Coalescing and Branching Exclusion Process

Cristina Toninelli

Ceremade, Univ. Paris Dauphine

Collaborators: I.Hartarsky, F.Martinelli

イロト イポト イヨト イヨト 三日

C.TONINELLI

The model

Fix a connected graph G = (V, E) and a parameter 0

- Configuration space: $\Omega = \{0, 1\}^V$
- **Dynamics**: each edge $e = \{x, y\}$ containing at least one particle is resampled at rate 1 from

 $\pi_x \times \pi_y(\cdot \mid \exists \text{ at least one particle on } \{x, y\})$

with $\pi_x = \pi_y = \operatorname{Ber}(p)$

The model

• If there are 2 particles they coalesce at rate (1-p)/(2-p) to 1 particle on one of the two sites chosen uniformly

$$(1,1) \rightarrow (0,1)$$

• If there is 1 particle it creates a new particle on the other site at rate p/(2-p)

$$(1,0) \to (1,1)$$

- if there is 1 particle it moves to the adjacent empty site at rate (1-p)/(2-p)

$$(1,0) \rightarrow (0,1)$$

The model

• If there are 2 particles they coalesce at rate (1-p)/(2-p) to 1 particle on one of the two sites chosen uniformly

$$(1,1) \to (0,1) \qquad \mathbf{C}$$

• If there is 1 particle it creates a new particle on the other site at rate p/(2-p)

$$(1,0) \rightarrow (1,1)$$
 B

- if there is 1 particle it moves to the adjacent empty site at rate (1-p)/(2-p)

$$(1,0) \rightarrow (0,1)$$
 SEP

 \Rightarrow **CBSEP**

Coalescing random walks with neighbour births

System of particles on G that

- perform independent random walks jumping at rate 1
- branch at rate β creating a new particle on a neighbour empty vertex
- coalesce whenever they meet

Equivalent to CBSEP via a global time rescaling and setting $p=\beta/(1+\beta)$

History

- introduced in '77 by Schwartz as dual of biased voter model (a.k.a. William-Bjerknes tumour growth model)
- for any $\beta > 0$ on \mathbb{Z}^d : weak convergence to the unique invariant measure starting from any configuration with at least one particle [Bramson, Griffeath '80, '81]
- for any β > 0 on Z^d: shape theorem [Durrett, Griffeath '82]
 → mixing time cut-off on torus

• for $\beta \to 0$ on \mathbb{Z} : convergence to the Brownian net [Sun, Swart '08]

- Attractive and additive
- reversible w.r.t. $\pi = \operatorname{Ber}(p)^{\otimes V}$
- ergodic and reversible on Ω₊ := Ω \ {empty configuration} w.r.t. μ := π(·|Ω₊)

Mixing times and log Sobolev

• T_q is the ℓ^q -mixing time

$$\begin{split} h_{\omega}^{t}(\cdot) &= P_{\omega}^{t}(\cdot)/\mu(\cdot), \qquad ||f||_{q} = (\mu(|f|^{q}))^{1/q}, \quad q \geq 1\\ T_{q} &:= \inf\{t > 0, \max_{\omega} ||h_{\omega}^{t}(\cdot) - 1||_{q} \leq 1/e\}\\ T_{mix} &= T_{1} \end{split}$$

• T_{Sob} is the inverse of the Logarithmic Sobolev constant, i.e. the inverse rate of decay of the entropy

$$T_{\text{Sob}}^{-1} := \inf_{f} \frac{\mathcal{D}(f)}{\text{Ent}(f^2)} = \inf_{f} \frac{-\mu(f\mathcal{L}f)}{\mu(f^2\log(f^2/\mu(f^2)))}$$
$$T_q \le O\left(\log\log\left(\frac{1}{\min_{\omega}\mu(\omega)}\right)\right) T_{\text{Sob}} \quad \forall q \in [1,\infty]$$

CBSEP: results

Theorem [Hartarsky, Martinelli, C.T. '20]

Let $p_n = \Theta(1/n)$ and $G_n = (V_n, E_n)$ be a sequence of bounded degree graphs with $|V_n| = n$. Then $\exists c > 0$ s.t. $\forall n$

$$cT_{\text{meet}} \le T_{\text{Sob}} \le c^{-1}T_{\text{meet}}\log n$$

with T_{meet} the expected meeting time for two continuous time r.w. on G_n starting from two uniformly chosen sites

Corollary

If $G_n = \mathbb{T}_n^d = d$ -dimensional torus with n sites

$$\begin{array}{ll} cn^2 \leq T_{\rm Sob} \leq c^{-1}n^2\log n & d=1\\ cn\log n \leq T_{\rm Sob} \leq c^{-1}n\log^2 n & d=2\\ cn \leq T_{\rm Sob} \leq c^{-1}n\log n & d\geq 3 \end{array}$$

C.TONINELLI

CBSEP: ideas of the proof

 $\operatorname{Ent}(f^2) = \mu(\operatorname{Ent}(f^2|N)) + \operatorname{Ent}(\mu(f^2|N)), \quad N = \# \text{ particles}$

- first term
 - consider Bernoulli Laplace on complete graph K_n

•
$$T_{\text{Sob}}^{\text{BL}} = \log n$$
 [Lee Yau]
• $\mathcal{D}^{\text{BL}} \leq \frac{d_{max}^2 d_{mean}}{d_{min}^2} T_{\text{mix}}^{\text{lazy rw}} \mathcal{D}^{\text{SEP}}$ [Kozma Alon]

- second term
 - we construct an auxiliary birth death process with invariant measure the law of ${\cal N}$

- we determine $T_{\rm Sob}^{\rm birth-death}$ and we use path arguments to compare with CBSEP

A generalised version: g-CBSEP

- Fix a connected graph G = (V, E) and a finite probability space (S, ρ) with $S = S_1 \cup S_0$ and set $p := \rho(S_1)$
- we say that there is a particle at $v \in V$ iff $\omega_v \in S_1$

g-CBSEP dynamics : any edge e = (x, y) containing at least one particle is resampled at rate one from $\rho_x \times \rho_y(\cdot | \exists \text{ at least one particle on } e)$

Remark:

the projection $\phi: S^V \to \{0,1\}^V$ with $\phi(\omega)_x = \mathbb{1}_{\omega_x \in S_1}$ is CBSEP.

g-CBSEP: results

$$T_{\rm \scriptscriptstyle cov}^{\rm \scriptscriptstyle rw} = \inf\{t>0, \max_{x\in V} \mathbb{P}_x(\tau_{\rm \scriptscriptstyle cov}>t) \le 1/e\}$$

with $\tau_{\rm cov}$ the cover time of the simple r.w. on G

Theorem [Hartarsky, Martinelli, C.T. '20]

$$T_{\mathrm{mix}}^{\mathrm{CBSEP}} \leq T_{\mathrm{mix}}^{g\mathrm{-CBSEP}} \leq c (T_{\mathrm{mix}}^{\mathrm{CBSEP}} + T_{\mathrm{cov}}^{\mathrm{rw}})$$

Idea:

wait for the projection (= CBSEP) to couple, then wait for one random walk to cover the graph (\rightarrow all sites are refreshed).

g-CBSEP: results

Corollary

On \mathbb{T}_n^d with $p = \Theta(1/n)$ we get

$$T_{\text{mix}}^{g\text{-CBSEP}} = n^2 (\log n)^{\Theta(1)}, \quad d = 1$$

$$T_{\min}^{g\text{-CBSEP}} = n(\log n)^{\Theta(1)}, \quad d \ge 2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Remark

The result **does not** extend to the logarithmic Sobolev constant. Easy to find examples for which $T_{\rm Sob}^{g-{\rm CBSEP}} \gg T_{\rm Sob}^{{\rm CBSEP}} + T_{\rm cov}^{\rm rw}$

1-neighbour KCM, a.k.a. FA-1f

Fix a connected graph G = (V, E) and a parameter 0

- Configuration space: $\Omega = \{0, 1\}^V$
- **Dynamics**: each site $v \in V$ that has at least 1 neighbouring particle is resampled to 1 with probability pand 0 with probability 1 - p
- → As for CBSEP, the process is ergodic and reversible w.r.t. $\mu := \pi(\cdot | \exists \text{ at least one particle}).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- \rightarrow **BUT**
 - not attractive
 - we cannot embed a r.w.

1-neighbour KCM, a.k.a. FA-1f

- introduced [Friedrickson, Andersen '84] and extensively studied in physics as a model for the liquid glass transition
- scaling of the spectral gap on \mathbb{Z}^d as $p \downarrow 0$ [Cancrini, Martinelli, Roberto, C.T. '08, Shapira '20]
- convergence to equilibrium [Blondel, Cancrini, Martinelli, Roberto, C.T. '13]
- Pillai and Smith '17 ,'19: for $G = \mathbb{T}_n^d$ and p = c/n it holds

$$C^{-1}n^2 \le T_{\text{mix}} \le Cn^2 \log^{14}(n) \quad d = 2$$

 $C^{-1}n^2 \le T_{\text{mix}} \le Cn^2 \log(n) \quad d \ge 3$

FA-1f vs CBSEP

- branching and coalescing moves occur for FA-1f at the same rate as for CBSEP (when $p \rightarrow 0$)
- the SEP move $(1,0) \rightarrow (0,1)$ cannot occur on FA-1f, but it can be reconstructed via two consecutive FA-1f moves:

$$(1,0) \xrightarrow{p} (1,1) \xrightarrow{1-p} (0,1)$$

$$\rightarrow c^{-1}\mathcal{D}^{\text{FA1f}}(f) \leq \mathcal{D}^{\text{CBSEP}}(f) \leq \frac{cd_{max}}{p} \mathcal{D}^{\text{FA1f}}(f)$$

$$\to T_{\rm Sob}^{\rm FA1f} \le O\left(\frac{d_{max}}{p}\right) T_{\rm Sob}^{\rm CBSEP}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

FA-1f: ℓ^q mixing

Corollary

On \mathbb{T}_n^d with $p = \Theta(1/n)$ it holds for all $q \ge 1$

$$T_q^{\rm FA1f} \le O(\log n) T_{\rm Sob}^{\rm FA1f} \le \begin{cases} O(n^3 \log^2(n)) & d = 1\\ O(n^2 \log^3(n)) & d = 2\\ O(n^2 \log^2(n)) & d \ge 3 \end{cases}$$

- same results as Pillai, Smith '17+'19
- much simpler proof
- stronger : Pillai and Smith prove bounds on $T_{mix} = T_1$
- easy to generalise to different graphs, different scalings of p

Constraint to update: at least 2 neighbouring particles

Theorem [Hartarsky, Martinelli, C.T. '20⁺]

Let τ_0 the first time at which the origin is zero. For FA-2f models on \mathbb{Z}^d it holds

$$\mathbb{E}(\tau_0) = \exp\left(\frac{\lambda_d + o(1)}{p^{1/(d-1)}}\right)$$

with $\lambda_d > 0$ an explicit constant. In particular $\lambda_2 = \pi^2/9$

How can we get this sharp threshold?

FA-2f: heuristics

- dominant relaxation : motion of large rare droplets
- droplets have density $q = e^{-\lambda_d/p^{1/(d-1)}}$
- a droplet can :
 - disappear near another droplet
 - create a new droplet nearby at rate q
 - move to a nearby position

\rightarrow droplets behave as CBSEP

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

FA-2f: some ideas of the proof

Key difficulties

- **droplets are not rigid objects**, they can be destroyed or change shape → how do we identify them and follow their motion?
- no monotonicity \rightarrow no coupling or censoring arguments

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- Key ideas: upper bound
 - translate heuristics into Poincaré inequalities
 - renormalise to a g-CBSEP model
 - use our results on g-CBSEP $\rightarrow T_{\text{rel}}^{\text{FA2f}} \leq 1/q \log(1/q)$

FA-2f: some ideas of the proof

Key ideas: lower bound

- $\mathbb{E}(\tau_0) \ge (\text{density of droplets})^{-1} = q^{-1}$
- the **deterministic version** of the dynamics in which sites are always filled is 2-**neighbour bootstrap percolation**
- the dominant relaxation mechanism for BP is linear invasion of space by droplets $\rightarrow E^{BP}(\tau_0) \ge 1/q^{1/d}$
- sharp results on BP \rightarrow sharp results on q[Holroyd '03, Balogh,Bollobas,Duminil-Copin,Morris '12]

The exponent for FA-2f is d times larger than for BP

Thanks!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

C.TONINELLI