) = u,
and u′ 6 u. On the other hand, for each ε > 0, there exists N ∈ N such that T̆N

c u−Nα(c) 6 ŭ+ε,
hence

u′ > lim
n−→∞

Tn
c T̆

N
c u+ (n−N)α(c)− ε > lim

n−→∞
Tn−N

c u+ (n−N)α(c)− ε = u− ε.

We have proved that u′ = u.

The pairs (u, ŭ) of fixed points of Tc + α(c) and T̆c − α(c) which satisfy

ŭ = lim T̆n
c u− nα(c) ; u = limT n

c ŭ+ nα(c)

are conjugate in the sense of Fathi.
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(3.7) Proposition. The restriction to V of the function c : P −→ H1(M,R) is continuous
and proper.

Proof. Let us consider a compact subset C ofH1(M,R). The Family of HamiltoniansH(t, x, cx+
p), c ∈ C, is a uniform family of Hamiltonians, see Appendix B. As a consequence, the associated
functions Ac(0, .; 1, .), c ∈ C form an equi-semi-concave family of functions on M ×M . As a con-
sequence, the functions Ac(0, x; 1, .), c ∈ C, x ∈ M form an equi-semi-concave family of functions
on M , see Appendix A. It follows that the functions u(x) + Ac(0, x; 1, .), c ∈ C, x ∈ M also form
an equi-semi-concave family, hence that the functions minx u(x) + Ac(0, x; 1, .), c ∈ C form an
equi-semi-concave family. As a consequence, the set Φ(PC) is relatively compact. Since the set
VC is obviously closed, and contained in Φ(PC), it is compact.
We have proved the following Lemma, which is interesting in itself:

Lemma. If C is a compact subset of H1(M,R), the set Φ(PC) is equi-semi-concave.

(3.8) Following Mather, we will use the function

hc(x, y) := lim inf
n−→∞

An
c (x, y) + nα(c).

In view of (3.2), the function hc(x, .) is a fixed point of Tc +α(c). Similarly, the function −hc(., y)
is a fixed point of T̆c − α(c). Let us recall here some basic properties of the function hc.

• For each x, y, z ∈M and c ∈ H1(M,R), we have the triangle inequality hc(x, y) +hc(y, z) >

hc(x, z).

• For each x, y ∈M and c ∈ H1(M,R), we have hc(x, y) + hc(y, x) > hc(x, x) > 0,

• For each compact set C ⊂ H1(M,R), the set of functions hc : M ×M −→ R, c ∈ C, is
equi-semi-concave.

(3.9) Proposition. If the pseudograph Gc,u is a fixed point of Φ, then we have

u(y)− u(x) 6 hc(x, y)

for each x and y. In addition,

u(x) = min
y∈M

u(y) + hc(y, x) = min
a∈A(c)

u(a) + hc(a, x).

Proof. We have, for each n, u = T n
c u+ nα(c). As a consequence, for each n,

u(x) = min
y∈M

(

u(y) +Ac(0, y;n, x) + nα(c)
)

.

We obtain the inequality u(x) 6 u(y) + Ac(0, y;n, x) + nα(c) and, by taking the liminf, u(x) 6

u(y) + hc(y, x). In order to obtain the first equality, we consider a point yn ∈M such that

u(x) = u(yn) +Ac(0, yn;n, x) + nα(c).

We consider an increasing sequence nk of integers such that the subsequence ynk
has a limit y,

and refine this subsequence in such a way that the subsequence Ac(0, y, nk, x) has a limit l. We
have

u(x) = u(y) + l > u(y) + hc(y, x).

Cumulated with the previously shown inequality, this proves the first equality in the statement.
In order to prove the second equality, notice that the set of points y which minimize the function
u(.) + hc(., x) is precisely the set G ∧ Gc,−hc(.,x), and that Gc,−hc(.,x) ∈ V̆c. By (3.6), the set
G ∧ Gc,−hc(.,x) intersects A(c).
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(3.10) Corollary. For each x and y in M and c ∈ H1(M,R), we have

hc(x, y) = min
z∈M

hc(x, z) + hc(z, y) = min
a∈A(c)

hc(x, a) + hc(a, y).

The following result connects our definition of the Aubry set to the one of Mather.

(3.11) Proposition. The Aubry set A(c) is the set of points x such that hc(x, x) = 0.

Proof. Let us consider a Hamiltonian trajectory (x(t), p(t)) : R −→ T ∗M such that (x(0), p(0)) ∈
Ã(c). This trajectory is calibrated by each fixed point of Tc +α(c), so in particular by hc(x(0), .).
Consequently, we have

hc(x(0), x(n)) − hc(x(0), x(0)) = Ac(0, x(0);n, x(n)) + nα(c).

Taking a subsequence such that x(n) has a limit x, and then a subsequence such that Ac(0, x(0);n, x)+
nα(c) is converging to a limit l > hc(x(0), x), we get, at the limit,

hc(x(0), x) − hc(x(0), x(0)) > hc(x(0), x)

thus hc(x(0), x(0)) 6 0 and then hc(x(0), x(0)) = 0. We have proved that the function hc(x, x)
vanishes on A(c).

Conversely, let us assume that hc(x, x) = 0. Then there exists an increasing sequence nk of
integers and a sequence of trajectories (xk(t), pk(t)) : [0, nk] −→ T ∗M such that x(0) = x(nk) = x
and

∫ nk

0

L(t, xk(t), ẋk(t))− cxk(t)(ẋk(t)) + α(c) dt = Ac(0, x;nk, x) + nkα(c) −→ 0.

Let yk : [−nk, nk] −→ M be the curve such that yk(t) = xk(t + nk) for −nk 6 t 6 0 and
yk(t) = xk(t) for t > 0. The sequence yk is C2-bounded hence, by taking a subsequence, we
can suppose that yk is converging with its derivative, uniformly on compact sets, to a limit
y(t) : R −→ M . We claim that this limit y is calibrated by each fixed points of Tc + α(c). Let u
be a such a fixed point. We have, for each n ∈ N and k large enough,

0 > u(yk(n))− u(yk(−n))−Ac(−n, yk(−n);n, yk(n)) − 2nα(c)

= u(yk(nk))− u(yk(−nk))−Ac(−nk, yk(−nk);nk, yk(n))− 2nkα(c)

−
(

u(yk(nk))− u(yk(n))−Ac(n, yk(n);nk, yk(n))− (nk − n)α(c)
)

−
(

u(yk(−n))− u(yk(−nk))−Ac(−nk, yk(−nk);−n, yk(−n))− (nk − n)α(c)
)

> u(yk(nk))− u(yk(−nk))−Ac(−nk, yk(−nk);nk, yk(n))− 2nkα(c)

= −Ac(−nk, x;nk, x)− 2nkα(c) = −2Ac(0, x;nk, x)− 2nkα(c).

For fixed n, we now take the limit k −→∞, and get that

u(y(n))− u(y(−n)) = Ac(−n, y(−n);n, y(n)) + 2nα(c).

Consequently, the curve y(t) is calibrated by u. Since this holds for each weak KAM solution u,
we have x = y(0) ∈ A(c).

The following well-known result connects our definition of the Mañé set with the usual one,
and implies its compactness.
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(3.12) Lemma The following properties are equivalent for a continuous curve P (t) = (x(t), p(t)) :
R −→ T ∗M .

(i) The curve P (t) is a Hamiltonian trajectory and P (Z) ⊂ Ñ (c).

(ii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)) and there exists Gc,u ∈ Vc such that, for
each m > n in Z, we have

u(x(m))− u(x(n)) =

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt+ (m− n)α(c).

(iii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)) and for each m > n in Z, we have

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt+ (m− n)α(c) = min
l∈N,l>0

Ac(0, x(n); l, x(m)) + lα(c).

Proof. We shall prove that (iii)⇒ (ii). The other implications are left to the reader. Let P (t)
be a curve satisfying (iii). let nk be an increasing sequence of integers such that x(−nk) has a
limit α. Then we have, for m > n,

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt+ (m− n)α(c)

=

∫ m

−nk

L(t, x(t), ẋ(t))− cx(t)(ẋ(t)) + α(c)dt−

∫ n

−nk

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t)) + α(c) dt

= Ac(−nk, x(−nk);m,x(m)) + (m+ nk)α(c) −Ac(−nk, x(−nk);n, x(n)) + (n+ nk)α(c).

By (iii), we have

Ac(−nk, x(−nk);m,x(m)) + (m+ nk)α(c) = min
l∈N,l>0

Ac(0, x(−nk); l, x(m)) + lα(c)

6 hc(x(−nk), x(m))

which implies that

Ac(−nk, x(−nk);m,x(m)) + (m+ nk)α(c) −→ hc(α, x(m))

as k −→∞. Similarly,

Ac(−nk, x(−nk);n, x(n)) + (n+ nk)α(c) −→ hc(α, x(n)),

so that

hc(α, x(m)) − hc(α, x(n)) =

∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt + (m− n)α(c).

We have proved (ii) with u = hc(α, .).

We now give equivalent definitions for the set Ẽ . The following Lemma shows that the set Ẽ is the
set called G̃ in [3], and implies its compactness.
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(3.13) Lemma The following properties are equivalent for a continuous curve P (t) = (x(t), p(t)) :
R −→ T ∗M .

(i) The curve P (t) is a Hamiltonian trajectory and P (Z) ⊂ Ẽ(c) .

(ii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and there exists a sequence un of functions
such that, for each m > n, we have Tm−n

c un = um and

um(x(m)) − un(x(n)) =

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt.

(iii) The curve P (t) satisfies p(t) = ∂vL(t, x(t), ẋ(t)), and for each m > n, we have

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt = Ac(n, x(n);m,x(m))

Proof. (ii) ⇒ (i). Then for each pair m > n of integers, the curve x(t) : [n,m] −→ M is
minimizing the action between its endpoints. Hence the curve P (t) is a Hamiltonian trajectory.
It follows from (2.7) that, for each n > 0, we have P (n) ∈ Gc,un

and since P (n) = φn(P (0)), we
have

P (0) ∈ φ−n(Φn(Gc,u0)).

This inclusion holds for all n, so that P (0) ∈ Ĩ(Gc,u0). Now (i) follows from the fact Gc,u0 ∈ O

and that Ĩ(Gc,u0) is invariant under φ.

(i) ⇒ (ii). There exists a pseudograph Gc,u0 ∈ O such that P (0) ∈ Ĩ(Gc,u0). There exists a
sequence un, n ∈ Z of functions on M such that Tm−n

c un = um for m > n. For each m > 0, since
P (m) ∈ Gc,um

, we have

um(x(m)) − u0(x(0)) =

∫ m

0

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt.

On the other hand, for each n 6 0, we can find by minimization a curve yn(t) : [n, 0] −→M such
that yn(0) = x(0) and

u0(yn(0))− un(yn(n)) =

∫ 0

n

L(t, yn(t), ẏn(t))− cyn(t)(ẏn(t))dt.

There exists a subsequence nk such that the curves ynk
(t) converge, uniformly on compact sets,

to a limit y(t) : (−∞, 0] −→M . By (1.3), this curve satisfies, for all n 6 0,

u0(y(0))− un(y(n)) =

∫ 0

n

L(t, y(t), ẏ(t))− cy(t)(ẏ(t))dt.

Hence, for n 6 0 6 m, we have

um(x(m)) − un(y(n)) =

∫ 0

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt+

∫ m

0

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt.

As a consequence, the curve obtained by gluing y on R− and x on R+ is the projection of a
Hamiltonian trajectory, which, by Cauchy-Lipschitz uniqueness, has to be P (t). In other words,
we have proved that x(t) = y(t) on R−. The relation of calibration is now established.

(iii)⇒ (ii). Let P (t) be a curve satisfying (iii). Then we have, for m > n > k,

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt+ (m− n)α(c)

= Ac(k, x(k);m,x(m)) + (m− k)α(c)−Ac(k, x(k);n, x(n)) + (n− k)α(c).
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Let us denote by un
k the function

un
k(x) = Ac(k, x(k);n, x) + (n− k)α(c),

we obviously have Tm−n
c un

k + (m − n)α(c) = um
k for m > n > k. By diagonal extraction, we find

an increasing sequence of integers nk such that un
−nk

has a limit un for each n as k −→ ∞. We
then have Tm−n

c un + (m− n)α(c) = um for each m > n, so that Gc,un
∈ O. In addition, we have

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt+ (m− n)α(c) = um(x(m)) − un(x(n)).

(ii)⇒ (iii) is clear.

(3.14) Lemma For each P ∈ Ẽ(c), the orbit φn(P ) is α-asymptotic and ω-asymptotic to the
Aubry set Ã(c). As a consequence, the Mather set M̃(c) is the closure of the union of the supports
of the invariant measures of the action of φ on Ẽ(c)

Proof. Let P (t) = (x(t), p(t)) be the Hamiltonian orbit of P . Let un, n ∈ Z be a sequence of
continuous functions such that, for m > n, we have um = Tm−n

c un + (m− n)α(c) and

um(x(m)) − un(x(n)) =

∫ m

n

L(t, x(t), ẋ(t))− cx(t)(ẋ(t))dt+ (m− n)α(c).

The sequence um,m ∈ Z is equi-semi-concave, hence equi-Lipschitz. Together with (3.1), this
implies that this sequence is equi-bounded. If v is a weak KAM solution, that is a fixed point of
Tc − α(c), we have, for m > n,

v(x(m)) − v(x(n)) 6

∫ m

n

L(t, x(t), ẋ(t)) − cx(t)(ẋ(t))dt+ (m− n)α(c)

It follows that the sequence n 7−→ un(x(n)) − v(x(n)) is non-decreasing and bounded, so that
it has a limit l as n −→ −∞. Let us now consider an increasing sequence nk of integers such
that the sequence P (t − nk) converges, uniformly on compact sets, to a limit Z(t) = (y(t), z(t))
which is a Hamiltonian trajectory. Extracting a subsequence in nk, we can suppose that there
exists a sequence wn of continuous functions on M such that un−nk

−→ wn uniformly, for each
n, as k −→ ∞. Then, the sequence wn satisfies Tm−n

c wn = wm for m > n. In addition, we have
wn(y(n))− v(y(n)) = l and, for m > n,

wm(y(m))− wn(y(n)) =

∫ m

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt + (m− n)α(c).

It follows that, for m > n,

v(x(m)) − v(x(n)) =

∫ m

n

L(t, y(t), ẏ(t)) − cy(t)(ẏ(t))dt + (m− n)α(c)

which implies that Z(Z) ∈ Ĩ(Gc,v). Since this holds for all weak KAM solutions v, we obtain that

Z(Z) ∈ Ã(c). We have proved that the trajectory P (t) is α-asymptotic to Ã(c). Similarly, one
can prove that it is also ω-asymptotic to Ã(c). This implies that the invariant measures of the
action of φ on Ẽ(c) are supported on Ã(c).

4 Static classes and heteroclinics

In this section, we see that there is a natural partition of the Aubry set in compact invariant
subsets, which we call static classes, following the terminology of Mañé. This partition was first
considered by Mather in [24]. We also discuss the existence of heteroclinic orbits between these
static classes, extending to the non-autonomous case results of Fathi, Contreras and Paternain, see
[18] and [11]. This survey is also an occasion to introduce several technical lemmas and notations
to be used later.
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(4.1) Lemma. Let x and y be two points in M . The following properties are equivalent:

(i) The points x and y are in A(c) and the function z 7−→ hc(x, z) − hc(y, z) is constant on
A(c).

(ii) hc(x, y) + hc(y, x) = 0.

(iii) The points x and y are in A(c) and, for each pair (G, Ğ) ∈ Vc × V̆c, either the set G ∧ Ğ
contains x and y or it contains neither x nor y.

If x and y satisfy these properties, we have, for each z ∈M , hc(x, z) = hc(x, y) + hc(y, z).

Proof. i ⇒ ii. Assuming i, we evaluate the constant function at x and y and get hc(x, x) −
hc(y, x) = hc(x, y)− hc(y, y), hence hc(x, y) + hc(y, x) = 0.

ii⇒ iii. We have hc(x, x) 6 hc(x, y) + hc(y, x) = 0 hence x ∈ A(c). Similarly, y ∈ A(c). Let

us consider G = Gc,u ∈ Vc and Ğ = Gc,ŭ ∈ V̆c such that x ∈ G ∧ Ğ (such a pair exists because

x ∈ A(c)). We have to prove that y ∈ G ∧ Ğ. We have the inequalities u(y) 6 u(x) + hc(x, y) and
ŭ(y) > ŭ(x)− hc(y, x). We obtain the inequality

(u− ŭ)(y) 6 (u− ŭ)(x) + hc(x, y) + hc(y, x).

As a consequence, if hc(x, y) + hc(y, x) = 0, then y is also a point of minimum of u− ŭ, which is
the desired result.

iii⇒ ii. The point x is a point of minimum of the function hc(x, .)+hc(., x). As a consequence,
the point y is also a point of minimum for this function, so that hc(x, y) + hc(y, x) = hc(x, x) +
hc(x, x) = 0.

ii⇒ i. We have the inequalities

hc(x, z) 6 hc(x, y) + hc(y, z) and hc(y, z) 6 hc(y, x) + hc(x, z).

If hc(x, y)+hc(y, x) = 0, then these inequalities sum to an equality, hence they are both equalities.

(4.2) The equivalent properties of the Lemma define an equivalence relation on A(c). We call
static classes the classes of equivalence for this relation. In other words, we say that the points
x and y of A(c) belong to the same static class if they satisfy (i), (ii) or (iii) of the lemma. We
usually denote by S a static class, and by S(x) the static class containing x. If S is a static class,
we denote by S̃ the set of points of Ã(c) whose projection on M belong to S. We will also call
static classes the sets of the form S̃ . The static classes S are compact and partition A(c), the static
classes S̃ are compact, invariant, and they partition Ã(c). The invariance is a direct consequence
of the caracterisation (iii) of the equivalence relation. To each point x of the Aubry set A(c), we
associate the weak KAM solution hc(x, .), and we denote by Ec,x the associated element of Vc.
The pseudographs of this form are called elementary solutions of Vc. Two points of a same static
class give rise to the same elementary solution, we will denote by Ec,S the elementary solution
induced by points of S. There is a one to one correspondence between the set of static classes
and the set of elementary solutions. We will denote by Ec ⊂ Vc this set. We endow it with the
induced metric, it is clearly a compact set for this metric. We also denote by Ĕc,S the fixed point

of Φ̆ associated to the dual weak KAM solution −h(., x) for x ∈ S.

(4.3) Proposition. Let G ∈ Vc be a fixed point, and let P be a point of Ḡ. The α-limit of
the orbit φn(P ) is contained in one static class S̃ ⊂ Ã(c). We also have P ∈ Ēc,S . In a similar

way, if P ∈ Ğ ∈ V̆c, then the ω-limit of the orbit of P is contained in one static class of Ã(c).

Proof. Let α ⊂ M be the projection of the α-limit of the orbit of P ∈ Gc,u. Note that this

α-limit is contained in Ĩ(G), so that it is a Lipschitz graph above α. We claim that, for each weak
KAM solution or backward weak KAM solution v, the function u − v is constant on α. Clearly,
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this implies that α is contained in a static class. In order to prove the claim, we consider the
projection x(t) on M of the orbit of P . The curve x(t) is calibrated by u on (−∞, 0], hence the
equality

u(x(−m))− u(x(−n)) = Ac(−n, x(−n),−m,x(−m))

holds for all n,m ∈ N such that m 6 n. On the other hand, if v is a weak KAM solution or a
backward weak KAM solution, we have the inequality

v(x(−m)) − v(x(−n)) 6 Ac(−n, x(−n),−m,x(−m))

for all n,m ∈ N such that m 6 n. We deduce that the sequence (u − v)(x(−n)) : N −→ R is
non-increasing. Now let y = limk→∞ x(−nk) and z = limk→∞ x(−mk) be two points of α. We
can suppose that nk 6 mk 6 nk+1 by extracting subsequences. We obtain (u − v)(x(−nk)) >

(u − v)(x(−mk)) > (u − v)(x(−nk+1)), and at the limit (u − v)(y) > (u − v)(z) > (u − v)(y).
Hence the function u− v is constant on α. This proves the first statement of the proposition.

Taking v = hc(α, .), we obtain that the sequence u(x(−n)) − hc(α, x(−n)) : N −→ R is non-
increasing. On the other hand, we have u(x(0))− hc(α, x(0)) 6 u(α). It follows that the sequence
is in fact constant, so that the curve x(t) is calibrated by Ec,S(α) on (−∞, 0], and, by (2.8),
((x(0), p(0)) ∈ Ēc,S(α).

Corollary. Let P ∈ Ñ (c) be a point whose α-limit is contained in S̃ and whose ω-limit is
contained in S̃ ′. We have

P ∈ Ec,S∧̃Ĕc,S′ .

Proof. Let (x(t), p(t)) be the orbit of P . Let α be an α-limit point of the curve x(t), and let
ω be an ω-limit point. It follows from the proposition that (x(m), p(m)) ∈ Ēc,S for each m ∈ Z.
Applying the discussions in the proof of the proposition with the point P = (x(m), p(m)) and the
functions u = hc(α, .) and v = −hc(., ω), we get that the sequence hc(α, x(n)) + hc(x(n), ω) is
non-decreasing on n 6 m. Since we can take any m ∈ Z, this sequence is non-decreasing on Z.
Taking a sequence mk −→∞ such that x(mk) −→ ω we obtain the inequality

hc(α, ω) 6 hc(α, x(n)) + hc(x(n), ω) 6 lim
k

(hc(α, x(mk)) + hc(x(mk), ω)) = hc(α, ω).

It follows that, for each n,

hc(α, x(n)) + hc(x(n), ω) = hc(α, ω) = min
M

hc(α, .) + hc(., ω).

This is precisely saying that
x(n) ∈ Ec,S(α) ∧ Ĕc,S(ω).

Recalling that (x(n), p(n)) ∈ Ēc,S , we obtain (x(n), p(n)) ∈ Ec,S(α)∧̃Ĕc,S(ω).

(4.4) Lemma. If the static class S is isolated in A(c), then there exists a neighborhood V of
S in M such that the α-limit of every point P ∈ Ec,S satisfying π(P ) ∈ V is contained in S.

Proof. If the result did not hold true, we could find a sequence (xn, pn) ∈ Ec,S that has a limit

(x, p) ∈ S̃ and a sequence αn of α-limit points of (xn, pn) that has a limit α in Ã(c)−S̃ . Note that
the orbit (xn(t), pn(t)) : (−∞, 0] −→ T ∗M of (xn, pn) is contained in Ec,S . Hence it is calibrated
by the function hc(x, .), that is

hc(x, xn(0)) = hc(x, xn(−k)) +Ac(−k, xn(−k); 0, xn(0)) + kα(c)

for all k ∈ N. At the liminf k −→ ∞, for fixed n, we obtain the inequality hc(x, xn) >

hc(x, αn)+hc(αn, xn) hence the equality hc(x, xn) = hc(x, αn)+hc(αn, xn). At the limit n −→∞
we get 0 = hc(x, x) = hc(x, α) + hc(α, x). This is in contradiction with the fact that α and x do
not belong to the same static class.
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(4.5) Let S̃ and S̃ ′ be two different static classes in Ã(c). The set Ec,S∧̃Ĕc,S′ contains S̃ and

S̃ ′ as well as other orbits of Ñ (c). The following result is similar to Theorem A of [11].

Proposition. The set Ec,S ∧ Ĕc,S′ − (S ∪ S ′) is not empty and contains points in every
neighborhood of S, as well as in every neighborhood of S ′. More precisely, if S and S ′ are two,
possibly equal, static classes, and if K̃ ⊂ S̃ and K̃′ ⊂ S̃ ′ are two disjoint compact invariant sets,
then the set Ec,S ∧ Ĕc,S′ − (K∪K′) contains points in every neighborhood of K, as well as in every
neighborhood of K′.

Proof. Let V be an open neighborhood of K in M which does not intersect S ′. Let us fix a
recurrent orbit (y(t), z(t)) : R −→ T ∗M such that (y(0), z(0)) = (y, z) ∈ K̃ and a recurrent orbit
(y′(t), z′(t)) : R −→ T ∗M such that (y′(0), z′(0)) = (y′, z′) ∈ K̃′. Consider a sequence nk ∈ N

of integers and a sequence (xk(t), pk(t)) : [0, nk] −→ T ∗M of Hamiltonian trajectories such that
xk(0) = y and xk(nk) = y′ and

∫ nk

0

L(t, xk(t), ẋk(t)) − cxk(t)(ẋk(t)) + α(c) dt = Ac(0, y;nk, y
′) + nkα(c) −→ hc(y, y

′).

We extend the curve xk : [0, nk] −→ M to a curve xk : R −→ R by setting xk(t) = y(t) for t 6 0
and xk(t) = y′(t − nk) for t > nk. Let ak and bk be two increasing sequences of integers such
that y(−ak) −→ y and y′(bk) −→ y′. The existence of such sequences follows from the fact that
the curves y(t) and y′(t) are recurrent. Since the curve y(t) is calibrated by hc(y, .), we have, as
k −→∞,

Ac(−ak, y(−ak); 0, y) + akα(c) = −hc(y, y(−ak)) −→ 0

and similarly
Ac(0, y

′; bk, yk(bk)) + bkα(c) = hc(y
′, y(bk)) −→ 0.

As a consequence, we have, as k −→∞,

Ac(−ak, xk(−ak); bk + nk, xk(bk + nk)) + (bk + ak + nk)α(c) −→ hc(y, y
′).

For each k, let Tk be the maximum of all times i ∈ N such that xk(i) ∈ V . Note that xk(Tk+1) does
not belong to V . We can assume, taking a subsequence, that the curve xk(t+ Tk) is converging,
uniformly on compact sets to a limit x(t) : R −→ M . Let us now fix m 6 n in Z. Summing the
inequalities

lim inf
k−→∞

(

Ac(−ak, xk(−ak);Tk +m,xk(Tk +m)) + (Tk +m+ ak)α(c)
)

> hc(y, x(m)),

lim inf
k−→∞

(

Ac(Tk +m,xk(Tk +m);Tk + n, xk(Tk + n))
)

= Ac(m,x(m);n, x(n))

and

lim inf
k−→∞

(

Ac(Tk + n, xk(Tk + n); bk + nk, xk(bk + nk))) + (bk + nk − Tk − n)α(c)
)

> hc(x(n), y′),

we get

h(y, y′) = lim inf
k−→∞

Ac(−ak, xk(−ak); bk + nk, xk(bk + nk)) + (bk + ak + nk)α(c)

> hc(y, x(m)) +Ac(m,x(m);n, x(n)) + (n−m)α(c) + hc(x(n), y′).

Since the converse inequality obviously holds, we obtain the equality

hc(y, y
′) = hc(y, x(m)) +Ac(m,x(m);n, x(n)) + (m− n)α(c) + hc(x(n), y′),

for all m 6 n. It follows that all the inequalities above are in fact equalities, so that we also have

hc(y, x(m)) +Ac(m,x(m);n, x(n)) + (m− n)α(c) = hc(y, x(n))
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so that the orbit x(t) is calibrated by the weak KAM solution hc(y, .) on R. Hence it is the
projection of a Hamiltonian trajectory (x(t), p(t)). Moreover, we have the equality

hc(y, y
′) = hc(y, x(n)) + hc(x(n), y′),

so that the point x(n) is a point of minimum of the function hc(y, .) + hc(., y
′). Hence it belongs

to Ec,S ∧ Ĕc,S′ . We have proved that the sequence (x(n), p(n)), n ∈ Z is an orbit of φ which is

contained in the invariant graph Ec,S∧̃Ĕc,S′ . Since the point x(1) is not a point of K, this orbit

does not intersect the invariant set K̃. As a consequence, the point x(0) belongs to V̄ − K. We
have proved that the set Ec,S ∧ Ĕc,S′ − (K ∪K′) contains points in each neighborhood of K. One
can prove in a similar way that this set contains points in every neighborhood of K′.

(4.6) Corollary. A static class S̃ cannot be decomposed as the union of two disjoint
invariant compact subsets.

Proof. Assume, by contradiction, that there exists a static class S̃ = K̃1∪K̃2, with K̃i invariant,
compact and disjoint. In view of (4.5), the set

Ec,S ∧ Ĕc,S − (K1 ∪ K2)

is not empty. This is a contradiction since Ec,S ∧ Ĕc,S = S and K1 ∪ K2 = S.

(4.7) Let (x(t), p(t)) : R −→ T ∗M be an orbit of the Mañé set, that is an orbit satisfying
(x(0), p(0)) ∈ Ñ (c). This orbit is α-asymptotic to a static class S̃ , and ω-asymptotic to a static
class S̃ ′.

Lemma. The inclusion (x(0), p(0)) ∈ Ã(c) holds if and only if S = S ′. In this case, we have
(x(0), p(0)) ∈ S̃

Proof. Let us first assume that S = S ′. In this case, we see from Corollary (4.3) that
(x(0), p(0)) ∈ Ec,S∧̃Ĕc,S . But is is clear from the definition of static classes that Ec,S∧̃Ĕc,S = S̃ .

Consequently, we have (x(0), p(0)) ∈ S̃ ⊂ Ã(c). Conversely, assume that (x(0), p(0)) ∈ Ã(c).
Then this point is contained in one static class S̃0. Since this static class is compact and invariant,
it contains the α and the ω-limits of the orbit (x(t), p(t)), so that we have S̃ = S̃0 = S̃ ′.

Corollary We have the equality Ã(c) = Ñ (c) if and only if there is exactly one static class in
Ã(c).

(4.8) Let H̃c(S̃ , S̃
′) be the set of orbits of Ñ (c) which are heteroclinic orbits between the static

classes S̃ and S̃ ′, we denote by Hc(S,S ′) its projection on M . We have

Ñ (c) = Ã(c) ∪
⋃

S,S′

H̃c(S,S
′),

where the union is taken on all pairs (S,S ′) of different static classes. Recall, from Corollary (4.3),
that

H̃c(S̃ , S̃
′) ⊂ Ec,S∧̃Ĕc,S′ .

The following result is from [18] and [11].

(4.9) proposition. If the static class S̃ is properly contained and isolated in Ã(c), then there
exists an orbit of φ in Ñ (c) − Ã(c) which is α-asymptotic to S̃. This orbit is then ω-asymptotic
to another static class S̃ ′.

Proof. Let us chose, according to (4.4), a neighborhood V of S such that every orbit of Ec,S
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starting above V has its α-limit contained in S. Now let us choose any static class S ′′ different
from S. In view of (4.5), the set Ec,S∧Ĕc,S′′ intersects V −S. Let P (t) = (x(t), p(t)) : R −→ T ∗M

be an orbit such that P (0) ∈ Ec,S∧̃Ĕc,S′′ and x(0) ∈ V − S. The α-limit of the orbit P (t) is con-

tained in S̃ . On the other hand, this orbits belongs to Ñ (c), hence its ω-limit is contained in some
static class S̃ ′.

(4.10) We have treated so far the case where there exist several static classes. We recall,
however that the existence of a single static class in A(c), is, for c fixed, a generic property of the
Lagrangian, see [11]. We will explain in section 7 a device due to Fathi, as well as Contreras and
Paternain, see [18] and [11], which allows to treat this case.

Abstract mechanisms

5 The relation and its dynamical consequences

We define the forcing relation a`, and describe its dynamical consequences. We prove Propo-
sition (0.10).

(5.1) Let us introduce some useful notations. Given two subsets G and G ′ of T ∗M , we define
the relation G `N G′ as follows:

G `N G
′ ⇐⇒ Ḡ′ ⊂

N
⋃

n=1

φn(G),

where as usual Ḡ is the closure of G. We say that G forces G ′, and write G ` G′ if there exists an
integer N such that G `N G′. If G is a subset of T ∗M and if c ∈ H1(M,R), the relations

G ` c and G `N c

mean that there exists an overlapping pseudograph G ′ of cohomology c and such that G ` G ′ (resp.
G `N G

′). To finish, for c and c′ two cohomology classes, the relation

c `N c′

means that, for each pseudograph G ∈ Pc, we have G `N c′. As the reader may have guessed, we
will then say that c forces c′ (c ` c′) if there exists an integer N such that c `N c′. The relation
` (between subsets as well as between cohomology classes) is obviously transitive. We will be
concerned in this paper with understanding the relation ` between cohomology classes. For this
purpose, it is useful to introduce the symmetric relation

ca`c′ ⇐⇒ c ` c′ and c′ ` c.

We say that c and c′ force each other if ca`c′.

Proposition The forcing relation a` is an equivalence relation on H1(M,R).
Note that we have c `1 c for each c since Φ(G) ⊂ φ(G) for each G ∈ Pc, which can be written
G `1 Φ(G).

(5.2) Let us present a simple (negative) result about this relation. If G is a the graph of a

continuous section of T ∗M , and is invariant under φ, then G ∈ V ∩ V̆ is in fact a Lipschitz graph,
and the relation c(G) ` c holds if and only if c = c(G). Note that, if C ⊂ H1(M,R) is bounded,
it is possible to chose a uniform constant K such that all the invariant Lipschitz Graphs G whose
cohomology satisfies c ∈ C are K-Lipschitz. In other words, the elements of VC ∩ V̆ are equi-
Lipschitz graphs. Of course, we would like to be able to prove that the forcing relation a` has
non-trivial classes. We first restate and prove Proposition (0.10).
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(5.3) Proposition

(i) If the cohomology class c forces the cohomology class c′, there exists a heteroclinic trajectory
of the Hamiltonian flow between Ã(c) and Ã(c′). For any closed forms η of cohomology c and
η′ of cohomology c′, there exists a positive integer N and a trajectory (q(t), p(t)) : [0, N ] −→
T ∗M of the Hamiltonian flow such that p(0) = ηq(0) and p(N) = η′q(N). There exists a

trajectory (q(t), p(t)) : [0,∞) −→ T ∗M which satisfies p(0) = ηq(0) and is ω-asymptotic to

Ã(c′). There exists a trajectory (q(t), p(t)) : (−∞, 0] −→ T ∗M which satisfies p(0) = η′q(0)
and is α-asymptotic to Ã(c).

(ii) Let ci, i ∈ Z, be a sequence of cohomology classes such that ci forces ci+1 for each i ∈ Z. Fix
for each i a neighborhood Ui of M̃(ci) in T ∗M . There exists a trajectory of the Hamiltonian
flow which visits in turn all the sets Ui. In addition, if the sequence stabilizes to c− on the
left, or to c+ on the right, the trajectory can be assumed negatively asymptotic to A(c−) or
positively asymptotic to A(c+).

Proof. Let us first assume that c ` c′. Take a fixed point Gc ∈ Vc. There exists a graph
G ∈ Pc′ such that Gc ` G. Now, consider a pseudograph Ğc′ ∈ V̆c′ . It follows from Lemma (2.3)
that G intersects Ğc′ . In view of (4.3), the points of intersection are α-asymptotic to Ã(c) and
ω-asymptotic to Ã(c′). In the same way, we can take for Gc the graph of the closed form η, choose
G ∈ Pc′ such that Gc ` G, and take for Ğc′ the graph of η′. The points of the intersection G ∩ Ğc′

have trajectories from Gc to Ğc′ . The other statements of (i) are proved similarly.

(5.4) Lemma Let us fix a cohomology c.

(i) For each neighborhood U of Ẽ(c), there exists N ∈ N such that, for all l > N and all G ∈ Pc,
we have

φ−l
(

Φ2l(G)
)

⊂ U.

(ii) If V is an open neighborhood of M̃(c) in T ∗M , there exists N ∈ N such that, for each G ∈ Pc

and each P ∈ ΦN (G), one of the points φ−i(P ), 1 6 i 6 N − 1 belongs to V .

Proof. In order to prove (i), it is sufficient to prove that, if Gn ∈ Pc is a sequence of pseudographs,
if mn is an increasing sequence of integers, and if (xn(t), pn(t)) : [0,mn] −→ T ∗M is a Hamiltonian
trajectory which satisfies

(xn(mn), pn(mn)) ∈ Φ2mn(Gn)

and which converges uniformly on compact sets to a limit (x(t), p(t)) : R+ −→ T ∗M , then
(x(0), p(0)) ∈ Ẽ(c).

Let us write the pseudographs Φmn(Gn) on the form Gc,un
. For each k, n ∈ N, we have

T k
c un(xn(k)) = un(xn(0)) +

∫ k

0

L(t, xn(t), ẋn(t)) + cxn(t)(ẋn(t))dt.

Since the functions un lie in the image of the operator Tmn
c , they are equi-Lipschitz, and there

exists a real sequence λn such that the sequence of functions λn +un has an accumulation points in
C(M,R). As a consequence, we can assume, taking a subsequence if necessary, that the functions
λn +un converge uniformly to a limit u. We have Gc,u = lim Φmn(Gn) ∈ Oc. For each fixed k ∈ Z,
taking the limit as n −→∞, we get

T k
c u(x(k)) = u(x(0)) +

∫ k

0

L(t, x(t), ẋ(t)) + cx(t)(ẋ(t))dt.

Hence we have P (k − 1) ∈ Φk−1(Gc,u), and therefore P (0) ∈ φ1−k(Φk−1(Gc,u)). Since this holds
for all k ∈ N, we conclude that

P (0) ∈ Ĩ(Gc,u) ⊂ Ẽ(c).
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In order to prove (ii), it is useful to recall that Ẽ(c) is a compact set, invariant under the time-
one flow φ, and that the Mather set M̃(c) is the union of the supports of the invariant measures
of the action of φ on Ẽ(c). The claim below follows from general facts about topological dynamics
on compact spaces: For each neighborhood W of M̃(c) in Ẽ(c), there exists an integer k such that,
for each point P of Ẽ(c), one of the points φi(P ), 1 6 i 6 k, belongs to W . As a consequence, if V
is a neighborhood of M̃(c) in T ∗M , there exists a neighborhood U of Ẽ(c) in T ∗M such that, for
each P ∈ U , one of the points φi(P ), 1 6 i 6 k, belongs to V . Now let us take l > k such that (i)

holds for this neighborhood U , and set N = 2l. For each G ∈ Pc and each P ∈ ΦN (G), we have
φ−l(P ) ∈ U . Hence one of the points φi−l(P ), 1 6 i 6 k is in V , which proves (ii).

(5.5) Let us now prove (ii) of the proposition. Let Mi ∈ N, i ∈ Z be a sequence of integers such
that ci `Mi

ci+1, and let Wi ⊂ Vi be compact neighborhoods of M̃(ci). In view of lemma (5.4),
there exists a sequence Ni of integers such that, for each G ∈ Pci

and each

P ∈ φ−Ni(ΦNi(G)),

one of the points φl(P ), 0 6 l 6 Ni belongs to Wi.
Let us first fix an integer k ∈ N, and choose a pseudograph Gk

−k ∈ Pc−k
. Since c−k `M−k

c1−k,

there exists a pseudograph Gk
1−k ∈ Pc1−k

such that ΦN−k(Gk
−k) `M−k

Gk
1−k. We build, by induction,

a sequence Gk
i ∈ Pci

, i > −k, of pseudographs such that

ΦNi(Gk
i ) `Mi

Gk
i+1

for each i > −k.
Let us now take a point P k

k ∈ G
k
k . There exists a positive integer lkk−1 6 Mk−1 such that

φ−lkk−1(P k
k ) ∈ ΦNk−1(Gk

k−1). We then set P k
k−1 = φ−(lkk−1+Nk−1)(P k

k ), this point belongs to Gk
k−1.

We can build a sequence P k
i ,−k 6 i 6 k of points of Gk

i and a sequence lki ,−k 6 i 6 k − 1 of
integers satisfying 0 6 lki 6 Mi such that

φNi+lki (P k
i ) = P k

i+1

for each i. In addition, one of the points φj(P k
i ), 0 6 j 6 Ni belongs to Wi.

There exists an increasing sequence kn of integers such that each of the sequences n 7−→ lkn

i ,

for fixed i, is the constant li after a certain rank, and each of the sequences n 7−→ P kn

i , for fixed
i, is converging to Pi. Clearly, we have φli+Ni(Pi) = Pi+1 for each i ∈ Z, and one of the points
φj(Pi), 0 6 j 6 Ni belongs to Wi. This proves the main part of the statement.

If the sequence ci stabilizes to c− on the right, then it is possible to build a sequence Gi ∈ Pci

as above which stabilizes to G− ∈ Vc− on the right, and we obtain by the above method an
orbit which is α-asymptotic to Ã(c−) and then visits in turn all the sets Wi. If the sequence ci
stabilizes to c+ on the right, say for i > I , then it is possible to impose that PI ∈ Ğ+ ∈ V̆c+ in
the construction above, and we then obtain an orbit which is ω-asymptotic to Ã(c+).

6 Evolution operators

We define operators on P that generalize the Lax-Oleinik operator Φ. These operators will
play a central role in the proof of our main results.

(6.1) Given two integers N ′ > N > 1, and a cohomology c, we define the function AN,N ′

c :
M ×M −→ R by the expression

AN,N ′

c (x, y) = min
k∈N,N6k6N ′

Ac(0, x; k, y) + kα(c).

Since each of the mappings
H1(M,R) −→ C(M ×M,R)
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c 7−→ Ac(0, .; k, .)

is continuous (see appendix B), it is easy to see that, for fixed N ′ > N , the mapping

H1(M,R) −→ C(M ×M,R)

c 7−→ AN,N ′

c

is continuous.

Proposition Let c be a fixed cohomology class. For each ε > 0, there exist integers N ′ > N > 1
such that

‖AN,N ′

c − hc‖∞ 6 ε.

More precisely, there exists an integer N0 and a function Λ : N −→ N such that the conclusion
holds if N > N0 and N ′ > Λ(N).
Proof. The functions AN,N ′

c , N 6 N ′ ∈ N, and the function hc have a common modulus of
continuity and a common uniform bound. As a consequence, the pointwise limit

hc(x, y) = lim
N−→∞

lim
N ′−→∞

AN,N ′

c (x, y)

is uniform.

(6.2) It is useful to generalize the operators ΦN : P −→ P. Given two integers N ′ > N > 1 and
an open set U ⊂M , we define the operator

ΦN,N ′

U : P −→ P

by the relation ΦN,N ′

U (Gc,u) = G
c,T N,N′

c,U
u

where

TN,N ′

c,U u(x) = min
y∈Ū,N6k6N ′

T k
c u(y) + kα(c) = min

y∈Ū
u(y) +AN,N ′

c (y, x).

For simplicity we will denote by ΦN,N ′

the operator ΦN,N ′

M . For each G ∈ P, we have

G `N ′ ΦN,N ′

(G).

Lemma. For each integers 1 6 N 6 N ′ and each open set U ⊂M , the operator ΦN,N ′

U : P −→ P

is continuous, when the source is endowed with the seminorm ‖.‖U and the image with the norm
‖.‖, see (2.2).

Proof. Let G = Gc,u and G1 = Gc1,u1 be two pseudographs. We have

‖ΦN,N ′

U (G1)− ΦN,N ′

U (G)‖ 6 |c1 − c|+ ‖T
N,N ′

c1,U u1 − T
N,N ′

c,U u‖.

In order to estimate the term ‖TN,N ′

c1,U u1 − T
N,N ′

c,U u‖, let us write

TN,N ′

c,U u = u(y) +AN,N ′

c (y, x)

with y ∈ Ū . Then, we have

TN,N ′

c1,U u1 − T
N,N ′

c,U u 6 u1(y) +AN,N ′

c1
(y, x) − u(y)−AN,N ′

c (y, x)

and by symmetry

‖TN,N ′

c1,U u1 − T
N,N ′

c,U u‖ 6 sup
y∈U
|u1(y)− u(y)|+ ‖A

N,N ′

c1
−AN,N ′

c ‖

The conclusion follows from the continuity of the mapping c 7−→ AN,N ′

c , see (6.1)
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(6.3) Similarly, we define the operator

Φ∞
U : P −→ V

by the relation Φ∞
U (Gc,u) = Gc,T∞

c,U
u where

T∞
c,Uu(x) = min

y∈Ū
u(y) + hc(y, x).

In the autonomous case Fathi proved that the sequence Φn(G) is converging to a fixed point of Φ
for each G ∈ P. Such a result would be very useful to us, but does not hold in our non-autonomous
setting. It is replaced by the following one.

Proposition Let c be a fixed cohomology class. For each ε > 0 there exist integers N 6 N ′ such
that, for each pseudograph G = Gc,u ∈ Pc and each open set U ⊂M , we have

‖ΦN,N ′

U (G) − Φ∞
U (G)‖ 6 ε.

More precisely, there exists an integer N0 and a function Λ : N −→ N such that the conclusion
holds if N > N0 and N ′ > Λ(N).

Proof. It is not hard to see that, for each continuous function u,

‖TN,N ′

c,U u− T∞
c,Uu‖ 6 ‖AN,N ′

c − hc‖.

The proposition follows from (6.1).

(6.4) Proposition Let G0 = Gc0,u0 ∈ P be a pseudograph, and let ε > 0 be fixed. Assume that
there exists an open set U ⊂ M and two compact sets K ⊂ U and K1 ⊂ M such that, for each
x ∈ K1, the minimum in the expression T∞

c0,Uu0(x) = miny∈Ū u0(y) + hc0(y, x) is never reached
outside of K. Then there exists integers N 6 N ′, a positive number δ and an open neighborhood
U1 of K1 such that, for each pseudograph G ∈ P satisfying ‖G − G0‖U 6 δ we have

G|U `N ′ ΦN,N ′

U (G)|U1
.

More precisely, there exists an integer N0 and a function Λ : N −→ N such that the conclusion
holds if N > N0 and N ′ > Λ(N).

Proof. Let us denote by ∂U the boundary of U . There exists a positive number ε and a
neighborhood U1 of K1 such that, for each x ∈ Ū1,

min
y∈∂U

u0(y) + hc0(y, x) > min
y∈U

u0(y) + hc0(y, x) + 7ε.

In view of (6.1), there exist integers N and N ′ such that

‖AN,N ′

c0
− hc0‖ 6 ε.

For fixed N and N ′, the function AN,N ′

c depends continuously on c ∈ H1(M,R), see (6.1). As a
consequence, if c is sufficiently close to c0, we have

‖AN,N ′

c0
− AN,N ′

c ‖ 6 ε.

For these values of N and N ′, if u ∈ C(M,R) is such that supU |u − u0| 6 ε, we have, for each
x ∈M and y ∈ Ū ,

|u0(y) + hc0(y, x)− u(y)−A
N,N ′

c (y, x)| 6 3ε.

Hence we have the inequality

min
y∈∂U

u(y) +AN,N ′

c (y, x) > min
y∈U

u(y) +AN,N ′

c (y, x) + ε.
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As a consequence, if ‖Gc,u − G0‖U is sufficiently small, then there exists a compact set K′ ⊂ U
such that the minimum in the expression

TN,N ′

c,U u(x) = min
y∈Ū

u(y) +AN,N ′

c (y, x)

is reached in K′ for all x ∈ Ū1. Now let us set v = TN,N ′

c,U u and consider a point

(x, p) ∈ Gc,v|U1
.

The point (x, p) is the limit of a sequence (xn, pn) ∈ Gc,v|U1
. In other words, the points xn ∈ U1 are

points of differentiability of v, and we have dvxn
+cxn

= pn. Let yn ∈ K
′ and kn ∈ N, N 6 kn 6 N ′,

satisfy
v(xn) = u(yn) +Ac(0, yn; kn, xn) + knα(c).

By extracting a subsequence, we can suppose that the sequence kn is a constant k. By arguments
similar to those of (2.7), recalling that the function u is semi-concave, we conclude that the function
u is differentiable at yn, and, setting zn = cyn

+ duyn
, that φk(yn, zn) = (xn, pn). By extracting

another subsequence, we can suppose that the sequence yn has a limit y ∈ K′. We then have

v(x) = u(y) +Ac(0, y; k, x) + kα(c),

so that the function u is differentiable at y. Since the function u is semi-concave, we then have
duy = lim duyn

, see Appendix (A.9). At the limit in φk(yn, zn) = (xn, pn), we get φk(y, z) = (x, p),
where z := dvy + cy. We have proved that

Gc,v|U1
⊂

N ′
⋃

k=N

φk(Gc,u|U ).

(6.5) Proposition Let c and c′ be two cohomology classes. Assume that, for each weak KAM
solution G0 ∈ Vc, there exists a positive number ε > 0 and an integer N with the following property:
For each pseudograph G ∈ Pc such that ‖G−G0‖ 6 ε, there exists a pseudograph G ′ ∈ Pc′ such that
G `N G

′. Then c ` c′.
Proof. By compactness of Vc, there exists a neighborhood U of Vc in Pc and an integer N such
that, for all G ∈ U, we have G `N c′. In view of Proposition (6.3), there exist integers k 6 k′ such
that Φk,k′

(G) ∈ U for each G ∈ Pc. We obtain, for each G ∈ Pc, the existence of a G′ ∈ Pc′ such
that

G `k′ Φk,k′

(G) `N G
′

so that G `k′+N G
′.

7 Coverings

As was noticed by Fathi, as well as Contreras and Paternain, see [18] and [11], it is useful to
study the effect of taking finite Galois coverings.

(7.1) Let P : M0 −→M be a finite connected covering, and P ∗ : H1(M,R) −→ H1(M0,R) the
induced mapping. Let us also denote by L ◦ TP : R× TM0 −→ R the lifted Lagrangian

L ◦ TP (t, x, v) = L(t, P (x), dPx(v)),

and by T ∗P : T ∗M0 −→ T ∗M the covering

(x, p) 7−→ (P (x), p ◦ dP−1
x ).
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The lifted HamiltonianH◦T ∗P is in natural duality with the LagrangianL◦TP . As a consequence,
the Hamiltonian flow associated to the Lagrangian L ◦ TP is the Hamiltonian flow of H ◦ T ∗P ,
which is the lifting of the Hamiltonian flow of H . Each overlapping pseudograph G = Gc,u on M
lifts to a pseudograph

P ∗G := T ∗P−1(G) = GP∗c,u◦P

on M0. Note that c(P ∗G) = P ∗(c(G)). It is not hard to see that the Aubry set ÃL◦TP (P ∗(c))
associated to L ◦ TP on M0 is precisely

ÃL◦TP (P ∗(c)) = T ∗P−1(ÃL(c)),

while we only have the inclusion

ÑL◦TP (P ∗(c)) ⊃ T ∗P−1(ÑL(c)).

Finally, if SL◦TP is a static class of AL◦TP (P ∗(c)) , then P (SL◦TP ) is a static class of AL(c). Note
however that the lifting P−1(SL) of a static class of AL(c) can contain several static classes of
AL◦TP (P ∗(c)). This is illustrated by the following result which, in conjunction with (4.9), allows
to prove the existence of heteroclinic orbits in the case where there is only one static class, see [18]
and [11]. We need first another definition. If X̃ ⊂ T ∗M is an invariant set of the time-one flow φ,
then we denote by sX̃ ⊂ T ∗M ×T the set ∪t∈R,x∈X̃ (φt

0(x), t) and by sX its projection on M ×T.

(7.2) Proposition. Assume that the set A(c) contains finitely many static classes, and that
there exists an open neighborhood U ⊂ M × T of the compact set sA(c) such that the mapping
h : H1(U,Z) −→ H1(M,Z) is not surjective, where h is the composition of the mappings

H1(U,Z)
i∗−→ H1(M × T,Z)

p∗
−→ H1(M,Z)

induced from the inclusion and the projection. Then there exists a finite connected Galois covering
P : M0 −→M with k sheets, k > 2, such that, for each static class S̃ of Ã(c), the lifting T ∗P−1(S̃)
is the union of exactly k different static classes of ÃL◦TP (P ∗(c)).

Proof. Let N be the number of static classes in A(c). First, we claim that for each static class
S, the set sS is connected. This follows easily from (4.6). As a consequence, we can suppose that
the neighborhood U is a union of finitely many connected open sets Ui, 1 6 i 6 N , each of which
contains exactly one of the sets sS. Since the group H1(M,Z) is Abelian and of finite type, and
since the mapping h : H1(U,Z) −→ H1(M,Z) is not surjective, there exists an integer k > 2 and
a surjective morphism g : H1(M,Z) −→ Z/kZ whose kernel contains the subgroup h(H1(U,Z)).
There is a connected Galois covering P : M0 −→ M with k sheets associated to this morphism.
This means that, if χ : π1(M) −→ H1(M,Z) is the Hurewitz map, then the image P∗(π1(M0)) in
π1(M) is precisely the kernel of g ◦ χ. The following diagram commutes.

π1(M0 × T)
p∗

−−−−→ π1(M0)

(P×Id)∗





y

P∗





y

π1(U)
i∗−−−−→ π1(M × T)

p∗
−−−−→ π1(M)

χ





y

χ





y

χ





y

H1(U,R)
i∗−−−−→ H1(M × T,R)

p∗
−−−−→ H1(M,R)

g
−−−−→ Z/kZ

We claim that
i∗(π1(U)) ⊂ (P × Id)∗(π1(M0 × T)),

which implies that the covering P × Id is trivial above U . In order to prove the claim, let us first
notice that g ◦ χ ◦ p∗ ◦ i∗ = g ◦ p∗ ◦ i∗ ◦ χ : π1(U) −→ Z/kZ is the zero map. This implies that
the image of the map i∗ : π1(U) −→ π1(M × T) is contained in the kernel of g ◦ χ ◦ p∗. In order
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to finish the proof of the claim, we check that the image of (P × Id)∗ is precisely the kernel of
g ◦χ ◦ p∗. This follows from the fact ker(g ◦χ) = im(P∗), and from the fact that the upper square
of the diagram can be identified with

π1(M0)× Z −−−−→ π1(M0)

P∗×Id





y

P∗





y

π1(M)× Z −−−−→ π1(M)

where the horizontal arrows are projections on the first factor. The claim is proved, so that the
covering P × Id is trivial above U . It follows that each connected component Ui of U has k
disjoint connected preimages V j

i ⊂ M0 × T. Now it is not hard to see that the static classes of
AL◦TP (P ∗(c)) are precisely the intersections

TP−1(A(c)) ∩ V j
i = AL◦TP (P ∗(c)) ∩ V j

i , 1 6 i 6 N, 1 6 j 6 k.

(7.3) Proposition. Let P : M0 −→ M be a finite Galois covering. Let c and c′ be two
cohomology classes in H1(M,R). If P ∗(c) `N P ∗(c′) for the forcing relation associated to the
Lagrangian L ◦ TP on M0, then c `N c′.

Proof. Let us consider a pseudograph G ⊂ Pc. If P ∗(c) `N P ∗(c′) then there exists a pseudo-
graph G′ on M0 of cohomology P ∗(c′) and such that P ∗G `N G′. Let D be the group of deck
transformations of the covering P . The elements of D are the diffeomorphisms D of M0 such that
P ◦D = P . To each element D of D we associate the fibered diffeomorphism T ∗D of T ∗M defined
by

T ∗D(x, p) = (D(x), p ◦ dD−1
x ).

This diffeomorphism is a Deck transformation of the covering T ∗P . Let us prove that there
exists a pseudograph G ′′ on M0 which is invariant by deck transformations, which has cohomology
P ∗(c′), and such that P ∗G `N G′′. Let η be a form on M with cohomology c′, and let P ∗η be its
lifting to M0. We write G′ on the form GP∗η,u. Since the flow of H ◦ T ∗P commutes with Deck
transformations, and since the pseudograph P ∗G is invariant by deck transformations, we have

P ∗G = T ∗D(P ∗G) `N T ∗D(G′)

for each deck transformation D. It is easy to check that T ∗D(G′) = GP∗η,u◦D−1 . Setting

v := min
D∈D

u ◦D−1,

and G′′ = Gη,v , we have G′′ ⊂ ∪D∈DT
∗D(G′) hence P ∗G `N G

′′, and we have the desired properties
for G′′. Since P is a Galois covering, functions on M0 which are invariant by deck transformations
are liftings of functions on M . As a consequence, there exists a continuous function w : M −→ R

such that v = w◦P . Hence the pseudograph G ′′ is the lifting of the pseudograph Gη,w on M . Since
P ∗G `N G′′ = P ∗Gη,w, we have G `N Gη,w . We have asssociated, to each pseudograph G ∈ Pc, a
pseudograph Gη,w ∈ Pc′ such that G `N Gη,w. This proves that c `N c′

8 Mather’s mechanism

We comment and prove Theorem (0.11). Let us first discuss some properties of the subspace
R(c) as defined in (0.11).
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(8.1) It is useful to consider the Čech cohomology Ȟ(.,R) with real coefficients. Recall that
H(.,R) is the De Rham cohomology. We identify the De Rham cohomology H1(M,R) with the
Čech cohomology Ȟ1(M,R). If K is any subset of M , we denote by ı̌∗K the mapping Ȟ1(M,R) −→
Ȟ1(K,R) induced from the inclusion iK : K −→M . Recalling that the subspace R(G) was defined
in (0.11), we have:

Lemma. For each G ∈ Vc, we have R(G) = ker(̌ı∗I(G)).

Proof. Consider an open neighborhood V0 of I(G) which is such that, for each open neighborhood
V ⊂ V0 of I(G) in M , R(G) is the set of cohomology classes of smooth closed one-forms which
vanish on V . Let us fix an open neighborhood V ⊂ V0 of I(G) in M . Clearly, the cohomology
classes of smooth closed one-forms which vanish on V0 belong to ker(i∗V ) (where i∗V is the mapping
associated to the inclusion in De Rham cohomology). We have proved the inclusion R(G) ⊂
ker(i∗V ). Conversely, let ω be a smooth closed one-form on M whose De Rham cohomology belongs
to ker(i∗V ). This means that the restricted form ω|V is exact. Hence there exists a smooth function

f on V such that ω|V = df . There exists a smooth function f̃ : M −→ R which is equal to f in a

neighborhood Ṽ ⊂ V of I(G). The form ω − df̃ is a smooth closed form on M , cohomologous to
ω, and vanishing on Ṽ . As a consequence, we have [ω] = [ω − df̃ ] ∈ R(G). We have proved that

ker(i∗V ) = R(G)

for all open neighborhood V ⊂ V0 of I(G) in M . The Lemma follows because ker(̌ı∗I(G)) is equal

to ker(i∗V ) when V is a sufficiently small open neighborhood of I(G) in M .

(8.2) In order to avoid confusion, we shall denote by jK̃ : K̃ −→ T ∗M the inclusion of a sub-

set K̃ of T ∗M into T ∗M , and by ̌∗
K̃

: Ȟ1(T ∗M,R) −→ Ȟ1(K̃,R) the associated mapping in

Čech cohomology. We identifying the Čech cohomology Ȟ1(T ∗M,R) with the De Rham coho-
mology H1(T ∗M,R), and the mapping π̌∗ : Ȟ1(M,R) −→ Ȟ1(T ∗M,R) with π∗ : H1(M,R) −→
H1(T ∗M,R).

Lemma. We have (π∗)−1
(

ker(̌∗
Ñ (c)

)
)

⊂ R(c).

Proof. It is enough to prove that, for each G ∈ Vc, we have ker(̌∗
Ñ (c)

) ⊂ π∗(R(G)). For each

G ∈ Vc, we have Ĩ(G) ⊂ Ñ (c), hence ker(̌∗
Ñ (c)

) ⊂ ker(̌∗
Ĩ(G)

). So it is enough to prove that the in-

clusion ker(̌∗
Ĩ(G)

) ⊂ π∗(R(G)) holds for each G ∈ Vc. Let us consider such a pseudograph G. Since

the projection π : TM −→M induces a homeomorphism π|Ĩ(G) : Ĩ(G) −→ I(G), the commutative
diagram

TM
jĨ(G)
←−−−− Ĩ(G)

π





y

π|Ĩ(G)





y

M
iI(G)
←−−−− I(G)

gives rise in Čech cohomology to the diagram

H1(TM,R) Ȟ1(TM,R)
̌∗
Ĩ(G)
−−−−→ Ȟ1(Ĩ(G),R)

π∗

x



 π̌∗

x





π̌∗
|Ĩ(G)

x





H1(M,R) Ȟ1(M,R)
ı̌∗I(G)
−−−−→ Ȟ1(I(G),R)

where the vertical arrows are isomorphisms. We conclude that

ker(̌∗
Ĩ(G)

) = π̌∗(ker(̌ı∗I(G))) = π∗(R(G)).
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(8.3) Lemma. The space R(c) ⊂ H1(M,R) depends semi-continuously on c in the following
sense: For each c0 ∈ H1(M,R), there exists a neighborhood V of c0 in H1(M,R) such that, for
each c ∈ V , we have R(c0) ⊂ R(c).

Proof. Let us fix a cohomology class c0. We claim that, for each G0 ∈ Vc0 , there exists ε0 > 0
such that each fixed pseudograph G of V which satisfies ‖G − G0‖ 6 ε0 has to satisfy

R(G0) ⊂ R(G).

This claim follows from the existence of a neighborhood U of I(G0) such that R(G0) is the set
of cohomology classes of smooth closed one-forms which vanish on U , and from the fact that the
inclusion I(G) ⊂ U holds when G is sufficiently close to G0. Let BP(G, ε) denote the open ball of
center G and radius ε in P. The compact set Vc0 is covered by a finite family of balls BP(Gi, εi)
such that Gi ∈ Vc0 and such that R(Gi) ⊂ R(G) for each G ∈ BP(Gi, εi). Since the map c is
continuous and proper on V, see (3.7), there exists a δ > 0 such that, for |c − c0| 6 δ, we have
Vc ⊂ ∪iBP(Gi, εi). As a consequence, if G belongs to some Vc with |c− c0| 6 δ, then there exists
i such that R(c0) ⊂ R(Gi) ⊂ R(G). We conclude that R(c0) ⊂ R(c) for |c− c0| 6 δ.

The following proposition is the main step in the proof of Theorem (0.11). We denote by BE(r)
the open ball of radius r centered at the origin in the normed vector space E.

(8.4) Proposition. For each G0 ∈ Vc0 , there exists a positive number ε0, and an integer
N such that the following holds: For each pseudograph G ∈ P satisfying ‖G − G0‖ < ε0 and
c(G)− c0 ∈ R(c0), for each cohomology class c satisfying c− c0 ∈ BR(c0)(ε0) ⊂ R(c0), we have

G `N c.

Note in this statement that the cohomology class of the pseudograph G is denoted by c(G), and
that the symbol c alone denotes another cohomology class.

(8.5) Proof of Theorem (0.11). We assume the proposition. For Each G0 ∈ Vc0 , we
consider the number ε0 given by the proposition, and the open ball BP(G0, ε0) of center G0 and
radius ε0 in P. Since Vc0 is compact, it can be covered by a finite number of these balls, we denote
Gi and εi the associated centers and radii. Since the function c restricted to V is proper, (3.7),
there exists a positive number δ such that Vc ⊂ ∪iBP(Gi, εi) when |c − c0| 6 δ. Consider two
cohomology classes c and c′ in c0 + BR(c0)(ε), with ε = min{δ, εi}. It follows from (6.5) that c
forces c′. The theorem clearly follows. theorem

(8.6) Proof of the Proposition. Let us fix a G0 ∈ Vc0 and choose a neighborhood U
of I(G0) in such a way that R(G0) is the set of cohomology classes of smooth closed one-forms
vanishing on U .

Lemma There exist δ > 0 and N ′ 6 N in N such that, for all overlapping pseudographs G
satisfying ‖G − G0‖ 6 δ, we have

G|U `N ΦN ′,N
U (G)

Proof. Let us write the pseudograph G0 on the form Gc0,u0 . We have seen in (3.9) that

u0(x) = min
y∈M

u0(y) + hc0(y, x) = min
y∈A(c0)

u0(y) + hc0(y, x).

As a consequence, we have T∞
U u0 = T∞

M u0 = u0, and the minimum in the definition of T∞
U u0(x)

is not reached outside of I(G), which is a compact set contained in U . The lemma now follows
from proposition (6.4).

35



(8.7) Lemma. Let us fix a δ > 0. There exists ε0 > 0 such that, if we take :
One one hand a cohomology class c satisfying c− c0 ∈ R(G0) and ‖c− c0‖ 6 ε0;
On the other hand a pseudograph G ∈ P satisfying ‖G − G0‖ 6 ε0 and c(G) ∈ c0 +R(G0);
Then there exists a pseudograph G ′ ∈ Pc with the following properties: ‖G ′−G0‖ 6 δ and G|U = G′|U .

Proof. Let us write G0 = Gη0,u0 . In view of the definition of R(G0), it is possible to associate to
each cohomology class d ∈ R(G0) a closed one-form µd which is null on U . In addition, we can
impose that the correspondence d 7−→ µd is linear. Given a pseudograph G ∈ P and a cohomology
c satisfying the hypotheses of the Lemma, we consider the pseudograph

G′ = G + Gµ(c−c(G)) ,0 ∈ Pc.

It is clear that G′|U = G|U , that c(G′) = c, and that ‖G′ − G0‖ 6 δ if ε0 is small enough.

(8.8) We are now in a position to end the proof of the proposition. Let us consider δ given by
Lemma (8.6), and the associated ε0 as given by Lemma (8.7). If G and c satisfy the hypothe-
ses of the Proposition with this value of ε0, then, by Lemma (8.7), there exists a pseudograph
G′ such that c(G′) = c and G′|U = G|U and ‖G′ − G0‖ 6 δ. In view of Lemma (8.6), we have

G|U `N ΦN ′,N
U (G′), so that G `N ΦN ′,N

U (G′). proposition

9 Arnold’s mechanism for systems with finitely many static classes

We prove and generalize Theorem (0.12).

(9.1) Let H̃c(S̃ , S̃ ′) be the set of orbits of the Mañé set Ñ (c) which are heteroclinic orbits
between the static classes S̃ and S̃ ′, we denote by Hc(S,S ′) its projection on M . We have, from
section 4,

Ñ (c) = Ã(c) ∪
⋃

S,S′

H̃c(S,S
′),

where the union is taken on all pairs (S,S ′) of different static classes. In addition, it is useful to
recall that

H̃c(S̃ , S̃
′) ⊂ Ec,S∧̃Ĕc,S′ .

We say that the set H̃c(S,S ′) is neat if it admits a compact subset K̃ which contains one and only
one point in each orbit of φ|H̃c(S,S′) and whose projection K on M is acyclic. This means that K

has a neighborhood U whose inclusion i into M induces the null map i∗ : H1(U,R) −→ H1(M,R).

(9.2) Theorem Let c0 be a cohomology class such that the number of static classes in A(c0)
is finite and greater than one. Assume in addition that all the sets H̃c0(S,S

′) are neat. Then the
class c0 is in the interior of its class of a`-equivalence.

Let us gather some preliminary consequences of the hypotheses.

(9.3) Lemma We assume the hypotheses of the theorem. Let S0 be a static class and V0 be a
neighborhood of S0.

(i) There exists an open neighborhood V of S0, contained in V0, such that the boundary of V
does not intersect I(Ec0,S0).

(ii) There exists an acyclic open set U ⊂ V0−S0 and a static class S1 such that the intersection
U ∩ I(Ec0,S0) is not empty, compact, and contained in H(S0,S1).

Proof. Let V0 be a neighborhood of S0, sufficiently small for lemma (4.4) to apply, so that we
have

V0 ∩ I(Ec0,S0) = S0 ∪
⋃

S∈E(c0)−S0

(

H(S0,S) ∩ V0

)

,
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where the union is taken on all static classes S 6= S0. We shall also assume that V̄0 ∩A(c0) = S0.
For each static class S, let us consider an acyclic compact set K̃(S0,S) which contains one

and only one point in every orbit of H̃(S0,S), and denote by K(S0,S) its projection on the base.
Clearly, the sets K̃(S0,S),S ∈ E(c0)−S0, are pairwise disjoint and they all belong to the Lipschitz
graph Ĩ(Ec0,S0), so that their projections K(S0,S) on the base are also pairwise disjoint. Let us

consider a static class S 6= S0. For n large enough, we have π ◦ φ−n(K̃(S0,S)) ⊂ V0. In addition,
since K(S0,S) is acyclic in M , the compact K̃(S0,S) is acyclic in T ∗M . As a consequence, the
compact set φ−n(K̃(S0,S)) is acyclic in T ∗M and contained in the Lipschitz graph Ĩ(Ec0,S0), so

that π ◦ φ−n(K̃(S0,S)) is acyclic in M . Consequently, recalling that the number of static classes
is finite, there is no loss of generality in supposing that the sets K(S0,S),S ∈ E(c0) − S0, are all
contained in V0.

Let us prove that each of the sets K̃(S0,S) is isolated in Ĩ(Ec0,S0). Let F be a compact
neighborhood of S0 which does not intersect any of the finitely many compact sets K(S0,S),S ∈
E(c0) − S0. Since the points of K̃(S0,S) are α-asymptotic to S̃0 and ω-asymptotic to S̃ , and
since there are finitely many static classes, there exists an integer N such that all the sets π ◦
φn(K̃(S0,S)), n ∈ N,S ∈ E(c0) − S0, are contained in F for n 6 −N , and do not intersect V̄0 for
n > N . The set (V0−F )∩I(Ec0 ,S0) is thus covered by finitely many pairwise disjoint compact sets

of the form π ◦ φn(K̃(S0,S)), n ∈ Z,S ∈ E(c0) − S0. As a consequence, each of the sets K(S0,S)
is isolated in (V0 − F ) ∩ I(Ec0,S0), and then also in I(Ec0,S0). Let us fix a static class S1 6= S0

such that K(S0,S1) is not empty. Such a static class exists by (4.9). Then, we can find an open
neighborhood U ⊂ V0 of K(S0,S1) such that U is acyclic and such that U ∩I(Ec0,S0) = K(S0,S1)
is a non-empty compact set contained in H(S0,S1). We have proved (ii).

Let us consider again the finite family of pairwise disjoint compact sets π ◦ φn(K̃(S0,S)), n ∈
Z, |n| 6 N,S ∈ E(c0) − S0. There exists a finite family of pairwise disjoint compact sets
K′

n(S0,S), n ∈ N, |n| 6 N,S ∈ E(c0)−S0 such that K′
n(S0,S) is a neighborhood of π◦φn(K̃(S0,S)).

We can clearly assume in addition that the sets K′
n(S0,S) do not intersect S0. The set

V = V0 −
⋃

n∈N,|n|6N,S∈E(c0)−S0

K′
n(S0,S)

is an open neighborhood of S0 which is contained in V0, and its boundary does not intersect
I(Ec0,S0). We have proved (i).

The following proposition is the main step in the proof of the theorem.

(9.4) Proposition Let c0 satisfy the hypotheses of Theorem (9.2). For each weak KAM solu-
tion G0 ∈ Vc0 , there exists a number ε > 0 and an integer N such that, if G ∈ P and c ∈ H1(M,R)
satisfy

‖G − G0‖ 6 ε and |c− c0| 6 ε

then G `N c.

(9.5) Proof of the Theorem. We assume the Proposition. Let us cover the compact set
Vc0 by a finite number of balls B(Gi, εi), where εi is given by the Proposition applied to Gi. Since
the function c restricted to V is proper, the union of these finite balls covers the sets Vc for c
sufficiently close to c0. The Theorem holds by Proposition (6.5). theorem

We now prove the Proposition in three steps.

(9.6) Step 1. Let G ∈ Vc0 be a fixed point. If there exist only finitely many static classes
in A(c0), then there exists an elementary solution E0 and a neighborhood U0 of the corresponding
static class S0 such that G|U0

= E0|U0
.
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Proof. Let us fix the solution G = Gc0,u. We define a partial order on the set of static classes by
saying that S 6 S ′ if, for each x ∈ S and x′ ∈ S ′, we have hc0(x, x

′) = u(x′)− u(x). It is easy to
check that this relation satisfies the following three axioms of order relations:

• S 6 S,

• S 6 S ′ and S ′ 6 S ′′ =⇒ S 6 S ′′,

• S 6 S ′ and S ′ 6 S =⇒ S = S ′.

Since the number of static classes is finite, there exists an initial element S0, that is an element
which is not greater than any other element. Let us write

u(x) = min
a∈A

u(a) + hc0(a, x),

and consider, for each point x, the set A(c0) ∩ (G ∧ Ĕc0,x) of points a where the minimum is
reached. Let us first assume that x ∈ S0. In this case, a is a point of minimum if and only if the
static class Sa of a satisfies Sa 6 S0. Since the class S0 is initial, this implies that Sa = S0, or
equivalently, that a ∈ S0. In other words, for x ∈ S0, the compact set A(c0) ∩ (G ∧ Ĕc0,x) does
not intersect other static classes than S0. This implies that, for x sufficiently close to S0, the
set A(c0) ∩ (G ∧ Ĕc0,x) does not intersect other static classes than S0. Since, for each x, the set

A(c0)∩ (G ∧ Ĕc0,x) contains a static class, we conclude that, for x sufficiently close to S0, we have

S0 = A(c0) ∩ (G ∧ Ĕc0,x).

As a consequence, we have, if x is sufficiently close to S0,

u(x) = u(a) + hc0(a, x),

for each a ∈ S0. In other words, the difference x 7−→ hc0(a, x) − u(x) is the constant u(a) in a
neighborhood of S0. step 1

(9.7) step 2. Let S0 be a static class of A(c0) and let U0 be a neighborhood of S0 satisfying
(ii) of (9.3). There exists a static class S1, an open neighborhood U1 of S1 and, for each δ > 0, a
number ε > 0 and an integer N with the following property : If G ∈ P satisfies ‖G −Ec0,S0‖U0 6 ε
and c ∈ H1(M,R) satisfies |c − c0| 6 ε, then there exists a pseudograph G ′ ∈ Pc such that
‖G′ −Ec0,S1‖U1 6 δ and

G|U0
`N G

′
|U1

Proof. There exists a static class S1 and an acyclic open set U ⊂ U0 −A(c0) such that

I(Ec0,S0) ∩ Ū = I(Ec0,S0) ∩ U

is a compact set K ⊂ H(S,S1). Let us fix a point x0 ∈ S0, and denote by u0 the function hc0(x0, .).

(9.8) Lemma. There exists a neighborhood U1 of S1 such that the equality

T∞
c0,Uu0(y) = hc0(x0, x1) + hc0(x1, y) = hc0(x0, x) + hc0(x, x1) + hc0(x1, y)

holds for all x ∈ K, y ∈ U1, and x1 ∈ S1. As a consequence, we have

Φ∞
U

(

Ec0,S0

)

|U1
= Ec0,S1|U1

,

and the minimum in the definition of T∞
c0,Uu0(y) is not reached outside of K when y ∈ U1.
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Proof. Let us set v = T∞
c0,Uu0 for simplicity. Recall, from (3.9), that all weak KAM solutions

v ∈ Vc0 satisfy v(y) = mina∈A(c0) v(a) + hc0(a, y). Here, we obtain

v(y) = min
x∈Ū,a∈A(c0)

hc0(x0, x) + hc0(x, a) + hc0(a, y). (�)

We claim that, for y ∈ S1, the set of minimizing pairs (x, a) is K×S1. Indeed, if (x, a) ∈ K × S1,
then x ∈ Ec0,x0 ∧ Ĕc0,a, so that hc0(x0, x) + hc0(x, a) = hc0(x0, a), and

hc0(x0, x) + hc0(x, a) + hc0(a, y) = hc0(x0, y) = min
(z,z′)∈M×M

hc0(x0, z) + hc0(z, z
′) + hc0(z

′, y).

Hence we have

hc0(x0, x) + hc0(x, a) + hc0(a, y) = min
(z,z′)∈Ū×A(c)

hc0(x0, z) + hc0(z, z
′) + hc0(z

′, y).

We have proved that the pairs of K × S1 are minimizing in the equation (�) for y ∈ S1.
Let us now prove that they are the only minimizing pairs. A pair (x, a) is minimizing if and

only if hc0(x0, a)+hc0(a, y) = hc0(x0, y) and hc0(x0, x)+hc0(x, a) = hc0(x0, a). The second equality
implies

x ∈ Ec0,S0 ∧ Ĕc0,S(a) ⊂ I(Ec0,S0).

Since I(Ec0,S0) ∩ Ū = K, this implies x ∈ K. If x ∈ K and a ∈ A(c0), then the equality
hc0(x, a) = hc0(x, y) + hc0(y, a) holds for all y ∈ S1. Indeed, let x(n) = π ◦ φn(x,−∂1h(x, a)) be
the projection of the orbit of the only point of Ĕc0,S(a) above x. We have, for each n ∈ N, the
equality of calibration by −hc0(., a):

Ac0(0, x, n, x(n)) + nα(c0) = hc0(x, a)− hc0(x(n), a).

Let nk be an increasing sequence of integers such that the subsequence x(nk) has a limit ω ∈ S1.
Taking the liminf as k −→ ∞, we get hc0(x, ω) 6 hc0(x, a) − hc0(ω, a), which implies the desired
equality for ω, and then for all points of S1.

Since (x, a) is a minimizing pair for v(y), we get, by decomposing hc0(x, a) in the expression
of v,

v(y) = hc0(x0, x) + hc0(x, y) + hc0(y, a) + hc0(a, y)

and, since v(y) 6 hc0(x0, x) + hc0(x, y), we finally obtain that hc0(y, a) + hc0(a, y) 6 0 so that
a ∈ S1. We have proved the claim. In addition, we have proved, for x1 ∈ S1 and x ∈ K, the
equality

v(x1) = hc0(x0, x) + hc0(x, x1) = hc0(x0, x1).

As a consequence, for y ∈ S1, each point a ∈ A(c) which is minimizing in the equation

v(y) = min
a∈A(c0)

v(a) + hc0(a, y)

belongs to S1. Since S1 is isolated in A(c), the conclusion holds also for y sufficiently close to S1.
We then have the equality

v(y) = v(x1) + hc0(x1, y) = hc0(x0, x) + hc0(x, x1) + hc0(x1, y)

for all x1 ∈ S1 and x ∈ K (and no other x in Ū).

(9.9) Applying (6.4), we get the existence of a positive ε′ and of integers N 6 N ′ such that each
G ∈ P which satisfies ‖G −Ec0,S0‖U 6 ε′ also satisfies

G|U `N ′ ΦN,N ′

U (G)|U1
.
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Since Φ∞
U

(

Ec0,S0

)

|U1
= Ec0,S1|U1

in view of the lemma, and by (6.3), the integers N and N ′ can

be chosen such that, in addition, we have

‖ΦN,N ′

U (Ec0,S0)−Ec0,S1‖U1 6 δ/2.

Reducing ε′ if necessary, we can furthermore assume, by continuity of ΦN,N ′

U , that

‖ΦN,N ′

U (G)− ΦN,N ′

U (Ec0,S0)‖U1 6 δ/2

when ‖G −Ec0,S0‖U 6 ε′, so that

‖ΦN,N ′

U (G)−Ec0,S1‖U1 6 δ.

Since U is acyclic, for each cohomology c and each pseudograph G, there exists a pseudograph
G(c) which has cohomology c and such that G|U = G(c)|U . There exists a positive ε such that, if
|c− c0| 6 ε and if ‖G −Ec0,S0‖U 6 ε, then we have

‖G(c)−Ec0,S0‖U 6 ε′.

Note that this norm does not depend on the choice of G(c). As a consequence, setting G ′ =

ΦN,N ′

U (G(c)), we have c(G′) = c,
G|U = G(c)|U `N ′ G′|U1

and
‖G′ −Ec0,S1‖U1 6 δ.

step 2

(9.10) Step 3. Let S1 be a static class in A(c0) satisfying (i) of (9.3), and let U1 be a fixed
neighborhood of S1. There exists a number δ > 0 and an integer N such that, if G ′ ∈ P satisfies
‖G′ −Ec0,S1‖U1 6 δ, then G′|U1

`N c(G′)

Proof. There exists an open neighborhood V1 ⊂ U1 of S1 such that I(Ec0,S1)∩V1 = I(Ec0,S1)∩V̄1.
(this is (i) of (9.3)). Let x1 be a point of S1 and set u1 = hc0(x1, .). Recall that (by definition)

T∞
c0,V1

u1(x) = min
y∈V̄1

hc0(x1, y) + hc0(y, x).

Taking y = x1 in this expression, we obtain the inequality T∞
c0,V1

u1(x) 6 u1(x). On the other hand,
we have the triangle inequality u1(x) 6 hc0(x1, y)+hc0(y, x) for each y, so that T∞

c0,V1
u1(x) = u1(x),

and
min
y∈V̄1

hc0(x1, y) + hc0(y, x) = hc0(x1, x) = min
y∈M

hc0(x1, y) + hc0(y, x).

By (3.6) the points y where this last minimum is reached belong to I(Ec0,S1). As a consequence,
for each x ∈ M , the points where the minimum is reached in the definition of T∞

c0,V1
u1(x) belong

to I(Ec0,S1) ∩ V1, which is a compact set contained in V1. In view of (6.4), there exist integers N
and N ′ and a positive real number δ such that, if G ′ ∈ P satisfies ‖G′ −Ec0,S1‖V1 6 δ, then

G′|V1
`N ΦN,N ′

V1
(G′).

step 3

The proposition obviously follows from the three steps above. Proposition
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Applications

10 Twist Maps

The case where M = T is well known and have been studied many times. The resulting time-
one flow is then a finite composition of right twist maps of the biinfinite annulus T ∗

T. In view of
(0.10), much of what is known on the existence of orbits with prescribed behavior is summed up
in the following discussion.

(10.1) Let G ∈ H1(T,R) be the set of cohomology classes of invariant curves which are Lipschitz
graphs. The set G is closed, and every point c ∈ G is alone in its class of a`-equivalence, as follows
from (5.2). Conversely, if c does not belong to G, then all the sets I(G),G ∈ Vc are properly
contained in T. It follows that R(G) = R for each G ∈ Vc, so that R(c) = R and, in view of (0.11),
c is in the interior of its class of equivalence. The classes of a`-equivalence are the points of G
and the connected components of the complement of G.

(10.2) For completeness, we recall without proof some of the special properties of Aubry sets
in dimension one, see [14] for example. The function α is differentiable, and its differential α′(c)
is the rotation number of every orbit of Ñ (c). If α′(c) is irrational, then there is only one element
in Vc. If α′(c) is rational, then the Mather set M̃(c) is made of periodic orbits.

11 Generalized Arnold Example

(11.1) In this application, we take
M = T×N,

where N is a compact manifold of dimension d − 1, and denote by q = (q1, q2) the points of M .
We assume that the homology group H1(N,Z) is not trivial. We denote the points of TM by
(q, v) = (q1, q2, v1, v2), where (q1, v1) ∈ TT and (q2, v2) ∈ TN . In the same way, we denote by
(q, p) = (q1, q2, p1, p2) the points of T ∗M . We will consider the projection π1 : T ×N −→ T and
the induced mapping

π∗
1 : H1(T,R) −→ H1(T ×N,R).

(11.2) Let us fix a point 0 in N . We will consider Lagrangian systems which satisfy

L(t, q1, q2, v1, v2) > L(t, q1, 0, v1, 0)

for all (q2, v2) 6= (0, 0), all t ∈ R and all (q1, v1) ∈ TT. Let ∂vL : TM −→ T∗M be the Legen-
dre transform associated to L. We denote by T1 the submanifold T × {0} of M , by T ∗T1 the
submanifold {q2 = 0, p2 = 0} of T ∗M , and TT1 the submanifold {q2 = 0, v2 = 0} of TM . We
have

∂vL(TT1) = T ∗
T1,

and this manifold is invariant under the Hamiltonian flow. Moreover, the restriction of the flow
to T ∗T1 is the Hamiltonian flow of the restriction H1(t, q1, p1) := H(t, q1, p1, 0, 0) of H . Setting
L1(t, q1, v1) = L(t, q1, 0, v1, 0), we see that L1 is the Lagrangian associated to H1. We denote by
φ1 the restriction of φ to T ∗T.

(11.3) Theorem Under the non-degeneracy conditions (11.4) and (11.5) to be specified below,
the image of π∗

1 is contained in one class of a`-equivalence.

(11.4) Genericity property for φ1. We assume that every rotational invariant circle of
φ1 which contains a periodic orbit is completely periodic (every orbit of this circle is periodic).
We could, more simply, require that the map φ1 does not have any invariant circle containing
a periodic orbit. This property is known to be generic in any reasonable sense of the term.
However, allowing periodic circles includes the important case where φ1 is integrable, as in the
original Arnold’s example.
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(11.5) nondegeneracy of external homoclinics. We assume that, for each c ∈ π∗
1(H1(T,R)),

there exists a finite Galois covering P : M0 −→M such that the set

ÑL◦TP (P ∗(c))− T ∗P−1(T ∗
T1)

is not empty and contains finitely many orbits. Note that, since H1(N,Z) is not zero, it follows
from (7.2), (4.5), and (11.6) below that there exists a finite Galois covering P : M0 −→ M
such that the set under consideration is not empty. So the important point of our assumption is
finiteness. As the reader will see it in the proof, this assumption could be somewhat weakened.

(11.6) Lemma For each cohomology c = π∗
1(c1), with c1 ∈ H1(T,R), we have N (c) ⊂ T1. As

a consequence, the restriction to T1 gives a bijection between the set Vc and the set Vc1 associated
to the Lagrangian L1 on TT1.

Proof. Let us fix a cohomology c1 ∈ H1(T,R) and its image c := π∗
1(c1). Let µ be a form on T

which represents c1, and η be its pull back on M = T×N . Consider a pseudograph G ∈ Vc, and
write it G = Gη,u. We want to prove that Ĩ(G) ⊂ T ∗T1. Let (q(t), p(t)) be the trajectory of the

Hamiltonian flow starting in Ĩ(G). We have, for k < l in Z,

u(q(l))− u(q(k)) =

∫ l

k

L(σ, q(σ), q̇(σ)) − µq1(σ)(q̇1(σ)) + α(c) dσ

and

u(q1(t), 0)− u(q1(s), 0) 6

∫ l

k

L(σ, (q1(σ), 0, q̇1(σ), 0)− µq1(σ)(q̇1(σ)) + α(c) dσ.

It follows that
∫ l

k

L(σ, q(σ), q̇(σ))− L(σ, (q1(σ), 0), (q̇1(σ), 0)) dσ 6 2(maxu−minu)

Let us denote by L̃ the function

L̃(t, q, v) = L(t, q, v)− L(t, (q1, 0), (v1, 0))

which is positive except on TT1. Since the integral
∫

R
L̃(σ, q(σ), q̇(σ))dσ is finite, we have

lim inf
|σ|−→∞

L̃(σ, q(σ), q̇(σ)) = 0,

and consequently lim inf |σ|−→∞(q2(t), v2(t)) = 0. We now return to the inequality

∫ l

k

L̃(σ, q(σ), q̇(σ))dσ 6 u(q(t)) − u(q1(t), 0)− u(q(s)) + u(q1(s), 0),

from which we get
∫ ∞

−∞

L̃(σ, q(σ), q̇(σ))dσ = 0,

which implies that (q2, v2) ≡ 0. We have proved that Ĩ(G) ⊂ T ∗T1.

(11.7) Let us fix cohomologies c = π∗
1(c1), c1 ∈ H1(T,R), such that there exists an invariant

Lipschitz Graph G in Vc1 . If the rotation number of φ1|G is irrational, then Vc1 contains only one

element. As a consequence, Vc also contains only one element, so that Ñ (c) = Ã(c) = G, and
there is only one static class in Ã(c). If the rotation number is rational, then in view of (11.4) the
graph G is a union of periodic orbits, so that G = M̃(c). As a consequence, we have A(c) = T1,
and there is only one static class.

In view of (11.5), there exists a finite Galois covering P : M0 −→M such that the Lagrangian
L◦TP satisfies the hypotheses of (9.2). As a consequence, the cohomology P ∗(c) is in the interior
of its forcing class for L ◦ TP . It follows from (7.3) that the cohomology c is in the interior of its
forcing class for L.
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(11.8) Let c = π∗
1(c1) be such that each set I(G),G ∈ Vc is properly contained in T1. Applying

(0.11), we observe that R(c) = H1(M,R), and c is in the interior of its forcing class.

(11.9) We have proved that each c ∈ π∗
1(T,R) is in the interior of its forcing class. Since the

subspace π∗
1(H1(T,R)) is obviously connected, it is contained in one forcing class.

Appendix

A Semi-concave functions

We recall some useful facts on semi-concave functions. In all this section, M is a compact
manifold of dimension d. It is useful for the sequel to fix once and for all a finite atlas Φ of M
composed of charts ϕ : B3 −→ M , where Br is the open ball of radius r centered at zero in Rd.
We assume that the sets ϕ(B1), ϕ ∈ Φ cover M . A family F of C2 functions is said bounded if
there exists a constant C > 0 such that

‖d2(u ◦ ϕ)x‖ 6 C

for all x ∈ B1, ϕ ∈ Φ, u ∈ F . Note that a bounded family is not required to be bounded in C0

norm, but will automatically be bounded in C1 norm and thus equi-Lipschitz. The notion of
bounded family of functions does not depend on the atlas Φ.

(A.1) A function u : M −→ R is called semi-concave if there exists a bounded subset Fu of the
set C2(M,R) such that

u = inf
f∈Fu

f.

A family U of functions is called equi-semi-concave if there exists a bounded set F of functions in
C2(M,R), and, for each function u ∈ U, a subset Fu of F such that

u = inf
f∈Fu

f.

Let us first collect some easy consequences of this definition. We shall prove later that the infima
could be replaced by minima in these definitions.

(A.2) An equi-semi-concave set of functions is equi-Lipschitz.

(A.3) If U is an equi-semi-concave set of functions on M , and if the infimum infu∈U u(x0) is
finite for some x0 ∈M , then the function v(x) = infu∈U u(x) is finite and semi-concave.

(A.4) Let U be an equi-semi-concave set of functions on N ×M , where N is another compact
manifold. Then the functions u(x, .) : M −→ R, x ∈ N, u ∈ U form an equi-semi-concave set.

(A.5) We say that the linear form p ∈ TxM is a proximal super-differential of the function u
at point x if there exists a C2 function f such that f − u has a minimum at x and dfx = p. The
definition would not be changed by requiring that the function f is smooth and that the minimum
is strict. We say that a linear form p ∈ TxM is a K-super-differential of the function u at point x
if for each chart ϕ ∈ Φ and each point y ∈ B2 satisfying ϕ(y) = x, the inequality

u ◦ ϕ(z)− u ◦ ϕ(y) 6 p ◦ dϕy(z − y) +K‖z − y‖2

holds for each z ∈ B2. It is plain that p is a proximal super-differential of u if and only if there
exists a K > 0 such that p is a K-super-differential of u.
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(A.6) A function u on M is called K-semi-concave if it has a K-super-differential at each point.
It is equivalent to require that, for each ϕ ∈ Φ, the function

u ◦ ϕ(y)−K‖y‖2

is concave on B2. As a consequence, if u is K-semi-concave and if p is a proximal super-differential
of u at x, then p is a K-super-differential of u at x.

(A.7) Let u be a continuous function on M , and let Let A be the compact subset of M formed
by points x ∈ M at which both the functions u and −u have a K-super-differential. Then the
function u is differentiable at each point of A, and the mapping x 7−→ du(x) is Lipschitz on A,
with a Lipschitz constant that depends only on K.

This follows from Proposition 4.5.3 in Fathi’s book [15]. We have the following useful corollary.

(A.8) Let U be an equi-semi-concave set of functions. Then there exists a constant K with the
following property: If u and v are two functions of U, and if A is the set of points minimizing
the sum u+ v, then the functions u and v are differentiable at each point of A, and the mapping
A 3 x 7−→ dux = −dvx is K-Lipschitz.

(A.9) If un is a sequence of K-semi-concave functions converging uniformly to a function u,
then the function u is K-semi-concave. In addition, if xn is a sequence of points of differentiability
of un, converging to a point of differentiability x of u, then dun(xn) −→ du(x).

Proof. By the Theorem below, the functions un form an equi-semi-concave, hence equi-Lipschitz
family of functions. Let xn be a sequence converging to x, and pn be a K-super-differential of un

at xn. The sequence pn is bounded, hence we assume that pn −→ p. Let y ∈ B2 and ϕ ∈ Φ be
such that ϕ(y) = x. For n large enough, the point xn can be written ϕ(yn) with yn ∈ B2. We
have the inequality

un ◦ ϕ(z) 6 un ◦ ϕ(yn) + pn ◦ dϕyn
(z − yn) +K‖z − yn‖

2,

for each z ∈ B2, and at the limit, we obtain

u ◦ ϕ(z) 6 u ◦ ϕ(y) + p ◦ dϕy(z − y) +K‖z − y‖2.

It means that p is a K-super-differential of u at x. Under the assumptions of the statement, we
have pn = duxn

, and p = dux is the only possible limit of this bounded sequence, which is thus
converging to p.

(A.10) Theorem A family U of functions is equi-semi-concave if and only if there exists a
number K > 0 such that all the functions of U are K-semi-concave. In this case, there exists a
bounded subset F ⊂ C2(M,R) and, for each u ∈ U, a subset Fu of F which has the following
properties:

u = min
f∈Fu

f

and, for each point x ∈ M and each super-differential p of u at x, there exists a function f ∈ Fu

such that (f(x), df(x)) = (u(x), p).

In order to prove this result, we need a Lemma:

Lemma For each K > 0, there exists a bounded subset LK of T ∗M which contains all the prox-
imal super-differentials of all K-semi-concave functions. As a consequence, the K-semi-concave
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functions are equi-Lipschitz

proof of the Lemma Let us consider a chart ϕ ∈ Φ, a K-semi-concave function u, a point
y0 ∈ B1, and the point x0 = ϕ(y0). Let p0 be a proximal super-differential of u at x0, and let us
set l = p0 ◦ dϕy0 .

claim If ‖l‖ > 11K, then there exists a point y ∈ B2 which is a point of differentiability of u ◦ ϕ
and satisfies

‖d(u ◦ ϕ)y‖ > (‖l‖ − 11K)/3.

and
u ◦ ϕ(y) < inf

B1

u ◦ ϕ.

Proof of the Claim. Let us prove first that the infimum of u ◦ ϕ in B2 is not reached in
B̄1. Assume, by contradiction, that there exists a point m ∈ B̄1 such that u ◦ϕ(m) = infB2 u ◦ϕ.
Then clearly the function u ◦ ϕ is differentiable at m, its differential is zero, and the inequality

u ◦ ϕ(y0) 6 u ◦ ϕ(m) +K‖y0 −m‖
2

holds. On the other hand, we have

u ◦ ϕ(m) 6 u ◦ ϕ(z) 6 u ◦ ϕ(y0) + l(z − y0) +K‖z − y0‖
2

for all z ∈ B2. Combining these inequalities gives

l(y0 − z) 6 K‖z − y0‖
2 +K‖y0 −m‖

2

for all z ∈ B̄2. Hence ‖l‖ 6 5K, which is in contradiction with the hypothesis.
Let us now consider a vector v ∈ Rd of norm 1 and such that l(v) = −‖l‖. We get

u ◦ ϕ(y0 + v)− u ◦ ϕ(y0) 6 l(v) +K‖v‖2 = K − ‖l‖.

Hence the infimum of u ◦ ϕ on B2 is not greater than u ◦ ϕ(y0) +K − ‖l‖. It is then possible to
choose a point y in B2 such that

u ◦ ϕ(y) < min
(

inf
B1

u ◦ ϕ, u ◦ ϕ(y0) + 2K − ‖l‖
)

.

In addition, since the function u ◦ ϕ is differentiable almost everywhere, we can assume that the
function u ◦ ϕ is differentiable at y. We have the inequality

u ◦ ϕ(y0) 6 u ◦ ϕ(y) + d(u ◦ ϕ)y(y − y0) +K‖y − y0‖
2

from which follow

d(u ◦ ϕ)y(y0 − y) 6 u ◦ ϕ(y)− u ◦ ϕ(y0) +K‖y − y0‖
2

6 11K − ‖l‖.

Hence ‖d(u ◦ ϕ)y‖ > (‖l‖ − 11K)/3. This ends the proof of the claim.

claim

In order to continue the proof of the Lemma, we consider the point y ∈ B2 given by the claim.
There exists a chart ϕ1 ∈ Φ and a point y1 ∈ B1 such that ϕ1(y1) = ϕ(y) =: x1. Note that u ◦ϕ1

is differentiable at x1, and define

l1 := d(u ◦ ϕ1)y1 = d(u ◦ ϕ)y ◦ d(ϕ
−1 ◦ ϕ1)y1 .

There exists a constant C > 1, which depends only on the atlas Φ, and such that

‖l1‖ > (‖l0‖ − 11K)/C.
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If l0 is large enough, then we have ‖l1‖ > 11K, hence we can apply the lemma again, and find a
chart ϕ2, a point y2 ∈ B2 and a linear form l2. In addition, we have

u ◦ ϕ2(y2) < inf
ϕ(B1)∪ϕ1(B1)

u,

so that the charts ϕ, ϕ1 and ϕ2 are different. Now if ‖l0‖ is sufficiently large, the process can
be continued further and we can build inductively, for 0 6 i 6 N , a sequence xi ∈ B1 of points,
a sequence ϕi ∈ Φ of different charts, and a sequence li of linear forms such that ‖li+1‖ >

(‖li‖ − 11K)/C. The process can be continued as long as ‖li‖ > 11K. Recall that the cardinal
of Φ is finite, and denote it by |Φ|. Since all the charts involved in the construction above are
different, at most |Φ| steps can be performed. Hence there exists an integer N 6 |Φ| such that
‖li‖ > 11K for i < N , and ‖lN‖ 6 11K. This gives a bound to ‖l‖, hence to ‖p‖.

lemma

We now finish the proof of the Theorem. Let us consider a smooth function g : Rd −→ R such
that 0 6 g 6 1, and such that g = 0 outside of B2 and g = 1 inside B1. Since the K-semi-concave
functions are equi-Lipschitz, and since the manifold M is compact, there exists a number ∆ > 0
such that

maxu−min u 6 ∆

for each K-semi-concave function u. Let us associate, to each chart ϕ ∈ Φ, and each point
(x, p) ∈ TxM satisfying x ∈ ϕ(B1), the function fx,p,ϕ : M −→ R defined by

fx,p,ϕ ◦ ϕ(z) := g(z)
(

p ◦ dϕy(z − y) +K‖z − y‖2
)

+ (1− g(z))∆

for z ∈ B2, where y = ϕ−1(x), and fx,p,ϕ = ∆ outside of ϕ(B2). The functions fx,p,ϕ, (x, p) ∈
LK , ϕ ∈ Φ form a bounded subset F of C2(M,R). For each K-semi-concave function u, let
Fu ⊂ F + R be the set of functions

z 7−→ fx,p,ϕ(z) + u(x)

where p is a K-super-differential of u at x. We claim that u = minf∈Fu
f . In order to prove this

claim, observe that, for each y ∈ B1, ϕ ∈ Φ and p a K-super-differential of u at x = ϕ(y), we have

fx,p,ϕ − u(x) > u

with equality at x. Indeed, we have the inequalities

u ◦ ϕ(z)− u(x) 6 p ◦ dϕx(z − y) +K‖z − y‖2

for z ∈ B2 and u 6 u(x) + ∆. theorem

B Uniform families of Hamiltonians

Let us fix once and for all a Riemann metric on the compact manifold M . We use this metric
to define a norm |v| for tangent vectors, and a norm |p| for tangent covectors.

(B.1) A family of pairs (H,L) of dual Hamiltonians and Lagrangians satisfying the hypotheses
(1.1) and (1.2) is called uniform if:

(i) There exist two superlinear functions h0 and h1 : R
+ −→ R such that each Hamiltonian H

of the family satisfies h0(|p|) 6 H(t, x, p) 6 h1(|p|).

(ii) There exists an increasing function K(k) : R+ −→ R+ such that, if φ is the flow of a
Hamiltonian of the family and if the times t and s satisfy t− 1 6 s 6 t+ 1, then

φs
t

(

{|p| 6 k}
)

⊂ {|p| 6 K(k)} ⊂ T ∗M.
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(iii) There exists a finite atlas Ψ of M such that, for each chart ψ ∈ Ψ and each Lagrangian L of
the family, we have ‖d2(L ◦ Tψ)(t,x,v)‖ 6 K(k) for |v| 6 k.

Note that condition (i) could have equivalently been replaced by the following:

(i′) There exist two superlinear functions l0 and l1 : R+ −→ R such that each Lagrangian L of
the family satisfies l0(|v|) 6 L(t, x, v) 6 l1(|v|).

(B.2) The uniform families of highest use are the following. If H is a Hamiltonian, and if ω
is a bounded finite-dimensional convex family of closed one-forms on M , then the Hamiltonians
H(t, x, p+ωx), ω ∈ Ω form a uniform family. Equivalently, the Lagrangians L(t, x, v)−ωx(v) form
a uniform family.

(B.3) In a uniform family, we have

|∂pH(t, x, p)| >
h0(|p|)− h1(0)

|p|

and

|∂vL(t, x, v)| >
l0(|v|) − l1(0)

|v|
.

In other words, the Legendre transforms are uniformly proper.

Proof. In view of the convexity of H , we have

|∂pH(t,x,p)| >
H(t, x, p)−H(t, x, 0)

|p|
.

(B.4) Given a LagrangianL satisfying the hypotheses of (1.2), we define the function AL(t, x; s, y) :
R×M × R×M −→ R by

AL(t, x; s, y) = inf
γ∈Σ(t,x;s,y)

∫ s

t

L(σ, γ(σ), γ̇(σ)) dσ,

Where Σ(t, x; s, y) is the set of absolutely continuous curves γ : [s, t] −→M satisfying γ(t) = x and
γ(s) = y. We denote by ΣL

m(t, x; s, y) the set of curves of Σ(t, x; s, y) which realize the minimum.

(B.5) For each uniform family of Lagrangians, there exists a decreasing function K1(ε) :]0,∞) −→
R+ such that, if L is a Lagrangian of the family and if t and s are two real times satisfying t > s+ε,
then each curve γ ∈ ΣL

m(t, x; s, y) is C2 and satisfies |γ̇(σ)| 6 K(ε) for each σ ∈ [s, t].

Proof. Without loss of generality, we can assume that 0 < ε < t − s < 1. By comparing the
action of γ with that of a geodesic with the same endpoints, we get

∫ t

s

l0(|γ̇(σ)|)dσ 6

∫ t

s

L(σ, γ(σ), γ̇(σ))dσ 6 (t− s)l1

(

diam(M)

t− s

)

The right hand side is clearly bounded by a constant which depends only of the parameters of the
uniform family and of ε. We obtain

(t− s) min l0(|γ̇(σ)|) 6 C,

from which follows, with another constant C, that min |γ̇(σ)| 6 C. But then in view of (B.3), we
have

min
σ∈[s,t]

|∂vL(σ, γ(σ), γ̇(σ))| 6 C,
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then in view of (ii),
max

σ∈[s,t]
|∂vL(σ, γ(σ), γ̇(σ))| 6 C,

so that finally, using (B.3) again, we get max |γ̇| 6 C. We have used the symbol C for different
constants which depend only of ε and of the parameters of the family.
Note that the proof does not use (iii) in the definition of uniform families.

(B.6) For each times s < t, the mapping which, to a Lagrangian L, associates the function

(x, y) 7−→ AL(s, x, t, y)

of C(M ×M,R), is continuous on each uniform family of Lagrangians endowed with the topology
of uniform convergence on compact sets.

Proof. Let L0 and L1 be two Lagrangians of the family. Let γ(σ) : [s, t] −→M be such that

AL0(s, γ(s); t, γ(t)) =

∫ t

s

L0(σ, γ(σ), γ̇(σ)) dσ.

We have

AL1(s, γ(s); t, γ(t)) 6

∫ t

s

L1(σ, γ(σ), γ̇(σ)) dσ,

so that
AL1(s, γ(s); t, γ(t))−AL0(s, γ(s); t, γ(t)) 6 (t− s) max

|v|6K1(t−s)
L1 − L0,

where K1 is defined in (B.5). By symmetry, we get that

‖AL0(s, .; t, .)−AL1(s, .; t, .)‖∞ 6 (t− s) max
|v|6K1(t−s)

|L1 − L0|.

(B.7) Theorem. For each uniform family of Lagrangians and each ε > 0, consider the set
Uε of continuous functions M ×M −→ R given by

(x, y) 7−→ AL(s, x; t, y)

where t > s + ε and L is a Lagrangian of the family. This set is equi-semi-concave, hence equi-
Lipschitz on M ×M . In addition, for each curve γ ∈ ΣL

m(t, x; s, y), the covector
(

− ∂vL(s, γ(s), γ̇(s)), ∂vL(t, γ(t), γ̇(t))
)

is a proximal super-differential of the function AL(s, .; t, .) at point (x, y).

Proof. Let us consider a finite atlas Ψ of M formed by charts ψ : Bd
6 −→ M , where Bd

r is the
Euclidean ball of radius r in R

d. Assume that the open sets ψ(Bd
1/2), ψ ∈ Ψ, cover M . Let Φ be

the atlas of M ×M composed of products ψ×ψ′, with ψ ∈ Ψ and ψ′ ∈ Ψ′. The charts ϕ of Φ are
defined on B2d

3 , and the images ϕ(B2d
1 ), ϕ ∈ Φ, cover M ×M . In order to prove that the set Uε is

equi-semi-concave, we shall check that it is K-semi-concave for some K. So from now on we shall
work in a fixed chart ϕ = ψ0 × ψ1.

Let (x0, x1) be a point in ψ0(B2) × ψ1(B2), and let y0 and y1 be the preimages in B2. Let
γ(t) : [s, t] −→ M be a curve in Σm(s, x0; t, x1). In view of (B.5), we have |γ̇| 6 K1(ε). As a
consequence, there exists a constant a > 0, which depends only on the atlas, on the parameters of
the family, and of ε, such that the curve ψ−1

0 ◦γ : [s, s+1/a] −→ Bd
4 is well defined and a-Lipschitz,

as well as the curve ψ−1
1 ◦ γ : [t − 1/a, t] −→ Bd

4 . Let us call y0(σ) and y1(σ) these curves, note
that y0(s) = y0 and y1(t) = y1. Let us now define, for each points z0 and z1 in B4, the curves

y0(σ, z0) := y0(σ) + (1 + a(s− σ))(z0 − y0)
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and
y1(σ, z1) := y1(σ) + (1 + a(σ − t))(z1 − y1).

For simplicity we define the Lagrangians L0 and L1 on R×Bd
4×Rd by the expression Li(σ, x, v) =

L(σ, ψi(x), dψix(v)), shortly, Li = L ◦ Tψi. We have

A(s, ψ0(z0); t, ψ1(z1))

6 A(s, x0; t, x1) +

∫ s+1/a

s

L0(σ, y0(σ, z0), ẏ0(σ, z0))− L0(σ, y0(σ), ẏ0(σ)) dσ

+

∫ t

t−1/a

L1(σ, y1(σ, z1), ẏ1(σ, z1))− L1(σ, y1(σ), ẏ1(σ)) dσ.

There exists a constant C > 0, which depends only on the atlas, on the parameters of the family,
of ε, and of a, such that, for (t, x, v) ∈ R×Bd

4 ×B
d
a and (y, w) ∈ R×Bd

4 ×B
d
a , we have

Li(σ, y, w) − Li(σ, x, v) 6 ∂xLi(σ,x,v)(y − x) + ∂vLi(σ,x,v)(w − v) + C(‖y − x‖2 + ‖w − v‖2).

We get
A(s, ψ0(z0); t, ψ1(z1)) 6 A(s, x0; t, x1)

+

∫ s+1/a

s

∂xL0(σ,y0(σ),ẏ0(σ))(y0(σ, z0)− y0(σ)) + ∂vL0(σ,y0(σ),ẏ0(σ))(ẏ0(σ, z0)− ẏ0(σ)) dσ

+

∫ t

t−1/a

∂xL0(σ,y0(σ),ẏ0(σ))(y0(σ, z0)− y0(σ)) + ∂vL0(σ,y0(σ),ẏ0(σ))(ẏ0(σ, z0)− ẏ0(σ)) dσ

+C

∫ s+1/a

s

‖y0(σ)− y0(σ, z0)‖
2 + ‖ẏ0(σ)− ẏ0(σ, z0)‖

2 dσ

+C

∫ t

t−1/a

‖y1(σ) − y1(σ, z1)‖
2 + ‖ẏ1(σ)− ẏ1(σ, z1)‖

2 dσ.

Taking advantage of the Euler-Lagrange equations, this simplifies to

A(s, ψ0(z0); t, ψ1(z1)) 6 A(s, x0; t, x1)− ∂vL0(σ,y0,ẏ0(s))(z0 − y0) + ∂vL1(σ,y1,ẏ1(t))(z1 − y1)

+C
1 + a2

a
(‖y0 − z0‖

2 + ‖y1 − z1‖
2).
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