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The model

Fix a connected graph G = (V,E) and a parameter 0 < p < 1

• Configuration space: Ω = {0, 1}V

• Dynamics: each edge e = {x, y} containing at least one
particle is resampled at rate 1 from

πx × πy(· | ∃ at least one particle on {x, y})

with πx = πy = Ber(p)
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The model

• If there are 2 particles they coalesce at rate (1− p)/(2− p)
to 1 particle on one of the two sites chosen uniformly

(1, 1)→ (0, 1)

• If there is 1 particle it creates a new particle on the other
site at rate p/(2− p)

(1, 0)→ (1, 1)

• if there is 1 particle it moves to the adjacent empty site at
rate (1− p)/(2− p)

(1, 0)→ (0, 1)
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The model

• If there are 2 particles they coalesce at rate (1− p)/(2− p)
to 1 particle on one of the two sites chosen uniformly

(1, 1)→ (0, 1) C

• If there is 1 particle it creates a new particle on the other
site at rate p/(2− p)

(1, 0)→ (1, 1) B

• if there is 1 particle it moves to the adjacent empty site at
rate (1− p)/(2− p)

(1, 0)→ (0, 1) SEP

⇒ CBSEP
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Coalescing random walks with neighbour births

System of particles on G that

• perform independent random walks jumping at rate 1

• branch at rate β creating a new particle on a neighbour
empty vertex

• coalesce whenever they meet

Equivalent to CBSEP via a global time rescaling and
setting p = β/(1 + β)
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History

• introduced in ’77 by Schwartz as dual of biased voter
model (a.k.a. William-Bjerknes tumour growth model)

• for any β > 0 on Zd: weak convergence to the unique
invariant measure starting from any configuration with at
least one particle [Bramson, Griffeath ’80, ’81]

• for any β > 0 on Zd: shape theorem [Durrett, Griffeath ’82]
→ mixing time cut-off on torus

• for β → 0 on Z: convergence to the Brownian net
[Sun, Swart ’08]
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CBSEP: properties

• Attractive and additive

• reversible w.r.t. π = Ber(p)⊗V

• ergodic and reversible on Ω+ := Ω \ {empty configuration}
w.r.t. µ := π(·|Ω+)
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Mixing times and log Sobolev

• Tq is the `q-mixing time

htω(·) = P tω(·)/µ(·), ||f ||q = (µ(|f |q))1/q, q ≥ 1

Tq := inf{t > 0,max
ω
||htω(·)− 1||q ≤ 1/e}

Tmix = T1

• TSob is the inverse of the Logarithmic Sobolev constant, i.e.
the inverse rate of decay of the entropy

T−1
Sob := inf

f

D(f)

Ent(f2)
= inf

f

−µ(fLf)

µ(f2 log(f2/µ(f2))

Tq ≤ O
(

log log

(
1

minω µ(ω)

))
TSob ∀q ∈ [1,∞]
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CBSEP: results

Theorem [Hartarsky,Martinelli, C.T. ′20]

Let pn = Θ(1/n) and Gn = (Vn, En) be a sequence of bounded
degree graphs with |Vn| = n. Then ∃c > 0 s.t. ∀n

c Tmeet ≤ TSob ≤ c−1 Tmeet log n

with Tmeet the expected meeting time for two continuous time
r.w. on Gn starting from two uniformly chosen sites

Corollary

If Gn = Tdn= d-dimensional torus with n sites

cn2 ≤ TSob ≤ c−1n2 log n d = 1
cn log n ≤ TSob ≤ c−1n log2 n d = 2

cn ≤ TSob ≤ c−1n log n d ≥ 3
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CBSEP: ideas of the proof

Ent(f2) = µ(Ent(f2|N)) + Ent(µ(f2|N)), N = # particles

• first term
• consider Bernoulli Laplace on complete graph Kn

• TBL
Sob = log n [Lee Yau]

• DBL ≤ d2
maxdmean

d2
min

T lazy rw
mix DSEP [Kozma Alon]

• second term
• we construct an auxiliary birth death process with invariant

measure the law of N

• we determine T birth-death
Sob and we use path arguments to

compare with CBSEP
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A generalised version: g-CBSEP

• Fix a connected graph G = (V,E) and a finite probability
space (S, ρ) with S = S1 ∪ S0 and set p := ρ(S1)

• we say that there is a particle at v ∈ V iff ωv ∈ S1

g-CBSEP dynamics : any edge e = (x, y) containing at
least one particle is resampled at rate one from
ρx × ρy(· | ∃ at least one particle on e)

Remark:
the projection φ : SV → {0, 1}V with φ(ω)x = 1ωx∈S1 is CBSEP.
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g-CBSEP: results

T rw
cov = inf{t > 0,max

x∈V
Px(τcov > t) ≤ 1/e}

with τcov the cover time of the simple r.w. on G

Theorem [Hartarsky,Martinelli, C.T. ′20]

TCBSEP
mix ≤ T g-CBSEP

mix ≤ c(TCBSEP
mix + T rw

cov)

Idea:
wait for the projection (= CBSEP) to couple, then wait for one
random walk to cover the graph (→ all sites are refreshed).
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g-CBSEP: results

Corollary

On Tdn with p = Θ(1/n) we get

T g-CBSEP
mix = n2(log n)Θ(1), d = 1

T g-CBSEP
mix = n(log n)Θ(1), d ≥ 2

Remark

The result does not extend to the logarithmic Sobolev
constant. Easy to find examples for which
T g-CBSEP

Sob � TCBSEP
Sob + T rw

cov
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1-neighbour KCM, a.k.a. FA-1f

Fix a connected graph G = (V,E) and a parameter 0 < p < 1

• Configuration space: Ω = {0, 1}V

• Dynamics: each site v ∈ V that has at least 1
neighbouring particle is resampled to 1 with probability p
and 0 with probability 1− p

→ As for CBSEP, the process is ergodic and reversible w.r.t.
µ := π(·|∃ at least one particle).

→ BUT
• not attractive
• we cannot embed a r.w.
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1-neighbour KCM, a.k.a. FA-1f

• introduced [Friedrickson, Andersen ’84] and extensively
studied in physics as a model for the liquid glass transition

• scaling of the spectral gap on Zd as p ↓ 0
[Cancrini, Martinelli, Roberto, C.T. ’08, Shapira ’20]

• convergence to equilibrium
[Blondel, Cancrini, Martinelli, Roberto, C.T. ’13]

• Pillai and Smith ’17 ,’19: for G = Tdn and p = c/n it holds

C−1n2 ≤ Tmix ≤ Cn2 log14(n) d = 2

C−1n2 ≤ Tmix ≤ Cn2 log(n) d ≥ 3
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FA-1f vs CBSEP

• branching and coalescing moves occur for FA-1f at the
same rate as for CBSEP (when p→ 0)

• the SEP move (1, 0)→ (0, 1) cannot occur on FA-1f, but it
can be reconstructed via two consecutive FA-1f moves:

(1, 0)
p→ (1, 1)

1−p→ (0, 1)

→ c−1DFA1f(f) ≤ DCBSEP(f) ≤ cdmax
p
DFA1f(f)

→ T FA1f
Sob ≤ O

(
dmax
p

)
TCBSEP

Sob
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FA-1f: `q mixing

Corollary

On Tdn with p = Θ(1/n) it holds for all q ≥ 1

T FA1f
q ≤ O(log n)T FA1f

Sob ≤


O(n3 log2(n)) d = 1
O(n2 log3(n)) d = 2
O(n2 log2(n)) d ≥ 3

• same results as Pillai, Smith ’17+’19

• much simpler proof

• stronger : Pillai and Smith prove bounds on Tmix = T1

• easy to generalise to different graphs, different scalings of p
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FA-2f models on Zd

Constraint to update: at least 2 neighbouring particles

Theorem [Hartarsky,Martinelli, C.T. ′20+]

Let τ0 the first time at which the origin is zero. For FA-2f
models on Zd it holds

E(τ0) = exp

(
λd + o(1)

p1/(d−1)

)
with λd > 0 an explicit constant. In particular λ2 = π2/9

How can we get this sharp threshold?
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FA-2f: heuristics

• dominant relaxation : motion of large rare droplets

• droplets have density q = e−λd/p
1/(d−1)

• a droplet can :
• disappear near another droplet
• create a new droplet nearby at rate q
• move to a nearby position

→ droplets behave as CBSEP
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FA-2f : some ideas of the proof

Key difficulties

• droplets are not rigid objects, they can be destroyed or
change shape → how do we identify them and follow their
motion?

• no monotonicity → no coupling or censoring arguments

Key ideas: upper bound

• translate heuristics into Poincaré inequalities

• renormalise to a g-CBSEP model

• use our results on g-CBSEP → T FA2f
rel ≤ 1/q log(1/q)
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FA-2f : some ideas of the proof

Key ideas: lower bound

• E(τ0) ≥ (density of droplets)−1 = q−1

• the deterministic version of the dynamics in which sites
are always filled is 2-neighbour bootstrap percolation

• the dominant relaxation mechanism for BP is linear
invasion of space by droplets → EBP (τ0) ≥ 1/q1/d

• sharp results on BP → sharp results on q
[Holroyd ’03, Balogh,Bollobas,Duminil-Copin,Morris ’12]

The exponent for FA-2f is d times larger than for BP
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Thanks!
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