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SYMPLECTIC ASPECTS OF MATHER THEORY

PATRICK BERNARD

Abstract
We prove that the Aubry and Mañé sets introduced by Mather in Lagrangian dynamics
are symplectic invariants. In order to do so, we introduce a barrier on phase space. This
is also an occasion to suggest an Aubry-Mather theory for nonconvex Hamiltonians.

Résumé
On montre que les ensembles d’Aubry et de Mañé introduits par Mather en dynamique
Lagrangienne sont des invariants symplectiques. On introduit pour ceci une barriere
dans l’espace des phases. Ceci est aussi l’occasion d’ébaucher une théorie d’Aubry-
Mather pour des Hamiltoniens non convexes.

In Lagrangian dynamics, John Mather has defined several invariant sets, now
called the Mather set, the Aubry set, and the Mañé set. These invariant sets provide
obstructions to the existence of orbits wandering in phase space. Conversely, the
existence of interesting orbits has been proved under some assumptions on the topology
of these sets. Such results were first obtained by John Mather in [12] and then in several
papers (see [1], [3], [4], [5], [17], [18] as well as recent unpublished works of John
Mather).

In order to apply these results to examples, one has to understand the topology
of the Aubry and Mañé sets, which is a very difficult task. In many perturbative
situations, averaging methods appear as a promising tool in that direction. In order to
use these methods, one has to understand how the averaging transformations modify
the Aubry-Mather sets. In the present article, we answer this question and prove that
the Mather set, the Aubry set, and the Mañé set are symplectic invariants.

In order to do so, we define a barrier on phase space, which is some symplectic
analogue of the function called the Peierls’s barrier by Mather in [12]. We then propose
definitions of Aubry and Mañé sets for general Hamiltonian systems. We hope that
these definitions may also serve as the starting point of an Aubry-Mather theory for
some classes of nonconvex Hamiltonians. We develop the first steps of such a theory.

Several earlier works gave hints towards the symplectic nature of Aubry-Mather
theory (see [2], [14], [15], [16], [11], for example). These works prove the symplectic
invariance of the α function of Mather, and one may consider that the symplectic
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invariance of the Aubry set is not a surprising result after them. However, it was not
clear to us beforehand that the Mañé set is a symplectic invariant, although a similar
result has been proved by Mather in dimension 2 (see [11, Proposition 3.1]). It is
possible that the geometric methods introduced in [14] may also be used to obtain
symplectic definitions of the Aubry and Mañé sets.

1. Mather theory in Lagrangian dynamics
We recall the basics of Mather theory and state our main result, Theorem 1. The
original references for most of the material presented in this section are Mather’s
papers [10] and [12]. The central object is the Peierls’s barrier, introduced by Mather
in [12]. Our presentation is also influenced by the work of Fathi [9].

1.1
In this section, we consider a C2 Hamiltonian function H : T ∗M × T −→ R, where
M is a compact connected manifold without boundary and T = R/Z. We denote by
P = (q, p) the points of T ∗M . The cotangent bundle is endowed with its canonical
one-form η = pdq and with its canonical symplectic form ω = −dη. Following a
very standard device, we reduce our nonautonomous Hamiltonian function H to an
autonomous one by considering the extended phase space T ∗(M ×T) = T ∗M ×T ∗T.
We denote by (P, t, E), P ∈ T ∗M , (t, E) ∈ T ∗T the points of this space. We consider
the canonical one-form λ = pdq+Edt and the associated symplectic form% = −dλ.
We define the new Hamiltonian G : T ∗(M × T) −→ R to be the expression

G(P, t, E) = E + H (P, t).

We denote by VG(P, t, E) the Hamiltonian vector field of G, which is defined by the
relation

%(P,t,E)(VG, ·) = dG(P,t,E).

We fix once and for all a Riemannian metric on M and use it to define norms of tangent
vectors and tangent covectors of M . We denote this norm indifferently by |P | or by
|p| when P = (q, p) ∈ T ∗

q M . We denote by π the canonical projections T ∗M −→ M

or T ∗(M × T) −→ M × T. The theory of Mather relies on the following standard set
of hypotheses.
(1) Completeness. The Hamiltonian vector field VG on T ∗(M × T) generates a

complete flow, denoted by 't . The flow 't preserves the level sets of G.
(2) Convexity. For each (q, t) ∈ M × T, the function p &−→ H (q, p, t) is convex

on T ∗
q M , with positive definite Hessian. In short, ∂2

pH > 0.
(3) Superlinearity. For each (q, t) ∈ M × T, the function p &−→ H (q, p, t) is

superlinear, which means that lim|p|−→∞ H (t, x, p)/|p| = ∞.
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1.2
We associate to the Hamiltonian H a Lagrangian function L : T M ×T −→ R defined
by

L(t, q, v) = sup
p∈T ∗

q M

p(v) − H (t, q, p).

The Lagrangian satisfies the following.
(1) Convexity. For each (q, t) ∈ M × T, the function v &−→ L(q, v, t) is a convex

function on TqM , with positive definite Hessian. In short, ∂2
vL > 0.

(2) Superlinearity. For each (q, t) ∈ M × T, the function v &−→ L(q, v, t) is
superlinear on TqM .

Let X(t) = (P (t), s + t, E(t)) be a Hamiltonian orbit of G, and let q(t) = π(P (t)).
Then we have the identities

λX(t)
(
Ẋ(t)

)
− G

(
X(t)

)
= ηP (t)

(
Ṗ (t)

)
− H

(
P (t), s + t

)
= L

(
q(t), q̇(t), s + t

)
.

1.3
Following John Mather, we define the function F : M × T × M × R+ −→ R by

F (q0, t ; q1, s) = min
γ

∫ s

0
L

(
γ (σ ), γ̇ (σ ), t + σ

)
dσ,

where the minimum is taken on the set of absolutely continuous curves γ : [0, s] −→
M , which satisfy γ (0) = q0 and γ (1) = q1. We also define the Peierls’s barrier
h : M × T × M × T −→ R ∪ {±∞} by

h(q0, t0; q1, t1) := lim inf
n∈N

F (q0, t0; q1, s1 + n),

where t0 + s1 mod 1 = t1. This barrier is the central object in Mather’s study of
globally minimizing orbits.

1.4
Let us set m(H ) = inf(q,t)∈M×T h(q, t ; q, t). It follows from [10] (see also [12] and
[13]), that m(H ) ∈ {−∞, 0,+∞}. In addition, for each Hamiltonian H satisfying the
hypotheses in Section 1.1, there exists one and only one real number α(H ) such
that m(H − α(H )) = 0. As a consequence, there is no loss of generality in assum-
ing that m(H ) = 0 or, equivalently, that α(H ) = 0. We make this assumption from
now on in this section. Let us mention the terminology of Mañé, who called the
Hamiltonians H satisfying m(H ) = +∞ supercritical, the Hamiltonians satisfying
m(H ) = −∞ subcritical, and the Hamiltonians satisfying m(H ) = 0 critical.
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1.5
If m(H ) = 0, then the function h is a real-valued Lipschitz function on M×T×M×T,
which satisfies the triangle inequality

h(q0, t0; q2, t2) ! h(q0, t0; q1, t1) + h(q1, t1; q2, t2)

for all (q0, t0), (q1, t1) and (q2, t2) in M × T. In addition, for each (q, t) ∈ M × T,
the function h(q, t ; ·, ·) is a weak Kolmogorov-Arnold-Moser (KAM) solution in the
sense of Fathi, which means that, for τ " θ in R and x ∈ M , we have

h(q, t ; x, τ mod 1) = min
(
h
(
q, t ; q(θ), θ mod 1

)
+

∫ τ

θ

L
(
q(s), q̇(s), s

)
ds

)
,

where the minimum is taken on the set of absolutely continuous curves q(s) :
[θ, τ ] −→ M such that q(τ ) = x. Similarly, we have, for τ " θ in R and x ∈ M ,

h(x, θ mod 1; q, t) = min
(
h
(
q(τ ), τ mod 1; q, t

)
+

∫ τ

θ

L
(
q(s), q̇(s), s

)
ds

)
,

where the minimum is taken on the set of absolutely continuous curves q(s) :
[θ, τ ] −→ M such that q(θ) = x.

1.6
The projected Aubry set A(H ) is the set of points (q, t) ∈ M × T such that
h(q, t ; q, t) = 0. Fathi proved that, for each point (q, t) ∈ A(H ), the func-
tion h(q, t ; ·, ·) is differentiable at (q, t). Let us denote by X(q, t) the differential
∂3h(q, t ; q, t) ∈ T ∗

q M of the function h(q, t ; ·, t) at point q. The Aubry set Ã(H ) is
defined as

Ã(H ) =
{(

X(q, t), t, −H (X(q, t), t)
)
; (q, t) ∈ A(H )

}
⊂ T ∗(M × T).

The Aubry set is compact and'-invariant, and it is a Lipschitz graph over the projected
Aubry set A(H ). These are Mather’s results (see [12]). In our presentation, which
follows Fathi, this amounts to say that the function (q, t) &−→ X(q, t) is Lipschitz on
A(H ).

1.7
The Mather set M̃(H ) is defined as the union of the supports of all '-invariant
probability measures on T ∗(M × T) concentrated on Ã(H ). This set was first defined
by Mather, but our definition is due to Mañé.
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1.8
The projected Mañé set N(H ) is the set of points (q, t) ∈ M ×T such that there exist
points (q0, t0) and (q1, t1) in A(H ), satisfying

h(q0, t0; q1, t1) = h(q0, t0; q, t) + h(q, t ; q1, t1).

Let us denote by I(q0, t0; q1, t1) the set of points (q, t) ∈ M × T, which satisfy
this relation. If (q0, t0) ∈ A(H ) and (q1, t1) ∈ A(H ) are given and if (q, t) ∈
I(q0, t0; q1, t1), then the function h(q0, t0; ·, t) is differentiable at q, as well as the
function h(·, t ; q1, t1), and ∂3h(q0, t0, q, t)+∂1h(q, t ; q1, t1) = 0. This is proved in [3]
following ideas of Fathi. We define

Ĩ(q0, t0; q1, t1)
:=

{(
∂3h(q0, t0, q, t), t,−H (∂3h(q0, t0, q, t), t)

)
, (q, t) ∈ I(q0, t0; q1, t1)

}
.

The set Ĩ(q0, t0; q1, t1) is a compact '-invariant subset of T ∗(M × T), and it is a
Lipschitz graph. The Mañé set Ñ(H ) is the set

Ñ(H ) =
⋃

(q0,t0),(q1,t1)∈A(H )

Ĩ(q0, t0; q1, t1) ⊂ T ∗(M × T).

The Mañé set was first introduced by Mather in [12]; it is compact and '-invariant,
and it contains the Aubry set. In other words, we have the inclusions

M̃(H ) ⊂ Ã(H ) ⊂ Ñ(H ).

The Mañé set is usually not a graph. However, it satisfies

Ñ(H ) ∩ π−1(A(H )
)

= Ã(H ).

This follows from the fact, proved by Fathi, that, for each (x, θ) ∈ M × T and
each (q, t) ∈ A(H ), the function h(x, θ ; ·, t) is differentiable at q and satisfies
∂3h(x, θ ; q, t) = X(q, t).

1.9
Mather introduced the function d(q, t ; q ′, t ′) = h(q, t ; q ′, t ′) + h(q ′, t ′; q, t) on
M × T. When restricted to A(H ) × A(H ), it is a pseudometric. This means
that this function is symmetric and nonnegative, satisfies the triangle inequality,
and d(q, t ; q, t) = 0 for (q, t) ∈ A(H ). We also denote by d the pseudometric
d(P, t, −H (P, t); P ′, t ′, −H (P ′, t ′)) = d(π(P ), t ;π(P ′), t ′) on Ã(H ). The relation
d(P, t, E; P ′, t ′, E′) = 0 is an equivalence relation on Ã(H ). The classes of equiv-
alence are called the static classes. Let us denote by Ȧ(H ) the set of static classes.
The pseudometric d gives rise to a metric ḋ on Ȧ(H ). The compact metric space
(Ȧ(H ), ḋ) is called the quotient Aubry set. It was introduced by Mather.
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1.10
The diffeomorphism - : T ∗(M × T) −→ T ∗(M × T) is called exact if the form
-∗λ − λ is exact.

THEOREM

Let H be a Hamiltonian satisfying the hypotheses in Section 1.1, and let - : T ∗(M ×
T) −→ T ∗(M × T) be an exact diffeomorphism such that the Hamiltonian

-∗H := G ◦ -(P, t, E) − E

is independent of E and satisfies the hypotheses in Section 1.1 when considered as
a function on T ∗M × T. Then m(-∗H ) = m(H ), and hence, α(H ) = α(-∗H ). If
m(H ) = 0, then we have

-
(
M̃(-∗H )

)
= M̃(H ), -

(
Ã(-∗H )

)
= Ã(H ), -

(
Ñ(-∗H )

)
= Ñ(H ).

In addition, - sends the static classes of -∗H onto the static classes of H , and the
induced mapping

-̇ : Ȧ(-∗H ) −→ Ȧ(H )

is an isometry for the quotient metrics.

1.11
We prove this result in the following. In Section 2, we set the basis of a symplectic
Aubry-Mather theory for general Hamiltonian systems. We prove that the analogue of
Theorem 1.10 holds in this general setting. We also continue the theory a bit further
than would be necessary to prove Theorem 1.10. In Section 3, we prove that, under
the hypotheses of Theorem 1.10, the symplectic Aubry-Mather sets coincide with the
standard Aubry-Mather sets, which ends the proof of Theorem 1.10.

2. A barrier in phase space
We propose general definitions for a Mather theory of Hamiltonian systems. Of course,
the definitions given here provide relevant objects only for some specific Hamiltonian
systems. It would certainly be interesting to give natural conditions on H implying
the nontriviality of the theory developed in this section. We only check, in Sec-
tion 3, that our definitions coincide with the standard ones in the convex case, obtaining
nontriviality in this special case. Let us mention once again that it might be possible
and interesting to find more geometric definitions using the methods of [14].

2.1
In Section 2, we work in a very general setting. We consider a manifold N , not
necessarily compact, and an autonomous Hamiltonian function G : T ∗N −→ R. We
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assume that G generates a complete Hamiltonian flow 't . We make no convexity
assumption. We denote by λ the canonical one-form of T ∗N , and we denote by VG(P )
the Hamiltonian vector field of G. Let D(P,P ′) be a distance on T ∗N induced from
a Riemannian metric. We identify N with the zero section of T ∗N , so that D is also a
distance on N . We assume that D(π(X),π(X′)) ! D(X, X′) for X and X′ in T ∗N .

2.2
Let X0 and X1 be two points of T ∗N . A preorbit between X0 and X1 is the data
of a sequence Y = (Yn) of curves Yn(s) : [0, Tn] −→ T ∗N such that we have the
following.
(1) For each n, the curve Yn has a finite number Nn of discontinuity points T i

n ∈
]0, Tn[, 1 ! i ! Nn, such that T i+1

n > T i
n . We also often use the notations

T 0
n = 0 and T Nn+1

n = Tn.
(2) The curve Yn satisfies Yn(T i

n + s) = 's(Yn(T i
n )) for each s ∈ [0, T i+1

n − T i
n [.

We denote by Yn(T i
n−) the point 'T i

n−T i−1
n

(Y (T i−1
n )) and impose that Yn(Tn) =

Yn(Tn−).
(3) We have Tn −→ ∞ as n −→ ∞.
(4) We have Yn(0) −→ X0 and Yn(Tn) −→ X1. In addition, we have

limn−→∞ .(Yn) = 0, where we denote by .(Yn) the sum
∑Nn

i=1 D(Yn(T i
n−),

Yn(T i
n )).

(5) There exists a compact subset K ⊂ T ∗N which contains the images of all the
curves Yn.

The preorbits do not depend on the metric, which has been used to define the distance
D. In a standard way, we call action of the curve Yn(t) the value

A(Yn) =
∫ Tn

0
λYn(t)

(
Ẏn(t)

)
− G

(
Yn(t)

)
dt.

The action of the preorbit Y is

A(Y ) := lim inf
n−→∞

A(Yn).

2.3
LEMMA

If there exists a preorbit between X0 and X1, then G(X0) = G(X1).

Proof
This follows easily from the fact that the Hamiltonian flow' preserves the Hamiltonian
function G.

2.4
We define the barrier h̃ : T ∗N × T ∗N −→ R ∪ {±∞} by the expression

h̃(X0, X1) = inf
Y

A(Y ),
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where the infimum is taken on the set of preorbits between X0 and X1. As usual,
we set h̃(X0, X1) = +∞ if there does not exist any preorbit between X0 and X1. If
h̃(X0, X1) < +∞, then the forward orbit of X0 and the backward orbit of X1 are
bounded. As a consequence, if h̃(X, X) < +∞, then the orbit of X is bounded.

2.5
PROPERTY

For each t > 0, we have the equality

h̃(X0, X1) = h̃
(
't (X0), X1

)
+

∫ t

0
λ's (X0)

(
VG('s(X0))

)
− G

(
's(X0)

)
ds

and

h̃
(
X0,'t (X1)

)
= h̃(X0, X1) +

∫ t

0
λ's (X1)

(
VG('s(X1))

)
− G

(
's(X1)

)
ds.

Proof
We prove the first equality; the proof of the second one is similar. To each
preorbit Y between X0 and X1, we associate the preorbit Z between 't (X0) and
X1 defined by Zn(s) : [0, Tn − t] - s &−→ Yn(s + t). We have

A(Y ) = A(Z) +
∫ t

0
λ's (X0)

(
VG('s(X0))

)
− G

(
's(X0)

)
ds.

This implies that

h̃
(
't (X0), X1

)
! h̃(X0, X1) −

∫ t

0
λ's (X0)

(
VG('s(X0))

)
− G

(
's(X0)

)
ds.

In a similar way, we associate to each preorbit Z = Zn(s) : [0, Tn] −→ T ∗N between
't (X0) and X1 the preorbits Y : [0, Tn + t] −→ T ∗N between X0 and X1 defined by
Yn(s) = 's−t (Zn(0)) for s ∈ [0, t] and Yn(s) = Zn(s − t) for s ∈ [t, Tn + t]. We have

A(Y ) = A(Z) +
∫ t

0
λ's (X0)

(
VG('s(X0))

)
− G

(
's(X0)

)
ds.

This implies that

h̃(X0, X1) ! h̃
(
't (X0), X1

)
+

∫ t

0
λ's (X0)

(
VG('s(X0))

)
− G

(
's(X0)

)
ds.
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2.6
PROPERTY

The function h̃ satisfies the triangle inequality. More precisely, the relation

h̃(X1, X3) ! h̃(X1, X2) + h̃(X2, X3)

holds for each point X1, X2, and X3 such that the right-hand side has a meaning.

Proof
If one of the values h̃(X1, X2) or h̃(X2, X3) is +∞, then there is nothing to prove.
If they are both different from +∞, then, for each ε > 0, there exists a preorbit
Y = Yn : [0, Tn] −→ T ∗N between X1 and X2 such that A(Y ) ! h̃(X1, X2) + ε

(resp., A(Y ) ! −1/ε in the case where h̃(X1, X2) = −∞) and a preorbit Y ′ = Y ′
n :

[0, Sn] −→ T ∗N between X2 and X3 such that A(Y ′) ! h̃(X2, X3)+ε (resp., A(Y ′) !
−1/ε in the case where h̃(X1, X2) = −∞). Let us consider the sequence of curves
Zn(t) : [0, Tn + Sn] −→ T ∗N such that Zn = Xn on [0, Tn[ and Zn(t + Tn) = Yn(t)
for t ∈ [0, Sn]. It is clear that the sequence Z = Zn is a preorbit between X1 and X3

and that its action satisfies

A(Z) = A(X) + A(Y ) ! h̃(X1, X2) + h̃(X2, X3) + 2ε.

As a consequence, for all ε > 0, we have h̃(X1, X3) ! h̃(X1, X2) + h̃(X2, X3) + 2ε,
and hence, the triangle inequality holds.

2.7
PROPERTY

Let - : T ∗N −→ T ∗N be an exact diffeomorphism. We have the equality

h̃G◦-(X0, X1) = h̃G

(
-(X0),-(X1)

)
+ S(X0) − S(X1),

where S : T ∗N −→ R is a function such that -∗λ − λ = dS.

Proof
Observe first that Y = Yn is a preorbit for the Hamiltonian G ◦ - between points X0

and X1 if and only if -(Y ) = -(Yn) is a preorbit for the Hamiltonian G between
-(X0) and -(X1). As a consequence, it is enough to prove that

AG◦-(Y ) = AG

(
-(Y )

)
+ S(X0) − S(X1).
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Let us denote by Z = Zn the preorbit -(Yn). Setting T 0
n = 0 and T Nn+1

n = Tn, we
have

AG(Zn) =
Nn∑

i=0

∫ T i+1
n

T i
n

λZn(t)
(
Żn(t)

)
− G

(
Zn(t)

)
dt

=
Nn∑

i=0

∫ T i+1
n

T i
n

(-∗λ)Yn(t)
(
Ẏn(t)

)
− G ◦ -

(
Yn(t)

)
dt

=
Nn∑

i=0

( ∫ T i+1
n

T i
n

λYn(t)
(
Ẏn(t)

)
− G ◦ -

(
Yn(t)

)
dt

+ S
(
Yn(T i+1

n −)
)
− S

(
Yn(T i

n )
))

= AG◦-(Yn) − S
(
Yn(0)

)
+ S

(
Yn(Tn)

)

+
Nn∑

i=1

(
S(Yn(T i

n−)) − S
(
Yn(T i

n )
))

.

Since the function S is Lipschitz on the compact set K that contains the image of the
curves Yn, we obtain at the limit

AG(Z) = AG◦-(Y ) − S(X0) + S(X1).

2.8
PROPOSITION

Let us set m̃(G) := infX∈T ∗N h̃(X, X). We have m̃(G) ∈ {−∞, 0,+∞}. In addition,
if m̃(G) = 0, then there exists a point X in T ∗N such that h̃(X, X) = 0.

Proof
It follows from the triangle inequality that, for each X ∈ T ∗N , h̃(X, X) " 0 or
h̃(X, X) = −∞. As a consequence, m̃(G) " 0 or m̃(G) = −∞. Let us assume
that m̃(G) ∈ [0, ∞[. Then there exists a point X0 ∈ T ∗N and a preorbit Y = Yn :
[0, Tn] −→ T ∗N between X0 and X0 such that A(Y ) ∈ [0, ∞[. Let K be a compact
subset of T ∗N which contains the image of all the curves Yn. Let Sn be a sequence
of integers such that Tn/Sn −→ ∞ and Sn −→ ∞. Let bn be the integer part of
Tn/Sn. Note that bn −→ ∞. Let dn be a sequence of integers such that dn −→ ∞
and dn/bn −→ 0. Since the set K is compact, there exists a sequence εn −→ 0
such that whenever bn points are given in K , then at least dn of them lie in the same
ball of radius εn. So there exists a point Xn ∈ K such that at least dn of the points
Yn(Sn), Yn(2Sn), . . . , Yn(bnSn) lie in the ball of radius εn and center Xn. Let us denote
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by Yn(t1
n ), Yn(t2

n ), . . . , Yn(tdn
n ) these points, where t i+1

n " t in+Sn. Taking a subsequence,
we can assume that the sequence Xn has a limit X in K . It is not hard to see that
Y i = Yn | [t in,t

i+1
n ] is a preorbit between X and X. On the other hand, for each k ∈ N,

we define the sequence of curves Zk
n : [0, Tn + t1

n − tkn ] −→ T ∗N by Zk
n(t) = Yn(t)

for t ∈ [0, t1
n [ and Zk

n(t) = Yn(t + tkn − t1
n ) for t ∈ [t1

n , Tn + t1
n − tkn ]. For each k, the

sequence Zk
n is a preorbit between X0 and X0. We have

A(Yn) = A(Zk
n) +

k−1∑

i=1

A(Y i
n),

and hence,

A(Y ) " h̃(X0, X0) + (k − 1)h̃(X, X).

Since A(Y ) is a real number and since this inequality holds for all k ∈ N, this implies
that h̃(X, X) = 0.

2.9
Let us define the symplectic Aubry set of G as the set

Ãs(G) :=
{
X ∈ T ∗N such that h̃(X, X) = 0 and G(X) = 0

}
⊂ T ∗N.

The symplectic Mather set M̃s(G) of G is the union of the supports of the compactly
supported '-invariant probability measures concentrated on Ãs(G). Note that, in
general, it is not clear that the symplectic Aubry set should be closed. The symplectic
Mather set, then, may not be contained in the symplectic Aubry set but only in its
closure. The Mather set and the Aubry set are '-invariant, as follows directly from
Property 2.5. If m̃(G) = 0, then the symplectic Aubry set is not empty, and all its
orbits are bounded; hence, the symplectic Mather set M̃s(G) is not empty.

2.10
For each pair X0, X1 of points in Ãs(G), we define the set Ĩs(X0, X1) of points
P ∈ T ∗N such that

h̃(X0, X1) = h̃(X0, X) + h̃(X, X1)

if h̃(X0, X1) ∈ R, and Ĩs(X0, X1) = ∅ otherwise. Note that the sets Ĩs(X0, X1) are
all contained in the level {G = 0}. Indeed, the finiteness of h̃(X0, X) implies that
G(X0) = G(X), while G(X0) = 0 by definition of Ãs(G). It follows from Property
2.5 that the set Ĩs(X0, X1) is '-invariant. We now define the symplectic Mañé set as

Ñs(G) :=
⋃

X0,X1∈Ãs (G)

Ĩs(X0, X1).
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The Mañé set is '-invariant; all its orbits are bounded. We have the inclusion

Ãs(G) ⊂ Ñs(G).

In order to prove this inclusion, just observe that X0 ∈ Ĩ(X0, X0) for each X0 ∈
Ãs(G).

2.11
If - : T ∗N −→ T ∗N is an exact diffeomorphism, then we have

-
(
M̃s(G◦-)

)
= M̃s(G), -

(
Ãs(G◦-)

)
= Ãs(G), -

(
Ñs(G◦-)

)
= Ñs(G).

This obviously follows from Property 2.7 and from the fact that - conjugates the
Hamiltonian flow of G and the Hamiltonian flow of G ◦ -.

2.12
Let us assume that m̃(G) = 0, and set

d̃(X, X′) = h̃(X, X′) + h̃(X′, X).

We have d̃(X, X′) " 0, and the function d̃ satisfies the triangle inequality and is
symmetric. In addition, we obviously have d̃(X, X) = 0 if and only if X ∈ Ãs(G).
The restriction of the function d̃ to the set Ãs(G) is a pseudometric with +∞ as a
possible value. We define an equivalence relation on Ãs(G) by saying that the points
X and X′ are equivalent if and only if d̃(X, X′) = 0. The equivalence classes of this
relation are called the static classes. Let us denote by (Ȧs(G), ḋs) the metric space
obtained from Ãs by identifying points X and X′ when d̃(X, X′) = 0. In other words,
the set Ȧs(G) is the set of static classes of H . We call (Ȧs(G), ḋs) the quotient
Aubry set. Note that the metric ḋs can take the value +∞. The quotient Aubry set
is also well behaved under exact diffeomorphisms. More precisely, if - is an exact
diffeomorphism of T ∗N , then the image of a static class of G ◦ - is a static class of
G. This defines a map

-̇ : Ȧs(G ◦ -) −→ Ȧs(G),

which is an isometry for the quotient metrics.

2.13
PROPOSITION

Assume that m̃(G) = 0, and in addition assume that the function h̃ is bounded from
below. Then the orbits of Ñs(G) are biasymptotic to Ãs(G). In addition, for each
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orbit X(s) in Ñs(G), there exists a static class S− in Ãs(G) and a static class S+
such that the orbit X(s) is α-asymptotic to S− and ω-asymptotic to S+.

Proof
Let ω and ω′ be two points in the ω-limit of the orbits X(t) = 't (X). We have to
prove that ω and ω′ belong to the symplectic Aubry set and to the same static class.
It is enough to prove that d̃(ω,ω′) = 0. In order to do so, we consider two increasing
sequences tn and sn, such that tn − sn −→ ∞, sn − tn−1 −→ ∞, X(tn) −→ ω,
and X(sn) −→ ω′. Let Y = Yn : [0, tn − sn] −→ T ∗N be the preorbit between ω′

and ω defined by Yn(t) = X(t − sn). Similarly, we consider the preorbit Z = Zn :
[0, sn+1 − tn] −→ T ∗N between ω and ω′ defined by Zn(t) = X(t − tn). Since X

belongs to Ñs(G), there exist points X0 and X1 in Ãs(G) such that X ∈ Ĩ(X0, X1).
In view of Property 2.5, we have

h̃
(
X(tn), X1

)
= h̃

(
X(tm), X1

)
+

∫ tm

tn

λX(t)
(
Ẋ(t)

)
− G

(
X(t)

)
dt

for all m " n. Since the function h̃ is bounded from below, we conclude that the
double sequence

∫ tm
tn
λX(t)(Ẋ(t)) −G(X(t)) dt, m " n, is bounded from above, so that

lim inf
∫ tn+1

tn

λX(t)
(
Ẋ(t)

)
− G

(
X(t)

)
dt ! 0.

As a consequence, we have lim inf A(Yn+1)+A(Zn) ! 0, and hence, A(Y )+A(Z) = 0
and d̃(ω,ω′) = 0. The proof is similar for the α-limit.

It is useful to finish the section with a technical remark.

2.14
LEMMA

Let Y = Yn : [0, Tn] −→ T ∗N be a preorbit between X0 and X1. There exists a
preorbit Z between X0 and X1 that has the same action as Y and has discontinuities
only at times 1, 2, . . . , [Tn] − 1, where [Tn] is the integer part of Tn.

Proof
We set Zn(k + s) = 's(Yn(k)) for each k = 0, 1, . . . , [Tn] − 2, and we set s ∈ [0, 1[
and Zn([Tn] − 1 + s) = 's(Yn([Tn] − 1)) for each s ∈ [0, 1 +Tn − [Tn][. It is not hard
to see that A(Zn) − A(Yn) −→ 0, and hence, A(Y ) = A(Z).
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3. The case of convex Hamiltonian systems
We assume the hypotheses in Section 1.1, and we prove that the symplectic definitions
of Section 2 agree with the standard definitions of Section 1. This proves that the
theory of Section 2 is not trivial, at least in this case. This also ends the proof of
Theorem 1.10.

3.1
In Section 3, we consider a Hamiltonian function H : T ∗M × T −→ R satisfying
the hypotheses in Section 1.1. We set N = M × T. We denote by (P, t, E) the
points of T ∗N , and we set G(P, t, E) = E + H (P, t) : T ∗N −→ R. We denote
by h(q, t ; q ′, t ′) the Peierls’s barrier associated to H in Section 1, and we denote by
h̃(P, t, E; P ′, t ′, E′) the barrier associated to G in Section 2.

3.2
Before we state the main result of Section 3, some terminology is necessary. If
u : M −→ R is a continuous function, then we say that P ∈ T ∗

q M is a proximal
superdifferential of u at point q (or simply a superdifferential) if there exists a smooth
function f : M −→ R such that f −u has a minimum at q and dfq = P . Clearly, if u

is differentiable at q and if P is a proximal superdifferential of u at q, then P = duq .

3.3
PROPOSITION

We have the relation

h(q, t ; q ′, t ′) = min
P∈T ∗

q M,P ′∈T ∗
q′M

h̃
(
P, t, −H (P, t); P ′, t ′, −H (P ′, t ′)

)
.

In addition, if the minimum is reached at (P,P ′), then P is a superdifferential of
the function h(·, t ; q ′, t ′) at point q and −P ′ is a superdifferential of the function
h(q, t ; ·, t ′) at point q ′.

Proof
Let us fix two points (q, t) and (q ′, t ′) in N = M × T. We claim that the inequality

h̃(P, t, E; P ′, t ′, E′) " h(q, t ; q ′, t ′)

holds for each (P, t, E) ∈ T ∗
(q,t)N and each (P ′, t ′, E′) ∈ T ∗

(q ′,t ′)N . If
h̃(P, t, E; P ′, t ′, E′) = +∞, then there is nothing to prove. Otherwise, let us fix ε > 0.
There exists a preorbit Y = Yn(s) : [0, Tn] −→ T ∗N between (P, t, E) and (P ′, t ′, E′)
such that A(Y ) ! h̃(P, t, E; P ′, t ′, E′) + ε (resp., A(Y ) ! −1/ε in the case where
h̃(P, t, E; P ′, t ′, E′) = −∞). In view of Lemma 2.14, it is possible to assume that
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the discontinuity points T i
n of Yn satisfy T i+1

n " T i
n + 1. Let us write

Yn(s) =
(
Pn(s), τn(s), En(s)

)

and qn(s) = π(Pn(s)). Let δi
n be the real number closest to T i+1

n − T i
n among those

that satisfy τn(T i
n ) + δi

n = τn(T i+1
n ).

We have

A(Yn) =
Nn∑

i=0

∫ T i+1
n

T i
n

L
(
qn(s), q̇n(s), s + τn(T i

n ) − T i
n

)
ds

"
Nn∑

i=0

F
(
q(T i

n ), τn(T i
n ); q(T i+1

n −), T i+1
n − T i

n

)
.

It is known that the functions F (q, t ; q ′, s) are Lipschitz on {s " 1} (see e.g., [1,
Section 3.2]. We have

Nn∑

i=0

∣∣F
(
qn(T i

n ), τn(T i
n ); qn(T i+1

n −), T i+1
n − T i

n

)
− F

(
qn(T i

n ), τn(T i
n ); qn(T i+1

n ), δi
n

)∣∣

! C

Nn−1∑

i=0

D
(
qn(T i+1

n −), τn(T i+1
n −); qn(T i+1

n ), τn(T i+1
n )

)

! C

Nn−1∑

i=0

D
(
Yn(T i+1

n −), Yn(T i+1
n )

)
−→ 0.

As a consequence, we have

A(Y ) " lim inf
Nn∑

i=0

F
(
q(T i

n ), τn(T i
n ); q(T i+1

n ), δi
n

)

" lim inf F
(
qn(0), τn(0); qn(Tn),

Nn∑

i=0

δi
n

)
" h(q, t ; q ′, t ′),

and hence, ε + h̃(P, t, E; P ′, t ′, E′) " h(q, t ; q ′, t ′) (resp., −1/ε " h(q, t ; q ′, t ′)).
Since this holds for all ε > 0, we have h̃(P, t, E; P ′, t ′, E′) " h(q, t ; q ′, t ′), as desired.

Conversely, let us consider a sequence Tn such that Tn −→ ∞, t +Tn mod 1 = t ′,
and

h(q, t ; q ′, t ′) = lim
n−→∞

F (q, t ; q ′, Tn).
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Let qn(s) : [0, Tn] −→ M be a curve such that
∫ Tn

0
L

(
qn(s), q̇n(s), s + t

)
ds = F (q, t ; q ′, Tn).

Since the curve qn is minimizing the action, there exists a Hamiltonian trajectory

Yn(s) =
(
Pn(s), t + s, En(s)

)
: [0, Tn] −→ T ∗N

whose projection on M is the curve qn. In addition, by well-known results on minimiz-
ing orbits (see [10]), there exists a compact subset of T ∗M that contains the images of
all the curves Pn(s). As a consequence, we can assume, taking a subsequence if neces-
sary, that the sequences Pn(0) and Pn(Tn) have limits P ∈ T ∗

q M and P ′ ∈ T ∗
q ′M . The

sequence Y = Yn is then a preorbit between (P, t, −H (P, t)) and (P ′, t ′,−H (P ′, t ′)),
and its action is

A(Y ) = lim A(Yn) = lim
∫ Tn

0
L

(
qn(s), q̇n(s), t + s

)
ds = h(q, t ; q ′, t ′).

As a consequence, we have

h̃
(
P, t, −H (P, t); P ′, t ′, −H (P ′, t ′)

)
! h(q, t ; q ′, t ′).

This ends the proof of the first part of the proposition.
Let now Y = (P, t, E) ∈ T ∗

q M × T ∗T and Y ′ = (P ′, t ′, E′) ∈ T ∗
q ′M × T ∗T be

points such that h(q, t ; q ′, t ′) = h̃(Y ; Y ′). Let q(s) be the projection on M of the orbit
's(Y ). Using Property 2.5 and Section 1.5, we get

h̃(Y, Y ′) = h̃
(
's(Y ), Y ′) +

∫ s

0
λ'σ (Y )

(
VG

(
'σ (Y )

)
− G

(
'σ (Y )

)
dσ

" h
(
q(s), t + s; q ′, t ′

)
+

∫ s

0
L

(
q(σ ), q̇(σ ), t + σ

)
dt

" h(q, t ; q ′, t ′) = h̃(Y, Y ′).

As a consequence, all the inequalities are equalities. We obtain that the curve q(s) is
minimizing in the expression

h(q, t ; q ′, t ′) = min
(
h
(
q(s), t + s; q ′, t ′

)
+

∫ s

0
L

(
q(σ ), q̇(σ ), t + σ

)
dt

)
.

Fathi has proved that −P is then a superdifferential of the function h(·, t ; q ′, t ′) at q.
The properties at (q ′, t ′) are treated in a similar way.
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3.4
COROLLARY

If H satisfies the hypotheses of Section 1.1, then m(H ) ! m̃(G).

3.5
COROLLARY

If H satisfies the hypotheses of Section 1.1 and if m(H ) = 0, then m̃(G) = 0, and we
have Ãs(G) = Ã(H ). In addition, we have

h̃(X0, t0, E0; X1, t1, E1) = h
(
π(P0), t0;π(P1), t1

)

for each (P0, t0, E0) and (P1, t1, E1) in Ã(H ).

Proof
Let (P, t, E) be a point of T ∗N and let q = π(P ). If (P, t, E) ∈ Ãs(G), then

h̃(P, t, E; P, t, E) = 0,

so that h(q, t ; q, t) ! 0. On the other hand, since we have h(q, t ; q, t) " m(H ) = 0,
we conclude that h(q, t ; q, t) = 0, and hence, (q, t) ∈ A(H ). As a consequence, the
function h(q, t ; ·, t) is differentiable at q (see Section 1.6), and

(
∂3h(q, t ; q, t), t −

H (∂3h(q, t ; q, t), t)
)

∈ Ã(H ). Since h̃(P, t, E; P, t, E) = h(q, t ; q, t), the point P is
a superdifferential of h(q, t ; ·, t) at q, and we must have P = ∂3h(q, t ; q, t). Moreover,
we have G(P, t, E) = H (P, t) + E = 0, and hence, (P, t, E) ∈ Ã(H ).

Conversely, assume that (P, t, E) ∈ Ã(H ). We then have E = −H (P, t). In
addition, h(q, t ; q, t) = 0, the functions h(q, t ; ·, t) and h(·, t ; q, t) are differentiable
at q, and we have P = ∂3h(q, t ; q, t) = −∂1h(q, t ; q, t). Now let X ∈ T ∗

q M and
X′ ∈ T ∗

q M be such that

h̃
(
X, t, −H (X, t); X′, t ′,−H (X′, t ′)

)
= h(q, t ; q, t).

Then −X is a superdifferential at q of h(·, t ; q, t), and X′ is a superdifferential at q

of h(q, t ; ·, t). It follows that X = P = X′. Hence, we have h̃(P, t, E; P, t, E) =
h(q, t ; q, t) = 0. This proves that m̃(G) = 0 and that (P, t, E) ∈ Ãs(G).

Finally, let (P0, t0, E0) ∈ T ∗
q0

M × T ∗T and (P1, t1, E1) ∈ T ∗
q1

M × T ∗T be two
points of Ã(H ). We have E0 = −H (P0, t0) and E1 = −H (P1, t1). Furthermore,
the function h(q0, t0; ·, t1) is differentiable at q1, with ∂3h(q0, t0; q1, t1) = P1, and
the function h(·, t0; q1, t1) is differentiable at q0, with ∂1h(q0, t0; q1, t1) = −P0. Since
−P0 and P1 are then the only superdifferentials of h(·, t0; q1, t1) and h(q0, t0; ·, t1), we
conclude that h̃(P0, t0, E0; P1, t1, E1) = h(q0, t0; q1, t1).
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3.6
COROLLARY

If H satisfies the hypotheses of Section 1.1 and if m(H ) = 0, then M̃s(G) = M̃(H ).

3.7
COROLLARY

If H satisfies the hypotheses of Section 1.1 and if m(H ) = 0, then Ñs(G) = Ñ(H ).

Proof
It is enough to prove that if (P0, t0, E0) and (P1, t1, E1) belong to Ãs(G) and q0 =
π(P0), q1 = π(P1), then

Ĩs(P0, t0, E0; P1, t1, E1) = Ĩ(q0, t0, q1, t1).

Let (P, t, E) be a point of Ĩs(P0, t0, E0; P1, t1, E1). We then have G(P0, t0, E0) =
G(P, t, E) = 0, and hence, E = −H (P, t). Furthermore, the inequalities

h(q0, t0; q1, t1) = h̃
(
P0, t0, −H (P0, t0); P1, t1, −H (P1, t1)

)

= h̃
(
P0, t0, −H (P0, t1); P, t, E

)

+ h̃
(
P, t, E; P1, t1,−H (P1, t1)

)

" h(q0, t0; q, t) + h(q, t ; q1, t1) " h(q0, t0; q1, t1)

are all equalities. As a consequence, the point (q, t) belongs to the set
I(q0, t0; q1, t1), and the differentials ∂3h(q0, t0; q, t) and ∂1h(q, t ; q1, t1) exist. We
have ∂3h(q0, t0; q, t) = −∂1h(q, t ; q1, t1), and the point

(X, t, e) =
(
∂3h(q0, t0; q, t), t, −H (∂3h(q0, t0; q, t), t)

)

belongs to Ĩ(q0, t0; q1, t1), as follows from our definition of the Mañé set. Since

h̃
(
P0, t0, −H (P0, t0); P, t,−H (P, t)

)
= h(q0, t0; q, t),

the point P must be a superdifferential of h(q0, t0; ·, t) at q, and hence, P = X. We
have proved that (P, t, E) ∈ Ĩ(q0, t0; q1, t1).

Conversely, assume that (P, t, E) ∈ Ĩ(q0, t0; q1, t1), so that E = −H (P, t). Then

h(q0, t0; q, t) + h(q, t ; q1, t1) = h(q0, t0; q1, t1)

and

P = ∂3h(q0, t0; q, t) = −∂1h(q, t ; q1,1 ).
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In addition, since (q0, t0) and (q1, t1) belong to A(H ), the differential P0 =
∂1h(q0, t0; q, t) exists for all q and satisfies (P0, t0, −H (P0, t0) ∈ Ã(H )). Similarly,
setting P1 = ∂3h(q, t ; q1, t1), we have (P1, t1, −H (P1, t1) ∈ Ã(H )). We conclude
that

h̃
(
P0, t0,−H (P0, t0); P, t, E

)
= h(q0, t0; q, t)

and

h̃
(
P, t, E; P1, t1,−H (P1, t1)

)
= h(q, t ; q1, t1).

As a consequence, setting E0 = −H (P0, t0) and E1 = −H (P1, t1), we have

h̃(P0, t0, E0; P, t, E) + h̃(P, t, E; P1, t1, E1) = h̃(P0, t0, E0; P1, t1, E1).
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