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Fredrickson Andersen 2 spin facilitated model (FA-2f)

An interacting particle system on {0, 1}Zd ,d>2.
O0=empty, 1=occupied.
Dynamics: birth and death of particles

e Fix a parameter ¢ € [0, 1]
e at rate 1 each site gets a proposal to update its state to
empty at rate ¢ and to occupied at rate 1 — q.

e the proposal is accepted iff the site has at least 2 empty
nearest neighbours = iff the kinetic constraint is satisfied
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FA-2f: properties

e Reversible w.r.t. Bernoulli(1-q) product measure, /i,
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e cooperative dynamics ~ finite empty regions cannot expand
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FA-2f: properties

e Reversible w.r.t. Bernoulli(1-q) product measure, /i,

e non attractive dynamics
— injecting more vacancies can help filling more sites
— coupling and censoring arguments fail

e There exist blocked configurations
— ergodicity issues, several invariant measures
— relaxation is not uniform on the initial condition
— worst case analysis is too rough and coercive inequalities fail

e cooperative dynamics ~ finite empty regions cannot expand
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PO i:w — subtle relaxation mechanism
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Ir?? — sharp slowdown for ¢ | 0

Several IPS tools fail — new tools needed!
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Motivations from physics

Introduced in the ’80’s to model the liquid/glass transition

e major open problem in condensed matter physics;
e sharp divergence of timescales;
e no significant structural changes.

= kinetic constraints mimic cage effect :
if temperature is lowered free volume shrinks (¢ <+ e~ /T)

= changing the constraint: KCM

= trivial equilibrium and yet sharp divergence of timescales
when ¢ | 0, aging, heterogeneities, ... — glassy dynamics
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Motivations from physics

e Key question: how do KCM time-scales diverge for ¢ | 0 ?

e Sharp divergence — numerical simulations do not give
clear-cut answers, some of the conjectures were wrong!
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2-neighbour Bootstrap Percolation

A deterministic discrete time algorithm on {0, 1}2", d > 2:

e Kkill each particles that has at least 2 empty neighbours;
e iterate until reaching a stable configuration.
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2-neighbour Bootstrap Percolation

A deterministic discrete time algorithm on {0, 1}2", d > 2:

e Kkill each particles that has at least 2 empty neighbours;
e iterate until reaching a stable configuration.

If the initial configuration is distributed with
— Vg > 0 the stable configuration is a.s. empty [Van Enter ’88]
— 74" = first time at which the origin is emptied

A(d
for ¢ 0 whp. 73" =exp <ql/((d—)1)(1 — 0(1))>

e \(2) = 7%/18 [Holroyd '08]
e \(d) =... Vd > 2 [Balogh Bollobas Duminil-Copin Morris '12]
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Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. ’20]

As ¢ | 0, w.h.p. for the stationary FA-2f model on Z? it holds

To = exXp (Célj(—j_(il))(l — o(l))) , d>2

the same result holds for E,, (o). Thus, w.h.p. 7 = (7&¥)4+o(1),
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Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. ’20]
As ¢ | 0, w.h.p. for the stationary FA-2f model on Z? it holds

To = exXp <m(l — o(l))) , d>2

the same result holds for E,, (7). Thus, w.h.p. 7o = (787)@+(1).
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Remark
e This is not a corollary of the BP result:
the emptying/occupying mechanism of FA-2f has no
counterpart in BP!

e We settle contrasting conjectures in physics literature
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High level ideas

e Relaxation is driven by the motion of unlikely and large
patches of empty sites = droplets
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High level ideas

e Relaxation is driven by the motion of unlikely and large
patches of empty sites = droplets

d x A\(d) 1
pPD = exp <_1/d1(1+0(1)) , Lp:=poly| -
q q
e Droplets move in any direction ...... isn’t this a
contradiction with “finite empty regions cannot expand’?!
s Hise
0—4:3;1 oo —> o-¢ I 'S
e J.L > o g 1 . , e I ‘L'—i
I I I I ...1la lJacent o allows expansion! I I I I I
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High level ideas

e Relaxation is driven by the motion of unlikely and large
patches of empty sites = droplets

dx \d 1
pD = exp <_q1/d—(1) (1+ 0(1)))7 Lp := poly <q>
e Droplets move in any direction ...... isn’t this a

contradiction with "finite empty regions cannot expand™?!

e Motion requires few additional empty sites — this good
environment is very likely for large droplets (¢ | 0)
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High level ideas

e 79 ~ time for the droplet to arrive near the origin
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High level ideas

e 79 ~ time for the droplet to arrive near the origin

e motion of droplets ~ coalescing + branching + SSEP

— 719~ 1/pp

e 737 ~ distance of droplet to origin

1
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How do optimal droplets look like? the d=2 case

Two key steps:

e identify optimal droplets (...what does optimal means?)

e study the droplet motion and identify its time-scale

Optimal droplets are regions of size poly(1/q) that contain:

@ asegment of ~ 1/,/q empty sites = core

@ additional empty sites allowing the core to move inside the
droplet without creating a larger empty core
= super-good dust
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Super-good dust: multi-scale construction

n _,%123"'£N

]

by :=e™a/ /g, N =8|logq|/\Jq — {x=Lp=q /20

e black square = no double raws fully occupied + one raw
with no consecutive filled sites (the core)

e vertical arrow = no double raws fully occupied
e horizontal arrow = no double columns fully occupied
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More precisely...

A multi-scale definition
o (, = e”\/a/\/a, N =8|logq|/\/q
— EN:LD:(l/q)17/2+°(1)
e arectangle R is of class n if
e R is a single site for n = 0;
e R=/{, xhwithh e ({;,_1,0,] for n = 2m;
o R=w Xy, withw € (b, lpmy1] forn=2m+1

e Super-good (SG) rectangles:
e a rectangle of class 0 is SG if it is empty;

e arectangle of class n is SG if it contains a SG rectangle R’ of
class n — 1 (the core) AND it satisfies traversability conditions
elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as ¢y x ¢ SG rectangles

C.TONINELLI



How do droplets move in a good environment?

e A droplet coalesces with a nearby droplet on time
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How do droplets move in a good environment?

e A droplet coalesces with a nearby droplet on time

e a droplet creates a new droplet nearby on time
_ d x \(d)
1

e droplets can move by deforming themselves like amoeba
(i.e. rearranging the position of the super-good dust) — a
droplet and a non-droplet swap position on time 7' < pp!
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How do droplets move in a good environment?

e A droplet coalesces with a nearby droplet on time

e a droplet creates a new droplet nearby on time

. d x A(d)
Pp ™ XD " 1/(a-)

e droplets can move by deforming themselves like amoeba
(i.e. rearranging the position of the super-good dust) — a
droplet and a non-droplet swap position on time 7' < pp!

—> A generalised CBSEP motion
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From heuristics to proof: hints for the upper bound

Q@ Hitting times <+ Dirichlet eigenvalues
@ renormalize on the droplet size
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From heuristics to proof: hints for the upper bound

Q@ Hitting times <+ Dirichlet eigenvalues
@ renormalize on the droplet size

S < [FA-2ED rg-CBSEP

— “rel rel

T™*P = relaxation time of the FA-2f chain inside a droplet

rel

TE®*™ = relaxation time of the g-CBSEP chain

rel

@ establish the following Poincaré inequalities

. 1/(2d—2) . _
_y EA2ED < eO(logq)/q TrgEICBSEP < le log oD

rel

— 79 < exp <m(1 — 0(1))>
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What happens if we change constraint?

e FA-2f is one example of KCM, 7 is constraint dependent
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universality results in d = 2 for all KCM
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e relaxation is always driven by large rare droplets but their
motion can be very different from CBSEP!

Ex. Duarte-KCM:
d = 2, constraint = at least 2 empty among N,W,S neighbours

@(aogq)“) e((logq>2)
m=c¢e a > =e !

— 10> (157)¢ Ve

[Maréché, Martinelli, C.T. ’20]
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Thanks for your attention!




