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Young Measures, Superposition and Transport
PATRICK BERNARD

ABSTRACT. We discuss a space of Young measures in connection with
some variational problems. We use it to present a proof of the Theorem
of Tonelli on the existence of minimizing curves. We generalize a recent
result of Ambrosio, Gigli and Savaré on the decomposition of the weak
solutions of the transport equation. We also prove, in the context of
Mather theory, the equality between Closed measures and Holonomic
measures.

1. INTRODUCTION

It is by now a well understood fact that Young measures are a very useful tool
in variational problems. In his book, Young exposes how the relaxation to ap-
propriate spaces of Young measure allow to treat with great elegance the problem
of length-minimizing curves. In the present paper, we present an extension of
Young’s approach to the non-parametric situation, and describe some applications.
This provides a new proof of the theorem of Tonelli on the existence of curves min-
imizing a fiberwise convex action. The objects which appear in this program are
related to some dynamical optimal transportation problems and to a variational
approach of the Euler equation due to Arnold and Brenier, see [5, 7–11]. Our
initial motivation has been to clarify our understanding of these objects.

We expose in Sections 2 and 3 the definition and main properties of the mea-
sures we will work with: Young measures, transport measures and generalized
curves.

It should come as a reward and as an indication of the usefulness of this theory
that we can provide in Section 4 a short and, we believe, elegant proof of the
famous theorem of Tonelli on the existence of action-minimizing curves. We also
underline the formal similarity between the problem of action minimizing curves
and some dynamic optimal transportation problem as discussed in [7] and other
papers. We obtain general existence results for these questions. In order to study
the minimizing measures in a general framework, we need to pursue the study of
transport measures.
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This is what we do in Section 5, where we state, discuss and prove Theorem
5.2, which is certainly the most important result of the present paper. We call it
Young’s superposition principle for it is directly inspired by a result which appears
in the appendix of Young’s book. We propose some applications to the continuity
equation and to the decomposition of optimal transport measures, that is to the
full understanding of the relation between dynamic optimal transportations and
action-minimizing curves. It should be noted that although Young’s superposition
principle is more general than another superposition principle recently obtained
by Ambrosio, Gigli and Savaré in [3], many of its application to the study of
transport measures minimizing the action defined by a fiberwise convex integrand
could in fact be obtained from this especially important particular case.

In Section 6, we apply and adapt the ideas of Theorem 5.2 to study the
closed measures which appear in Mather’s theory of minimizing measures. In
[15] Mather introduced and studied invariant measures of a Lagrangian system
which minimize the action. These measures turn out to have a remarkable prop-
erty. Later, Mañé introduced a class of probability measures, Holonomic mea-
sures, which contain the invariant measures of all Lagrangian flows, and which
have the property that minimizing closed measures are invariant. Then Bangert
introduced the larger class of closed measure and proved, for some specific La-
grangians, that minimizing closed measures are invariant. This was generalized by
Fathi and Siconolfi to a much larger class of C2 Lagrangians. Young’s superposi-
tion principle allows to generalize these results to non-regular integrands (with the
appropriate definition of invariance). We also prove that the holonomic measure
of Mañé and the closed measures of Bangert are the same objects. We finish with
some generalities of measure theory in the appendix.

I thank Alessio Figalli and Boris Buffoni for their help at different stages of
the elaboration of the present work.

I finished to write this paper in De Giorgi center, Pisa. This was an occasion
to visit the beautiful Camposanto. There, in a corner, under a scaffolding, is the
sober grave of Leonida Tonelli, 1885-1946, Accademia dei Lincei.

2. YOUNG MEASURES

We define the space of Young measure we will use, and recall some general results
on the topology of this space. Let (X,d) be a complete and separable metric space.
We denote by (P1(X),d) the Kantorovich-Rubinstein space of Borel probability
measures on X with finite first moment, see the appendix. Recall that (P1(X),d)
is a complete and separable metric space. Let I = [a, b] be a compact interval and
let λ be the normalized Lebesgue measure on I. We denote by Ỹ1(I,X) the set of
measurable maps

I 3 t 7 -→ µt ∈ P1(X).

There is a natural map
ηt 7 -→ λ⊗ ηt
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from Ỹ1(I,X) to P1(I × X), where we denote by λ⊗ ηt the only measure which
satisfies ∫

I×X
f(t, x)d(λ⊗ ηt)(t, x) =

∫
I

∫
X
f(t, x)dηt(x)dλ(t)

for each bounded Borel function f : I × X → R. The disintegration theorem
states that the image of this map is the set Y1(I,X) of probability measures η ∈
P1(I × X) whose marginal on the component I is the measure λ. We call these
measures Young measures. Moreover, two elements of Ỹ1(I,X) have the same
image if and only if they are almost everywhere equal. Note that Y1(I,X) is a
closed subset of the Kantorovich-Rubinstein space P1(I × X). We endow it from
now on with the induced distance. The map

(2.1) η 7 -→
∫
I×X

f(t, x)dη

is continuous on Y1(I,X) for all continuous function f(t, x) : I × X → R such
that |f(t, x)|/(1+d(x0, x)) is bounded for some x0 ∈ X. This continuity holds
for many more functions f .

Definition 2.1. A Caratheodory integrand is a Borel function f(t, x) : I ×
X → R which is continuous in the second variable. A normal integrand is a Borel
function f(t, x) : I×X → (−∞,∞] which is lower semi-continuous in the second
variable.

Proposition 2.2. The map (2.1) is continuous on Y1(I,X) if f is a Caratheo-
dory integrand such that |f(t, x)|/(1+d(x0, x)) is bounded for some x0 ∈ X. It is
lower semi-continuous if f is a normal integrand such that f(t, x)/(1 + d(x0, x))
is bounded from below.

Proof. We follow [6, Lemma II.1.1, p. 142] for the first part. By the Scorza-
Dragoni Theorem, (see [6, Theorem I.1.1, p. 132].) there exists a sequence Jn of
compact subsets on I such that f is continuous on Jn×X and such that λ(Jn)→ 1
as n → ∞. Then, there exists a sequence of continuous functions fn such that
|fn(t, x)|/(1+d(x0, x)) is bounded, independently of n, and such that fn = f
on Jn × X. It follows that the map (2.1) is the uniform limit of the continuous

maps η 7 -→
∫
fn dη, and therefore it is continuous.

In order to prove the second part of the statement, we first write the integrand
f(t, x) = (1 + d(x0, x))g(t, x) with a normal integrand g which is bounded
from below. Then g is the increasing pointwise limit of a sequence gn of bounded
Caratheodory integrands, see [6, Theorem I.1.2, p. 138]. Finally, the map (2.1) is
the increasing limit of the continuous maps

η 7 -→
∫
(1+ d(x0, x))gn(t, x)dη(t, x),
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and therefore it is lower semi-continuous. ❐

Theorem 2.3. Let f(t, x) be a normal integrand. Assume that there exists a
proper function ` : X → [0,∞) and an integrable function g : I → R such that
f(t, x) á `(x)(1 + d(x,x0)) + g(t). Then for each C ∈ R, the set of Young

measures η ∈ Y1(I,X) which satisfy
∫
f dη à C is compact.

Proof. Since the map η 7 -→
∫
f dη is lower semi-continuous, it is enough to

prove that the set of Young measures η which satisfy
∫
`(x)d(x,x0)dη à C is

compact. This set is obviously 1-tight, see the Appendix. ❐

3. TRANSPORT MEASURES AND GENERALIZED CURVES

In the present section, we set X = TM, where M is a complete Riemannian mani-
fold without boundary. We endow this tangent space TM with a complete distance
d such that the quotient

1+ d((x0,0), (x, v))
1+ ‖v‖x

and its inverse are bounded on TM for one (and then any) point x0 ∈ M. The
discussions below do not depend on the choice of this distance d. In order to
prove that such a distance exists, we can isometrically embed M into a Euclidean
space Rd and restrict the distance

D((x,v), (x′, v′)) = min(1, |x′−x|)+ |v′−v|,

where |· | is the Euclidean norm on Rd. We fix a compact interval I = [a, b]. and
denote by C1(I × TM) the set of continuous functions f : I × TM → R such that

‖f‖1 := sup
(t,x,v)∈I×TM

‖f(t, x, v)‖
1+ ‖v‖x

<∞.

Definition 3.1. A transport measure is a measure η ∈ Y1(I, TM) which satis-
fies the relation

(3.1)
∫
I×TM

∂tg + ∂xg · v dη(t, x, v) = 0

for all smooth compactly supported functions g : ]a, b[ × M → R. We denote
by T (I,M) ⊂ Y1(I, TM) the set of all transport measures. Given two probability
measures µi and µf on M, we say that the transport measure η is a transport
measure between µi and µf if, in addition, we have∫

I×TM
∂tg + ∂xg · v dη(t, x, v) =

∫
M
gb(x)dµf (x)−

∫
M
ga(x)dµi(x)
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for each smooth compactly supported function g : [a, b] ×M → R. We denote
by T µf

µi (I,M) the set of transport measures between µi and µf .

Note that T (I,M) and T µf
µi (I,M) are closed subsets of Y1(I,M). Recalling

that we denote by P(M) the set of Borel probability measures endowed with the
narrow topology, we have the following result:

Lemma 3.2. Let η ∈ T (I,M) be a transport measure. There exists a continuous
family µt : I → P(M) of probability measures on M and a disintegration ηt ∈
Ỹ1(I, TM) of η such that, for each t, µt is the marginal of ηt on the baseM. We then
have η ∈ T µb

µa (I,M).

Proof. Let us choose a disintegration ηt of η, and let µ̃t be the marginal of ηt
on M. We want to prove that there is a narrowly continuous map µt : I → P(M)
which is equal to µ̃t for almost each t. In view of general remarks recalled in
the Appendix, it is enough to prove that, for each smooth and compactly sup-

ported function f : M → R, the function t 7 -→ F(t) :=
∫
f dµt is equal almost

everywhere to a continuous function. By applying the equation (3.1) to func-

tions g(t, x) = ϕ(t)f (x), we get that F ′(t) =
∫
dfx · v dηt(x,v) in the sense

of distributions. It implies that the function F is equal almost everywhere to an
absolutely continuous function.

Lemma 3.3. Let g(t, x) : I×M 7 -→ R be a C1 bounded and Lipschitz function.
Then for each interval [α,β] ⊂ [a, b], we have

(3.2)
∫
[α,β]×TM

∂tg + ∂xg · v dη =
∫
M
gβ dµβ −

∫
M
gα dµα.

Proof. Let us first assume that g is a smooth compactly supported function.

Let us set F(t) =
∫
gt dµt. It is easy to prove using (3.1) that

F ′(t) =
∫
TM
∂tg + ∂xg · v dηt

in the sense of distribution. The desired equality follows by integration. If g is
C1 and compactly supported, then we prove (3.2) by approximating g by smooth
compactly supported functions. Let us expose a bit more carefully how the equal-
ity can be extended to bounded and Lipschitz functions which are not necessarily
compactly supported. We consider an increasing sequence ξn : M → [0,1] of
smooth equi-Lipschitz compactly supported functions such that, for each rela-
tively compact open set U , we have ξn = 1 on U after a certain rank. Then (3.2)
holds for the function gξn:∫
[α,β]×TM

ξn∂tg + ξn∂xg · v + g∂xξn · v dη =
∫
M
gβξn dµβ −

∫
M
gαξn dµα.
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Thanks to the dominated convergence theorem, we get (3.2) at the limit. ❐

Definition 3.4. The transport measure η is called a generalized curve if µt is
a dirac measure for each t ∈ I. Then, there exists a continuous curve γ(t) : I → M
such that µt = δγ(t) for each t. We say that η is a generalized curve above γ. We
denote by G(I,M) the set of generalized curves.

A continuous curve γ : I → M is absolutely continuous if and only if the
function ϕ ◦ γ : I → R is absolutely continuous for each smooth and compactly
supported function ϕ : M → R. We denote by W 1,1(I,M) the set of absolutely
continuous curves. We say that a sequence γn is converging to γ in W 1,1(I,M) if
the function sequence

d
(
(γn(t), γ̇n(t)), (γ(t), γ̇(t))

)
is converging to zero in L1, or equivalently if the following three conditions are
satisfied:

• The sequence γn is converging uniformly to γ.
• The sequence (γn(t), γ̇n(t)) : I → TM is converging in measure to (γ(t), γ̇(t)).
• The sequence ‖γ̇n(t)‖γn(t) is equi-integrable, or equivalently it is relatively

weakly compact in L1(I,R).

It is well known that smooth curves are dense in W 1,1(I,M).

Lemma 3.5. Let Γ ∈ T (I,M) be a generalized curve. Then there exists an
absolutely continuous curve γ(t) such that Γ is a generalized curve above γ and there
exists a measurable family Γt of probability measures on Tγ(t)M such that Γ = dt ⊗
δγ(t) ⊗ Γt , which means that

∫
I×TM

f(t, x, v)dΓ(t, x, v) = ∫
I

∫
Tγ(t)M

f (t, γ(t), v)dΓt(v)dt
for each f ∈ L1(Γ). In order that this formula defines a generalized curve above the
absolutely continuous curve γ, it is necessary and sufficient that the function t 7 -→∫
Tγ(t)M

‖v‖γ(t) dΓt(v) is λ-integrable on I, and that
∫
Tγ(t)M

v dΓt(v) = γ̇(t) for

almost all t.

Proof. Let Γ be a generalized curve over γ. By the disintegration theorem, the
measure Γ can be written in the form Γ = dt ⊗ δγ(t) ⊗ Γt with some measurable
family Γt of probability measures on Tγ(t)M. We want to prove that the curve
γ(t) is absolutely continuous and that

γ̇(t) =
∫
Rd
v dΓt(v)
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for almost all t. It is enough to prove that, for each smooth compactly supported
function ϕ : M → R, we have

(ϕ ◦ γ)′(t) = dϕγ(t) ·
∫
Tγ(t)M

v dΓt(v)
in the sense of distributions. For each smooth compactly supported function
f(t) : ]a, b[ → R we can apply the equation (3.1) to the function g(t, x) =
f(t)ϕ(x), and get

0 =
∫
I×TM

f ′(t)ϕ(x)+ f(t)dϕx · v dΓ(t, x, v)
=
∫ 1

0
f ′(t)ϕ(γ(t))dt +

∫ 1

0
f(t)

∫
Tγ(t)M

dϕγ(t) · v dΓt(v)dt.
This implies that ϕ ◦ γ is absolutely continuous and that

(ϕ ◦ γ)′(t) =
∫
Tγ(t)M

dϕγ(t) · v dΓt(v) = dϕγ(t) ·
∫
Tγ(t)M

v dΓt(v)
which is the desired result. ❐

Theorem 3.6. The set G(I,M) of generalized curves is closed in Y1(I, TM). In
addition, the map G → C0(I,Rd) which, to a generalized curve Γ above γ, associates
the curve γ, is continuous.

Proof. Let Γn be a sequence of generalized curves converging in P1(I × TM)
to a limit η. We have to prove that η is a generalized curve. The family η, Γ1,Γ2, . . . , Γn, . . . is compact in P1(I × TM), hence it has uniformly integrable first
moment. This implies that the sequence γn of associated curves is equi-absolutely
continuous. Taking a subsequence, we can assume that the sequence γn has a
limit γ in C0(I,M). It is not hard to check, then, that η is a generalized curve
above γ. ❐

If γ : I → M is absolutely continuous, then we will denote by γ̄ the generalized
curve above γ given by

∫
X
f(t, x, v)dγ̄(t, x, v) =

∫
I
f (t, γ(t), γ̇(t))dt

for each bounded Borel function f . In other words, we have

γ̄ = dt ⊗ δγ(t) ⊗ δγ̇(t).

We denote by C(I,M) ⊂ T (I,M) the set of transport measures which are of that
form.
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Lemma 3.7. The map

W 1,1(I,M) → G(I,M) ,
γ 7 -→ γ̄

is continuous.

Proof. Let γn ∈ W 1,1(I,M) be a sequence which converges to γ. We have to
prove that ∫

I
f (t, γn(t), γ̇n(t))dλ→

∫
I
f (t, γ(t), γ̇(t))dλ

for each f ∈ C1(I × TM). Since the sequence (γn(t), γ̇n(t)) is converging in
measure to (γ(t), γ̇(t)), we can suppose by extracting a subsequence that it is
converging almost everywhere. The desired convergence follows from the obser-
vation that the sequence of real functions

t 7 -→ f(t, γn(t), γ̇n(t))

is converging almost everywhere to f(t, γ(t), γ̇(t)) and is equi-integrable because

|f(t, γn(t), γ̇n(t))| à ‖f‖1(1+ ‖γ̇n(t)‖γn(t))

and, by definition of the convergence in W 1,1, the sequence ‖γ̇n(t)‖γn(t) is equi-
integrable. ❐

Let us mention, for completeness, the following result:

Theorem 3.8. The set G(I,M) of generalized curves is the closure, in Y1(I, TM),
of the set C(I,M) of curves.

4. TONELLI THEOREM AND OPTIMAL TRANSPORTATION

In the present section, we use transport measures and generalized curves to expose
some results on the existence of certain minimizers. The results are well known,
but the presentation is somewhat original. We consider a normal integrand L :
[a, b] × TM → R ∪ {+∞}. We say that L is fiberwise convex if, for each fixed
(t, x), the function v 7 -→ L(t, x, v) is convex on TxM. The role of convexity in
minimization problems is enlightened by the following standard observation:

Lemma 4.1. Let L be a fiberwise convex normal integrand. If Γ is a generalized
curve above γ, then

∫
LdΓ á ∫ b

a
L(t, γ(t), γ̇(t))dt =

∫
Ldγ̄.
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Proof. For each t, we have∫
Tγ(t)M

L(t, γ(t), v)dΓt(v) á L(t, γ(t), γ̇(t))
by Jensen’s inequality. We obtain∫

LdΓ = ∫ 1

0

∫
Tγ(t)M

L(t, γ(t), v)dΓt(v)dt
á
∫ 1

0
L(t, γ(t), γ̇(t))dt =

∫
Ldγ̄ ❐

We now discuss the classical problem of the existence of minimizing curves.
We fix two points xi and xf in M, and consider the set AC

xf
xi of absolutely con-

tinuous curves γ : I → M such that γ(a) = xi and γ(b) = xf . We also consider
the set

Gxfxi = G(I,M)∩T
δxf
δxi

(I,M)

of generalized curves above elements ofAC
xf
xi . Note that Gxfxi is closed in T (I,M).

The action of an absolutely continuous curve γ is the integral
∫ b
a
L(t, γ(t), ˙γ(t))dt,

the action of a transport measure η is the integral
∫
I×TM

Ldη. The following result

is well known:

Theorem 4.2. Let L(t, x, v) : [a, b]×TM → R∪+∞ be a normal integrand.
We assume that the integrand L satisfies:

(L1) the quotient
L(t, x, v)
1+ ‖v‖x

is bounded from below and proper.

For each C ∈ R the set

Ag
C :=

{Γ ∈ Gxfxi |
∫
LdΓ à C} ⊂ Gxfxi

is compact, and if L is fiberwise convex, the set

AC :=
{
γ ∈ ACxfxi |

∫ b
a
L(t, γ(t), γ̇(t)) à C

}
⊂ C(I,M)

is compact for the uniform topology.
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As a major consequence, we obtain that the action reaches its minimum on
Gxfxi if there exists a generalized curve of finite action in Gxfxi . If in addition the
integrand is fiberwise convex, then the action also reaches its minimum on AC

xf
xi ,

and we have

min
Γ∈Gxfxi

∫
Ldγ = min

γ∈AC
xf
xi

∫ b
a
L(t, γ(t), γ̇(t))dt.

Proof. The compactness of Ag
C follows from Theorem 2.3. If L is fiberwise

convex, then, by Lemma 4.1, the set AC is the image of the compact set Ag
C by

the continuous map Γ 7 -→ γ (the map which, to a generalized curves Γ above γ,
associates the curve γ). ❐

In applications, it is useful to have the following stronger and still standard result:

Theorem 4.3 (Tonelli). The same conclusions (as Theorem 4.2 ) hold if the hy-
pothesis (L1) on the integrand is replaced by the two following ones:
(L2) The integrand L is uniformly superlinear over each compact subset of M. It

means that, for each compact K ⊂ M, there exists a function ` : R+ → R
such that limr→∞ `(r)/r = ∞ and such that L(t, x, v) á `(‖v‖x) for each
(t, x, v) ∈ [a, b]× TKM.

(L3) There exists a positive constant c such that L(t, x, v) á c(‖v‖x − 1).

Proof. We have to prove that the set of generalized curves Γ ∈ Gxfxi which

satisfy
∫
LdΓ à C is compact. Using (L3), we see that, if Γ is a generalized curve

over γ, then ∫ b
a
‖γ̇(t)‖γ(t) dt à

C + (b − a)
c

.

Let K be the closed ball (for the Riemaniann distance on M) of center xi and
radius (C + b − a)/c. This ball is compact because M is complete. Let us define
a modified integrand LK by LK(t, x, v) = L(t, x, v) if x ∈ K and LK(t, x, v) =
+∞ if x 6∈ K. A generalized curve Γ ∈ Gxfxi satisfies

∫
LdΓ à C if and only if it

satisfies
∫
LK dΓ à C. Since LK satisfies (L1), we conclude by Theorem 4.2. ❐

We can extend these considerations to more general boundary conditions. Our
presentation allows to see the following dynamic optimal transportation problem
as a natural generalisation of Tonelli theorem.

Theorem 4.4. Let L be a normal integrand which satisfies:
(L4) The integrand L is uniformly superlinear: there exists a function ` : R+ → R

such that limr→∞ `(r)/r = ∞ and such that L(t, x, v) á `(‖v‖x) for each
(t, x, v) ∈ [a, b]× TM.



Young Measures, Superposition and Transport 11

Let µi and µf be two Borel probability measures on M. Then for each C ∈ R, the set

BC of transport measures η ∈ T µf
µi which satisfy

∫
Ldη à C is compact.

Note that (L4) implies (L2) and (L3).

Proof. The conclusion would be obvious if L satisfied (L1), but (L4) is weaker.
For each ε > 0, there exists a constant R such that∫

‖v‖xáR
(1+ ‖v‖x)dη(t, x, v) à ε

for each η ∈ BC . This is a direct consequence of (L4). We claim that there exists
a compact ball B ⊂ M such that η(I × TBM) á 1 − ε/(1 + R) for each η ∈ BC .
Assuming the claim, we have∫

{(t,x,v)∈I×TM|x 6∈B or ‖v‖xáR}
(1+ ‖v‖x)dη(t, x, v) à 2ε

for each η ∈ BC . Therefore, BC is 1-tight and thus compact. Let us now prove
the claim. For each ∆ > 0, there exists a C1, bounded and 1-Lipschitz function
g : M → [0,∆] such that g = ∆ outside of a compact ball B and such that∫
g dµi à 1. For η ∈ BC , we have

∫
M
g dµt =

∫
M
g dµi +

∫
[a,t]×TM

dgx · v dη à 1+ C + b − a
c

where c is the constant of (L3). We conclude that
∫
g dη =

∫ b
a

∫
M
g dµt dt à (b − a)

(
1+ C + b − a

c

)

for each η ∈ BC . It follows that

η(I × TM − I × TBM) à (b − a)(1+ (C + b − a)/c)∆ .

Since ∆ can be chosen arbitrarily, the claim is proved. ❐

Some general comments are needed before we can describe the additional con-
clusions satisfied for fiberwise convex Lagrangians. If η ∈ Y1(I, TM) is a Young
measure, then we call µ the image of η by the projection I×TM → I×M. We can
desintegrate η with respect to this projection and obtain a measurable family ηt,x
of probability measures on TxM such that η = µ⊗ηt,x. We define the vector-field
V(t, x) : I ×M → TM by the expression

V(t, x) =
∫
TxM

v dηt,x(v).
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Note that V(t, x) is a Borel time-dependant vector-field, and that the integrability
condition ∫

‖V(t, x)‖x dµ(t, x) <∞

is satisfied.

Lemma 4.5. The Young measure η ∈ Y1(I, TM) is a transport measure if and
only if the continuity equation

(PDE) ∂tµ + div(Vµ) = 0.

holds in the sense of distributions.

The couple (V , µ) is what we called in [7] the transport current associated to
the transport measure η. Such objects were previously introduced by Benamou
and Brenier, see [5], [10] and [11].

Proof. A test function is a smooth and compactly supported function on
]a, b[×M. The measure η is a transport measure if and only if

∫
I×M

∫
TxM

∂tg(t, x)+ ∂xg(t, x) · v dηt,x(v)dµ(t, x) = 0

for each test function. The equation (PDE) holds in the sense of distributions if
and only if

∫
I×M

∂tg(t, x)+ ∂xg(t, x) · V(t, x)dµ(t, x) = 0

for each test function g. The equivalence follows from the observation that
∫
TxM

∂xg(t, x) · v dηt,x = ∂xg(t, x) ·
∫
TxM

v dηt,x = ∂xg(t, x) · V(t, x)

by definition of V . ❐

Conversely, consider a Borel vector-field V(t, x) : I ×M → TM and a probability
measure µ on I × M whose marginal on I is λ. Assume that (PDE) holds and

that the integrability condition
∫
‖V‖dµ <∞ is satisfied. Then, the measure Ṽ]µ

is a transport measure, where Ṽ (t, x) = (t, V(t, x)) ∈ I × TM. The following
generalization of Lemma 4.1 is now obvious:

Lemma 4.6. Let L be a fiberwise convex normal integrand. If η is a transport
measure, and µ and V are associated to it as above, then Ṽ]µ is a transport measure,
and ∫

Ldη á
∫
Ld(Ṽ]µ).
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As a consequence, if there exists a transport measure minimizing the action in
T µf
µi (I,M), then there exists a minimizing transport measure in T µf

µi (I,M) which is
concentrated on the graph of a Borel vector-field.

5. THE SUPERPOSITION PRINCIPLE

The main stream of this section consists of writing transport measures as superpo-
sitions of generalized curves. This is the adaptation to the non-parametric setting
of a theory sketch in the appendix of Young’s book.

5.1. Young’s superposition principle. We first adapt an important result of
Young:

Theorem 5.1 (Young). The set T (I,Rd) of transport measures is the closed con-
vex envelop in Y1(I,R2d) of the set C(I,Rd) of curves (and hence also of the set
G(I,Rd) of generalized curves).

Let us immediately mention the restatement of Young’s result, which we will
use:

Theorem 5.2. If η is a transport measure on a complete manifold M, then there

exists a Borel measure ν on G(I,M) such that η =
∫
G
Γ dν(Γ), which means that

(5.1)
∫
I×TM

f dη =
∫
G

∫
I×TM

f dΓ dν(Γ)
for each function f ∈ L1(η). We then say that ν is a decomposition of η.

Let us make a few simple remarks before proving these results.

Proposition 5.3. If η is concentrated on the Borel subset Y ⊂ I × TM, and if ν
is a decomposition of η, then ν-almost every generalized curve Γ is concentrated on Y .

Proof. Apply (5.1) with f = 0 on Y and f = 1 outside of Y . We get

∫
I×TM

f dΓ = 0

for ν-almost all Γ , which means that Γ is concentrated on Y . ❐

For each t ∈ I, let evt : G(I,M) → M be the continuous map obtained by
composing the natural projection G → C0(I,M) and the evaluation map γ 7 -→
γ(t).

Proposition 5.4. If ν is a decomposition of η, and if µt is the continuous family
of probability measures on M associated to η, then µt = (evt)]ν,
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Proof. We denote by γΓ the continuous curve associated to the generalized
curve Γ . It is enough to prove that∫

f(t, x)dη =
∫
G
f(t, γΓ (t))dt dν(Γ)

for each continuous and bounded function f : I ×M → R. This follows from the
fact that ∫

X
f(t, x)dΓ(t, x, v) = ∫ 1

0
f(t, γΓ (t))dt

for each generalized curve Γ . ❐

Finally, let us explain how Theorem 5.2 follows from Theorem 5.1. We isometri-
cally embed the manifold M as a closed subset of some Euclidean space Rd. Then
the transport measures and generalized curves on M are just the transport mea-
sures and generalized curves on Rd which are supported on I × TM ⊂ I × R2d.
Let η be a transport measure. In view of Young’s theorem and of the appendix, η
admits a decomposition ν by generalized curves on Rd. By Proposition 5.3 above,
ν almost every generalized curve Γ is supported on I × TM, hence ν can be seen
as a probability measure on G(I,M).

5.2. Proof of Young’s superposition principle. We prove the superposition
principle by duality, following the sketch of proof proposed by Young in his book.
By Proposition B.5 of the appendix, it is enough to prove that, for each function
f ∈ C1(I ×R2d) such that

(5.2)
∫ 1

0
f(t, γ(t), γ̇(t))dt á 0 ∀γ ∈ W 1,1(I,Rd)

we have
∫
f dη á 0 for all transport measures η ∈ T (I,Rd). It is sufficient to

obtain the conclusion for functions f ∈ C1(I × TM) which satisfy

(5.3)
∫ 1

0
f(t, γ(t), γ̇(t))dt á 1 ∀γ ∈ W 1,1(I,Rd).

Indeed, if this is proved, and if f satisfies (5.2), then for each ε > 0, the function

(f + ε)/ε satisfies (5.3), hence
∫
f dη á −ε for each transport measure η, and

finally
∫
f dη á 0.

Let us fix a function f ∈ C1(I × R2d), assume (5.3), and define the value
function u : I ×Rd → R by

u(t,x) := inf
γ∈W 1,1(R,Rd), γ(t)=x

∫ t
0
f(s, γ(s), γ̇(s))ds.
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We have the equality

u(t,x) = inf
γ∈W 1,1(R,Rd), γ(t)=x

u(s, γ(s))+
∫ t
s
f (σ, γ(σ), γ̇(σ))dσ

for each s à t and each x. This equality is called the dynamic programming
principle.

Lemma 5.5. We have

u(t,y) à u(s,x)+ ‖f‖1
(
(t − s)+ |y − x|)

for each s à t in I and each x, y in Rd.

Proof. Just observe that

u(t,y) à u(s,x)+
∫ t
s
f
(
σ, x+σ y − x

t − s ,
y − x
t − s

)
dσ

à u(s,x)+ (t − s)‖f‖1

(
1+ |y − x|

t − s
)
. ❐

Lemma 5.6. The value function u is bounded and upper semi-continuous. In
addition, we have u(0, x) = 0 and u(1, x) á 1 for all x.

Proof. The inequality u(1, x) á 1 follows from (5.3). For each
γ ∈ W 1,1(R,Rd), let us consider the function

uγ(t, x) :=
∫ t

0
f
(
s, γ(s)+ x − γ(t), γ̇(s))ds

which is continuous and bounded. Observing that u = infγ∈W 1,1(R,Rd) uγ , we
conclude that the function u is upper semi-continuous and bounded from above.
It follows from Lemma 5.5 that u(t,x) á u(1, x)+‖f‖1(t−1) á 1+‖f‖1(t−1)
is bounded from below. ❐

Lemma 5.7. There exist sequences un : I × Rd → R and fn : I × R2d → R of
functions such that:
• The sequence fn is bounded in C1(I ×R2d) and fn → f pointwise.
• The functions un are smooth, bounded and Lipschitz. They satisfy

un(0, x) = un(1, x) = 0 for all n and all x.

• The inequality

un(t, γ(t))−un(s, γ(s)) à
∫ t
s
fn(σ, γ(σ), γ̇(σ))dσ

holds for each s à t in R and each absolutely continuous curve γ : R→ Rd.
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Proof. There exists δ > 0 such that u(t,x) < 1
2 when t à a + δ and

u(t,x) > 1
2 when t á b − δ. It is convenient to consider the function f̃n :

R×Rd ×Rd → R which is equal to f on [a+2/n, b−2/n]×Rd ×Rd and to 0
outside of this set, and the function ũn : R×Rd → R which is equal to u− 1

2 on
[a+2/n, b−2/n]×Rd, to 0 outside of this set. Note that

ũn(t, γ(t))− ũn(s, γ(s)) à
∫ t
s
f̃n(σ , γ(σ), γ̇(σ))dσ

for each n, each s à t in R and each absolutely continuous curve γ : R→ Rd.
Let ρn(t, x) : R × Rd → [0,∞) be a sequence of convolution kernels, that

is of smooth non-negative functions such that
∫
R×Rd

ρn(t, x)dx dt = 1 and such

that ρn is supported on the ball of center 0 and radius 1/n. Let us define the
functions un = ρn ∗ ũn : R×Rd → R:

un(t, x) =
∫
R×Rd

ũn(t−σ, x−y)ρn(σ,y)dσ dy,

and fn : R×Rd ×Rd → R by

fn(t, x, v) =
∫
R×Rd

f̃n(t−σ, x−y, v)ρn(σ,y)dσ dy.

For each fixed curve γ and each n, the inequality

ũn(t−σ, γ(t−σ)−y)− ũn(s−σ, γ(s−σ)−y)

à
∫ t
s
f̃n(ζ−σ, γ(ζ−σ)−y, γ̇(ζ−σ))dσ

holds for each (σ,y), and then the third point of the lemma is obtained by inte-
gration. ❐

Let η be a transport measure. We want to prove that
∫
f dη á 0. Let us set

hn(t, x, v) := fn(t, x, v)− ∂tun(t, x)− ∂xun(t, x) · v
in such a way that ∫ t

s
hn(σ, γ(σ), γ̇(σ))dσ á 0

for all absolutely continuous curves γ and all s à t in R. We deduce that hn is a

non-negative function, and then
∫
hn dη á 0. We have the equality (3.2) for un:

∫
I×R2d

∂tun(t, x)+ ∂xun(t, x) · v dη(t, x, v) = 0
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which implies that
∫
fn dη =

∫
hn dη á 0. At the limit n → ∞, we conclude that∫

f dη á 0. This ends the proof of Theorem 5.1. ❐

5.3. Application to the continuity equation. Young’s superposition princi-
ple implies elegant results of Ambrosio, Gigli and Savaré concerning the continuity
equation

(PDE) ∂tµ + div(Vµ) = 0.

It is well known that close relations exist between (PDE) and the following

(ODE) γ̇(t) = V(t, γ(t)).

More precisely, if γ(t) is an absolutely continuous solution of (ODE), then µ :=
dt⊗δγ(t) is a weak solution of (PDE). We call these solutions elementary. The re-
lations between (PDE) and (ODE) are enlightened by the following result, which
was obtained by Ambrosio, Gigli and Savaré [2,3], in the line of anterior works of
Smirnov [18] and Bangert [4]:

Theorem 5.8 (Ambrosio, Gigli, Savaré). Let V : I×M → TM be a Borel time-
dependant vector field. Every probability measure µ on I ×M which solves (PDE) in
the sense of distributions and satisfies the integrability condition

∫
‖V(t, x)‖x dµ <∞

is a superposition of elementary solutions. More precisely, there exists a Borel probability
measure ν on G(I,M) such that µ = dt ⊗ (evt)]ν, and ν-almost every generalized
curve is a curve and is a solution of (ODE).

Proof. In order to see the relation between this result and Young’s superposi-
tion principle, observe that weak solutions of (PDE) are in bijection with transport
measures which are concentrated on the graph of V (which is a Borel subset of X).
More precisely, if η is such a transport measure, then its marginal µ on [0,1]×Rd
is a weak solution of (PDE). Conversely, if µ is a solution of (PDE), then its lifting
to the graph of V is a transport measure. Now the transport measure η associated
to the solution µ can be written as a superposition of generalized curves which are
concentrated on the graph of V . But it is obvious that a generalized curve which is
concentrated on the graph of V is nothing but an absolutely continuous solution
of (ODE). ❐

Note that the result can be applied in Rd endowed with the complete metric

gx(v,w) =
〈v,w〉
(1+ |x|)2 .
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The integrability condition then reads

∫
I×Rd

|V(t, x)|
1+ |x| dµ(t, x) <∞

as in [2].

5.4. Application to optimal transport. Let L be a normal integrand. A
generalized curve Γ is called minimizing if it is minimizing the action with fixed
boundary points. If η is minimizing the action in T µf

µi (I,M), then η can be
decomposed into minimizing generalized curves. The decompositions ν of η are
minimizing the action ∫

G(I,M)

∫
I×TM

LdΓ dν(γ)

on the set of probability measures ν on P1(M) such that (eva)]ν = µi and
(evb)]ν = µf .

If in addition the integrand L is fiberwise convex, and if there exists a minimiz-
ing transport measure η in T µf

µi (I,M), then there exists a minimizing transport
measure in T µf

µi (I,M) which is concentrated on the graph of a Borel vector-field
V(t, x). This minimizing measure can be decomposed into minimizing curves
which are solutions of (ODE).

6. HOLONOMIC AND CLOSED MEASURES

In the theory of Mather minimizing measures, several spaces of measures were
introduced on T× TM. In order to be coherent with the exposition of the rest of
the present paper, we shall view them, in an equivalent way, as transport measures
in T ([0,1],M).

6.1. Closed measures. They have been used in the context of Lagrangian
dynamics by Bangert in [4].

Definition 6.1. A measure η ∈ T ([0,1],M) is called closed if there exists a
probability measure µ on M such that η ∈ T µ

µ ([0,1],M). We denote by F(M)
the set of closed measures, so that

F(M) =
⋃

µ∈P(M)
T µ
µ ([0,1],M) ⊂ T ([0,1],M).

We now expose a superposition principle for closed measures in the spirit of
Smirnov [18], Bangert [4] and De Pascal, Gelli and Granieri [12]. Let us first
define the set G(R,M) of measures Γ on R × TM such that, for each [a, b] ⊂ R,
the rescaled restriction

Γ[a,b] := Γ∣∣[a,b]×TM/(b − a)
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is a generalized curve in G([a, b],M). Denoting by dk the distance onG([−k, k],M),
we have a distance

d(Γ , Γ ′) = ∞∑
k=1

dk(Γ[−k,k], Γ ′[−k,k])
2k

on G(R,M). Clearly, a sequence Γn of elements of G(R,M) is converging to Γ if
and only if we have Γn[a,b] → Γ[a,b] for each [a, b] ⊂ R. It is not hard to check that
G(R,M) is a complete and separable metric space. Let τ : R× TM → R× TM be
the translation (t, x, v) 7 -→ (t + 1, x, v). The map τ] : G(R,M) → G(R,M) is
continuous. Consequently, the map

τ]] : P(G(R,M)) → P(G(R,M))

is continuous. A probability measure ν on G(R,M) is called translation invariant
if τ]]ν = ν.

For each compact time interval I, we denote by

PI : G(R,M) → G(I,M)

the map Γ 7 -→ ΓI . The Borel σ -algebra of G(R,M) is also the σ -algebra induced
by the projections PI , I ⊂ R.

Theorem 6.2. If η is a closed measure on M, then there exists a translation-
invariant probability measure ϑ on G(R,M) such that

∫
[0,1]×TM

f(t, x, v)dη(t, x, v) =
∫
G(R,M)

∫
[0,1]×TM

f(t, x, v)dΓ(t, x, v)dϑ(Γ)
for each function f ∈ L1(η). We call ϑ a solenoidal decomposition of η.

Proof. The proof is based on Young’s superposition principle and on general
constructions of measure theory. We have η ∈ T µ

µ for some probability measure µ
onM. Let ν be a decomposition of η in the sense of Theorem 5.2. We claim that,
for each k ∈ N, there exists a Borel probability measure νk on G([0, k],M) such
that P[`,`+1]]νk = τ`]ν for each ` ∈ {0,1, . . . , k−1}. Then, by standard extension
theorems, (for example Theorem V.4.1 of [17]) there exists a unique probability
ϑ on G(R,M) such that P[0,1]]ϑ = ν, and it is translation invariant.

We have to prove the existence of the measures νk. Let νx be the disinte-
gration of ν with respect to the map ev0. In other words, M 3 x 7 -→ νx is a
measurable family of Borel probability measures on G([0,1],M) such that νx is
concentrated on the set of generalized curves Γ which satisfy ev0(Γ) = x and such
that ∫

G([0,1],M)
f (Γ)dν = ∫

M

∫
G([0,1],M)

f (Γ)dνx(Γ)dµ(x)
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for each bounded Borel function on G([0,1],M). Let us denote

Y1([0, k− 1],M)×Y1([k− 1, k],M) → Y1([0, k],M)

(Y ,Z) 7 -→ Y ? Z

the natural gluing. Note that this map is continuous. We can now define the
sequence νk by recurrence setting ν1 := ν and

∫
G([0,k],M)

f (Γ)dνk(Γ)
=
∫
G([0,k−1],M)

∫
G([0,1],M)

f (Y ? τk−1
] Z)dνevk−1(Y)(Z)dν

k−1(Y)

for each bounded continuous function f on G([0, k],M). Note in this expression
that Y ? τk−1

] Z is indeed a generalized curve for νevk−1(Y)-almost all Z because
the measure νevk−1(Y) is supported on the set of generalized curves Γ which satisfy
ev0(Γ) = evk−1(Y). ❐

Let L : [0,1[×TM → R∪{∞} be a normal integrand. We extend L by periodicity
to a function on R× TM. We say that the generalized curve Γ ∈ G(R,M) is glob-
ally minimizing the action if ΓI is minimizing in G(I,M) (with fixed endpoints)
for each compact interval I. Similarly, an absolutely continuous curve γ : R → M
is called globally minimizing if it is minimizing the action with fixed endpoints on
each compact interval of time. If η is a closed measure which minimizes the action
in F , and if ϑ is a solenoidal decomposition of η, then ϑ-almost every generalized
curve is globally minimizing. If, in addition, the integrand L is fiberwise strictly
convex, then each minimizing closed measure η is concentrated on the graph of
a Borel vector field V(t, x), this was observed in [12] and can be proved as the
similar statements in Section 4. In addition, if ϑ is a solenoidal decomposition
of η, then ϑ-almost every generalized curve Γ ∈ G(R,M) is a curve, is a solu-
tion of (ODE) (with the vector field V extended to R×M by periodicity), and is
globally minimizing. This property is the generalization in our setting of the theo-
rems of Mañé [16], Bangert [4], Fathi and Siconolfi [14] stating, under additional
assumptions on L, that minimizing closed measures are invariant.

6.2. Holonomic measures. Our analysis of Closed measures makes it well
suited to minimization problems. However, Mañé first introduced in [16] the a
priori smaller set of holonomic measures. For historical reasons, we believe it is
worth proving here the equality between holonomic measures and closed mea-
sures. Let T ∈ N and γ : R→ M be a T -periodic absolutely continuous curve. We
denote by γ̃ the closed measure defined by

∫
[0,1]×TM

f dγ̃ = 1
T

∫ T
0
f(t − [t], γ(t), γ̇(t))dt
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where [t] is the integral part of t.

Definition 6.3. The set H (M) of holonomic measures is the closure, in
T ([0,1],M), of the set of all measures of the form γ̃, for smooth T -periodic
curves γ, T ∈ N.

Lemma 6.4. The set H (M) of holonomic measures can equivalently be defined
as the closure in T ([0,1],M), of the set of all measures of the form γ̃, for all absolutely
continuous T -periodic curves γ, T ∈ N.

Proof. It is sufficient to prove that each measure γ̃, where γ is a T -periodic
absolutely continuous curve, belongs to H (M). Let γ be such a curve. Let γn be
a sequence of smooth T -periodic curves which converge to γ in W 1,1([0, T],M).
Then we prove as in Lemma 3.7 that γ̃n → γ̃. ❐

We recall a first remark of Ricardo Mañé:

Lemma 6.5. The set H (M) is convex if M is connected.

Proof. Let η1 and η2 be holonomic measures, and let λ1 and λ2 in [0,1] be
such that λ1+λ2 = 1. We want to prove that λ1η1+λ2η2 is holonomic. Since ηi
is holonomic, there exist sequences of integers Tin and sequences of smooth curves
γin(t) : R→ M of period Tin such that γ̃in → ηi. By possibly replacing the periods
Tin by multiples, we can suppose without loss of generality that

T 1
n/T

2
n → λ1/λ2.

Let (0, xi, vi) be a point in the support of ηi. Since γ̃in → ηi, there exists a
sequence tin of times such that

(tin − [tin], γ(tin), γ̇(tin)) → (0, xi, vi).

We can suppose that tin → 0 by replacing the curves γin(t) by γin(t − [tin]). We
consider the sequence γn of absolutely continuous curves of period T 1

n + 2 + T 2
n

such that

γn =



γ1
n on [t1

n, T 1
n+t1

n],

γ2
n on [1+T 1

n+t2
n, 1+T 1

n+T 2
n+t2

n],

and γn is a minimizing geodesic on the remaining intervals. It is not hard to see
that

γ̃n → λ1η1 + λ2η2

as n→ ∞, so that this measure is holonomic. ❐

The following result is a piece of unproved folklore:
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Theorem 6.6. IfM is a compact connected manifold, then each closed measure is
holonomic:

H (M) = F(M).
Proof. By Lemma 6.5 and Proposition B.5, it is enough to prove that if f ∈

C1([0,1]× TM) satisfies∫ T
0
f
(
t−[t], γ(t), γ̇(t))dt á 0

for each T ∈ N and each absolutely continuous T -periodic curve γ : R→ M, then∫
f dη á 0 for each closed measure η.

We fix an integrand f ∈ C1([0,1]× TM), and extend f |[0,1[ to a 1-periodic
function on R× TM without changing the name. We have

∫ T
0
f(t, γ(t), γ̇(t))dt á 0

for each T ∈ N and each absolutely continuous T -periodic curve γ. As in the
proof of Young’s principle, we consider the value function u : [0,∞) ×M → R
defined by

u(t,x) := inf
γ(t)=x

∫ t
0
f(s, γ(s), γ̇(s))ds

where the infimum is taken on the set of absolutely continuous curves γ : [0, t]→
M which satisfy γ(t) = x.

Lemma 6.7. The function u is upper semi-continuous and locally bounded on
[0,∞)×N. In addition, it is bounded from below.

Proof. The proof of the first part is similar to the proof of Lemma 5.6. We
prove that the value function is bounded from below. There exists a constant C
such that ∫ s

0
f(t, γ(t), γ̇(t))dt á −C

for each s á 0 and each absolutely continuous curve γ : [0, s] → M. Indeed, we
can consider the periodic curve x(t) : [0, [s]+ 2] → M such that x = γ on [0, s]
and x(t) is a minimizing geodesic on [s, [s] + 2] between γ(s) and γ(0). We
have

0 à
∫ [s]+2

0
f(t, x(t), ẋ(t))dt

à
∫ s

0
f(t, γ(t), γ̇(t))dt + 2‖f‖1(1+D(γ(0), γ(s))),

whereD is the Riemannian distance onM, which is bounded. From the definition
of u, it follows that u(s,x) á −C for each (s, x) in [0,∞)×M. ❐
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As in the proof of Young’s principle, we have the following result:

Lemma 6.8. There exist sequences un : [1,∞)×M → R and fn : R×TM → R
of functions such that:
• The functions fn are 1-periodic in t. They are continuous and satisfy a uniform es-

timate |fn(t, x, v)| à C(1+‖v‖x). Finally, we have fn → f almost everywhere.
• The functions un are smooth, locally bounded and bounded from below.
• The inequality

un(t, γ(t))−un(s, γ(s)) à
∫ t
s
fn(σ, γ(σ), γ̇(σ))dσ

holds for each 1 à s à t in R and each absolutely continuous curve γ : R→ M.

Proof. We regularize as in the proof of Young’s principle. There is, however,
a small difficulty related to the fact that we now work on a manifold. In order to
solve this difficulty, we embedM as a Riemannian submanifold of some Euclidean
space Rd—one could also regularize in a more intrinsic way in the spirit of De
Rham [13]. Then, we consider a tubular neighborhood U of M in Rd and the
associated smooth projection π : U → M. We set, for t á 1 and (x,v) ∈ TM,

un(t, x) =
∫
R×Rd

u(t−σ, π(x −y))ρn(σ,y)dσ dy

fn(t, x, v) =
∫
R×Rd

f (t−σ, π(x−y), dπ(x−y) · v)ρn(σ,y)dσ dy.

Let γ : R → M be an absolutely continuous curve. For each fixed small y ∈ Rd,
the curve π(γ(t)−y) is absolutely continuous, and we have

u
(
t−σ, π(γ(t−σ)−y))−u(s−σ, π(γ(s−σ)−y))
à
∫ t
s
f
(
ζ−σ, π(γ(ζ−σ)−y), dπ(γ(ζ−σ)−y) · γ̇(ζ − σ)

)
dζ

for all small s. The third point of the lemma follows by integration. The other
points are standard. ❐

Let η ∈ T µ
µ ([0,1],M) be a closed measure. We want to prove that

∫
f dη á 0.

We see, as in the proof of Young’s principle, that∫
M
un(i+1, x)−un(i, x)dµ(x) à

∫
[0,1]×TM

fn dη

for each integer i á 1. By summation, we obtain, for each T ∈ N,∫
M

un(T+1, x)−un(1, x)
T

dµ(x) à
∫
[0,1]×TM

fn dη.
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At the limit T →∞, we obtain that
∫
fn dη á 0, and then at the limit n→∞, we

get
∫
f dη á 0, as desired. This ends the proof of Theorem 3.6. ❐

APPENDIX A. KANTOROVICH-RUBINSTEIN SPACE

Good references for the material exposed here are [3] and [20]. Let (X,d) be
a complete and separable metric space. Let P1(X) be the set of Borel probabil-
ity measures on X with finite first moment, that is the set of Borel probability
measures µ on X such that the integral

∫
X

d(x0, x)dµ(x)

is finite for one (and then each) point x0 ∈ X.
A coupling between two probability measures µ and η is a probability measure

λ on X2 whose marginals are µ and η, or in other words such that

∫
X2
f(x)+ g(y)dλ(x,y) =

∫
X
f(x)dµ(x)+

∫
X
g(y)dη(y)

for all continuous functions f and g on X.
We recall the definition of the Kantorovich-Rubinstein distance d on P1(X):

d1(µ, η) = min
λ

∫
X×X

d(x,y)dλ(x,y)

where the minimum is taken on the set of couplings λ between µ and η.
Let us denote by C1(X) the set of continuous functions f on X such that

sup
x∈X

|f(x)|
1+ d(x0, x)

<∞

for one (and then any) point x0 ∈ X. The topology on P(X) defined by the
distance d is precisely the weak topology associated to the linear forms µ 7 -→∫
f dµ, f ∈ C1(X). In other words, we have d(µn, µ)→ 0 if and only if

∫
f dµn →

∫
f dµ

for all f ∈ C1(X). There is an interesting duality formula for the distance:

d1(µ, η) = sup
f

∫
X
f(x)d(µ − η)(x)
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where the supremum is taken on the set of 1-Lipschitz functions f : X 7 -→ R.
An important remark is that, if the distance d on X is bounded, then the associ-
ated Kantorovich-Rubinstein space is just the space P(X) of all Borel probability
measures on X endowed with the narrow topology. Since it is always possible to
replace a given distance d by another distance which is bounded and generates the
same topology, our discussion includes the study of the narrow topology on P(X).

The metric space (P1(X),d) is complete and separable, see [3]. The relatively
compact subsets of P1(X) are those which are 1-tight:

Definition A.1. The subset Y ⊂ P(X) is called 1-tight if one of the following
equivalent properties holds:
– For each ε > 0, there exists a compact set K ⊂ X and a point x0 such that∫

X−K
(1+ d(x0, x))dµ à ε for each µ ∈ Y .

– There exists a function f : X → [0,∞] whose sublevels are compact, a constant

C and a point x0 such that
∫
X
(1+ d(x0, x))f (x)dµ à C for each µ ∈ Y .

– The family Y is tight with uniformly integrable first moment. The first means
that, for each ε > 0, there exists a compact set K ⊂ X such that µ(X − K) à ε
for each µ ∈ Y . The second means that for each ε > 0, there exists a ball B in

X such that
∫
X−B

d(x0, x)dµ à ε for each µ ∈ Y .

Note that 1-tightness is just tightness if the distance d is bounded.

Lemma A.2. A sequence µn converges to µ in P1(X) if and only if the fam-
ily {µn,n ∈ N} is 1-tight and if µn narrowly converges to µ, which means that∫
f dµn →

∫
f dµ for each bounded continuous function f . It is enough that the

family µn is converging narrowly to µ and has uniformly integrable first moment.

Let us now assume that X is a finite dimensional manifold.

Lemma A.3. A sequence µn converges to µ in P1(X) if and only if the sequence
has uniformly integrable first moment and converges to µ in the sense of distributions.

Still assuming that X is a manifold, we finish with the following result:

Lemma A.4. Let µt, t ∈ I be a measurable family of probability measures on X,
where I is an interval of R. In order that µt is equal almost everywhere to a narrowly
continuous map, it is enough that, for each compactly supported smooth function f :

X 7 -→ R, the function t 7 -→
∫
f dµt is equal almost everywhere to a continuous

function.

APPENDIX B. SUPERPOSITIONS

We continue with the notation of the first appendix. Let ν be a Borel probabil-
ity measure on the complete metric space P1(X). We say that ν represents the
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measure η ∈ P1(X) if the equality

(B.1)
∫
X
f dη =

∫
P1(X)

∫
X
f dµ dν(µ)

holds for each function f ∈ L1(η). Let us first check that the right hand side is
meaningful:

Lemma B.1. The linear map µ 7 -→
∫
X
f dµ is Borel measurable on P1(X) when

f is a non-negative Borel function on X. Each probability measure ν on P1(X)
represents one (and only one) element η ∈ P(X). We have η ∈ P1(X) if and only if

∫
P1(X)

∫
X

d(x0, x)dµ(x)dν(µ) < ∞

for one point x0.

Proof. It is clear that (B.1) defines a (unique) Borel measure η if it is mean-
ingful for each non-negative Borel function. So we have to prove the first state-
ment. Since the conclusion holds when f is continuous and bounded (for then

the map µ 7 -→
∫
f dµ is continuous), it is a consequence of the following standard

statement. ❐

Lemma B.2. Let E be a vector space of real-valued functions on X. Assume that E
contains all bounded continuous functions and is closed under monotone convergence.
Then E contains all non-negative Borel functions.

Proof. Let B be the set of subsets of X whose caracteristic function belongs to
E. It is not hard to see that B contains closed sets, that it is closed under increasing
union, and that if A ⊂ B are two elements of B, then B \ A is an element of B.
The classical Dynkin class theorem then implies that B contains all the Borel sets.
But then E contains all Borel non-negative functions. ❐

This statement also implies the following result:

Lemma B.3. In order that (B.1) holds for each function f ∈ L1(η), it is suffi-
cient that it holds for all bounded continuous functions.

Proposition B.4. Let G be a closed subset of P1(X), and let T be the closed
convex envelop of G in P1(X). Each measure η ∈ T is represented by a measure ν
which is supported on G (we say that µ is a superposition of elements of G).

Proof. Let us consider the set S of elements of P(X) which are superpositions
of elements of G. It is obvious that the set S is convex, and contains G. So we
have to prove that this set is closed. Let us consider a sequence ηn in S, which has
a limit η in P1(X). There exists a sequence νn of Borel probability measures on
P1(X) which represents ηn. Since the family {η,η1, . . . , ηn, . . . } is compact in
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P1(X), it is 1-tight, hence there exists a function f : X → [0,∞] whose sublevels
f−1([0, c]) are compact and such that the integral

∫
X
(1+ d(x0, x))f (x)dηn(x) =

∫
P1(X)

∫
X
(1+ d(x0, x))f (x)dµ(x)dνn(µ)

is a bounded sequence. The map

µ 7 -→
∫
X
(1+ d(x0, x))f (x)dµ(x)

has compact sublevels on P1(X), hence the boundedness of the sequence above
implies that the sequence νn is a tight sequence of probability measures on P1(X).
By the standard Prohorov theorem, we can assume that νn has a limit ν for the
narrow topology, which means that

∫
P(X)

F(η)dνn(η)→
∫
P(X)

F(η)dν(η)

for each bounded and continuous function F on P1(X). For each continuous and

bounded function f on X, the affine function µ 7 -→
∫
X
f dµ is continuous and

bounded on P(X), hence
∫
P(X)

∫
X
f dµ dνn(µ)→

∫
P(X)

∫
X
f dµ dν(µ).

Recalling that

∫
P(X)

∫
X
f dµ dνn(µ) =

∫
X
f dηn →

∫
X
f dη,

we conclude that ∫
X
f dη =

∫
P(X)

∫
X
f dµ dν(µ)

for each bounded and continuous function f on X. This implies that ν repre-
sents µ. Since the measures νn are supported on the closed set G, the limit ν is
supported on G. We have proved that µ ∈ S. ❐

We finish with an obvious remark on closed convex subsets of P1(X).

Proposition B.5. Let C be a closed convex subset of P1(X), and let C+ be the set

of functions f ∈ C1(X) such that
∫
X
f dµ á 0 for each µ ∈ C. Then C is the set of

measures µ ∈ P1(X) such that
∫
X
f dµ á 0 for each f ∈ C+.



28 PATRICK BERNARD

REFERENCES

[1] L. AMBROSIO, Lecture notes on transport equation and Cauchy problem for BV vector fields and
applications.

[2] , Transport equation and Cauchy problem for non-smooth vector fields.
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ISBN 978-3-7643-2428-5, 3-7643-2428-7. MR 2129498 (2006k:49001)

[4] V. BANGERT, Minimal measures and minimizing closed normal one-currents, Geom. Funct. Anal.
9 (1999), 413–427, http://dx.doi.org/10.1007/s000390050093. MR 1708452 (2000m:49058)

[5] J.-D. BENAMOU and Y. BRENIER, A computational fluid mechanics solution to
the Monge-Kantorovich mass transfer problem, Numer. Math. 84 (2000), 375–393,
http://dx.doi.org/10.1007/s002110050002. MR 1738163 (2000m:65111)
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