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Fredrickson Andersen 2 spin facilitated model (FA-2f)

An interacting particle system on {0, 1}Zd
, d ≥ 2.

0=empty, 1=occupied.

Dynamics: birth and death of particles

• Fix a parameter q ∈ [0, 1]

• at rate 1 each site gets a proposal to update its state to
empty at rate q and to occupied at rate 1− q.

• the proposal is accepted iff the site has at least 2 empty
nearest neighbours = iff the kinetic constraint is satisfied
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FA-2f: properties

• Reversible w.r.t. Bernoulli(1-q) product measure, µq

• non attractive dynamics
→ injecting more vacancies can help filling more sites
→ coupling and censoring arguments fail

• There exist blocked configurations
→ ergodicity issues, several invariant measures
→ relaxation is not uniform on the initial condition
→ worst case analysis is too rough and coercive inequalities fail

• cooperative dynamics ∼ finite empty regions cannot expand

→ subtle relaxation mechanism

→ sharp slowdown for q ↓ 0

Several IPS tools fail→ new tools needed!
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Motivations from physics

Introduced in the ’80’s to model the liquid/glass transition

• major open problem in condensed matter physics;
• sharp divergence of timescales;
• no significant structural changes.

⇒ kinetic constraints mimic cage effect :
if temperature is lowered free volume shrinks (q ↔ e−1/T )

⇒ changing the constraint: KCM

⇒ trivial equilibrium and yet sharp divergence of timescales
when q ↓ 0, aging, heterogeneities, . . .→ glassy dynamics
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Motivations from physics

• Key question: how do KCM time-scales diverge for q ↓ 0 ?

• Sharp divergence→ numerical simulations do not give
clear-cut answers, some of the conjectures were wrong!
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2-neighbour Bootstrap Percolation

A deterministic discrete time algorithm on {0, 1}Zd
, d ≥ 2:

• kill each particles that has at least 2 empty neighbours;
• iterate until reaching a stable configuration.

If the initial configuration is distributed with µq
→ ∀q > 0 the stable configuration is a.s. empty [Van Enter ’88]

→ τ BP
0 = first time at which the origin is emptied

for q ↓ 0 w.h.p. τ BP
0 = exp

(
λ(d)

q1/(d−1)
(1− o(1))

)

• λ(2) = π2/18 [Holroyd ’08]
• λ(d) = . . . ∀d > 2 [Balogh Bollobas Duminil-Copin Morris ’12]
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Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. ’20]

As q ↓ 0, w.h.p. for the stationary FA-2f model on Zd it holds

τ0 = exp

(
d× λ(d)
q1/(d−1)

(1− o(1))
)
, d ≥ 2

the same result holds for Eµq(τ0). Thus, w.h.p. τ0 = (τ BP
0 )d+o(1).

Remark

• This is not a corollary of the BP result:
the emptying/occupying mechanism of FA-2f has no
counterpart in BP!

• We settle contrasting conjectures in physics literature
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High level ideas

• Relaxation is driven by the motion of unlikely and large
patches of empty sites⇒ droplets

ρD := exp

(
−d× λ(d)

q1/d−1
(1 + o(1))

)
, LD := poly

(
1

q

)
• Droplets move in any direction . . . . . . isn’t this a

contradiction with ”finite empty regions cannot expand”?!

• Motion requires few additional empty sites→ this good
environment is very likely for large droplets (q ↓ 0)

C.Toninelli Fredrickson Andersen 2-spin facilitated model: sharp threshold



High level ideas

• Relaxation is driven by the motion of unlikely and large
patches of empty sites⇒ droplets

ρD := exp

(
−d× λ(d)

q1/d−1
(1 + o(1))

)
, LD := poly

(
1

q

)
• Droplets move in any direction . . . . . .

isn’t this a
contradiction with ”finite empty regions cannot expand”?!

• Motion requires few additional empty sites→ this good
environment is very likely for large droplets (q ↓ 0)

C.Toninelli Fredrickson Andersen 2-spin facilitated model: sharp threshold



High level ideas

• Relaxation is driven by the motion of unlikely and large
patches of empty sites⇒ droplets

ρD := exp

(
−d× λ(d)

q1/d−1
(1 + o(1))

)
, LD := poly

(
1

q

)
• Droplets move in any direction . . . . . . isn’t this a

contradiction with ”finite empty regions cannot expand”?!

. . .1 adjacent ◦ allows expansion!

• Motion requires few additional empty sites→ this good
environment is very likely for large droplets (q ↓ 0)

C.Toninelli Fredrickson Andersen 2-spin facilitated model: sharp threshold



High level ideas

• Relaxation is driven by the motion of unlikely and large
patches of empty sites⇒ droplets

ρD := exp

(
−d× λ(d)

q1/d−1
(1 + o(1))

)
, LD := poly

(
1

q

)
• Droplets move in any direction . . . . . . isn’t this a

contradiction with ”finite empty regions cannot expand”?!

. . .1 adjacent ◦ allows expansion!

• Motion requires few additional empty sites→ this good
environment is very likely for large droplets (q ↓ 0)

C.Toninelli Fredrickson Andersen 2-spin facilitated model: sharp threshold



High level ideas

• Relaxation is driven by the motion of unlikely and large
patches of empty sites⇒ droplets

ρD := exp

(
−d× λ(d)

q1/d−1
(1 + o(1))

)
, LD := poly

(
1

q

)
• Droplets move in any direction . . . . . . isn’t this a

contradiction with ”finite empty regions cannot expand”?!

• Motion requires few additional empty sites→ this good
environment is very likely for large droplets (q ↓ 0)

C.Toninelli Fredrickson Andersen 2-spin facilitated model: sharp threshold



High level ideas

• τ0 ∼ time for the droplet to arrive near the origin

• motion of droplets ∼ coalescing + branching + SSEP

→ τ0 ∼ 1/ρD

• τ BP
0 ∼ distance of droplet to origin

→ τ BP
0 ∼ 1/ρ

1/d
D ∼ τ0

1/d
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How do optimal droplets look like? the d=2 case

Two key steps:

• identify optimal droplets (. . . what does optimal means?)
• study the droplet motion and identify its time-scale

Optimal droplets are regions of size poly(1/q) that contain:

1 a segment of ∼ 1/
√
q empty sites⇒ core

2 additional empty sites allowing the core to move inside the
droplet without creating a larger empty core
⇒ super-good dust
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Super-good dust: multi-scale construction

`3 . . . `N`1 `2

`n := en
√
q/
√
q, N = 8| log q|/√q → `N = LD = q−17/2+o(1)

• black square = no double raws fully occupied + one raw
with no consecutive filled sites (the core)

• vertical arrow = no double raws fully occupied
• horizontal arrow = no double columns fully occupied
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More precisely...

A multi-scale definition
• `n := en

√
q/
√
q, N = 8| log q|/√q

→ `N = LD = (1/q)17/2+o(1)

• a rectangle R is of class n if
• R is a single site for n = 0;
• R = `m × h with h ∈ (`m−1, `m] for n = 2m;
• R = w × `m with w ∈ (`m, `m+1] for n = 2m+ 1

• Super-good (SG) rectangles:
• a rectangle of class 0 is SG if it is empty;
• a rectangle of class n is SG if it contains a SG rectangle R’ of

class n− 1 (the core) AND it satisfies traversability conditions
elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as `N × `N SG rectangles
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How do droplets move in a good environment?

• A droplet coalesces with a nearby droplet on time

T ∼ exp

(
| log q|3

q1/(2d−2)

)

• a droplet creates a new droplet nearby on time

ρ−1
D ∼ exp

(
d× λ(d)
q1/(d−1)

)

• droplets can move by deforming themselves like amoeba
(i.e. rearranging the position of the super-good dust)→ a
droplet and a non-droplet swap position on time T � ρ−1

D

=⇒ A generalised CBSEP motion
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From heuristics to proof: hints for the upper bound

1 Hitting times↔ Dirichlet eigenvalues
2 renormalize on the droplet size

→ τ0 ≤ T FA-2f,D
rel T g-CBSEP

rel

T FA-2f, D
rel = relaxation time of the FA-2f chain inside a droplet
T g-CBSEP

rel = relaxation time of the g-CBSEP chain

3 establish the following Poincaré inequalities

→ T FA-2f,D
rel ≤ eO(log q)/q1/(2d−2)

T g-CBSEP
rel ≤ ρ−1

D log ρD

→ τ0 ≤ exp

(
d× λ(d)
q1/(d−1)

(1− o(1))
)
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What happens if we change constraint?

• FA-2f is one example of KCM, τ is constraint dependent

• our mathematical tools are very flexible, we prove
universality results in d = 2 for all KCM
[Hartarsky, Marêché, Martinelli, Morris, C.T. ’19 - ’20- ’21+]

• relaxation is always driven by large rare droplets but their
motion can be very different from CBSEP!

Ex. Duarte-KCM:
d = 2, constraint = at least 2 empty among N,W,S neighbours

τ0 = e
Θ

(
(log q)4

q2

)
� τ BP

0 = e
Θ

(
(log q)2

q

)

→ τ0 � (τ BP
0 )c ∀c

[Marêché, Martinelli, C.T. ’20]
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[Hartarsky, Marêché, Martinelli, Morris, C.T. ’19 - ’20- ’21+]

• relaxation is always driven by large rare droplets but their
motion can be very different from CBSEP!

Ex. Duarte-KCM:
d = 2, constraint = at least 2 empty among N,W,S neighbours

τ0 = e
Θ

(
(log q)4

q2

)
� τ BP

0 = e
Θ

(
(log q)2

q

)

→ τ0 � (τ BP
0 )c ∀c
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Thanks for your attention!
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