Universality results for IPS with kinetic constraints

Cristina Toninelli

Ceremade, Univ. Paris Dauphine

Collaborators: I.Hartarsky, L.Marêché, F.Martinelli, R.Morris

イロト イポト イヨト イヨト 二日

C.TONINELLI

Kinetically Constrained Models, a.k.a. KCM

Configurations : $\eta \in \Omega := \{0, 1\}^{\mathbb{Z}^2}$, 0 = empty, 1 = occupied

Fix a density parameter $q \in [0, 1]$ and an update family \mathcal{U} with

 $\mathcal{U} = \{U_1, \dots, U_m\}, \quad U_i \subset \mathbb{Z}^2 \setminus 0, \quad |U_i| < \infty, \quad m < \infty$

i.e. \mathcal{U} is a finite collection of local neighbourhoods of the origin

Fix $\eta \in \Omega$ and $x \in \mathbb{Z}^2$: "the constraint is satisfied at x" iff at least one of the translated sets $U_i + x$ is completely empty

Dynamics: each site with the constraint satisfied is updated to empty at rate q and to occupied at rate 1 - q

An example: 2-neighbour KCM a.k.a. FA-2f model

 \mathcal{U} = collection of sets containing 2 nearest neighb. of the origin

Other popular KCM

• FA-*j*f model:

 \mathcal{U} = all sets containing *j* nearest neighbours of the origin

- East model: $\mathcal{U} = \{U_1, U_2\}$ with $U_1 = (0, -1)$, $U_2 = (-1, 0)$
- North-East model: $U = \{U_1\}$ with $U_1 = \{(0, 1), (1, 0)\}$
- Duarte model: $\mathcal{U} = \{U_1, U_2, U_3\}$ with

Kinetically Constrained Models, a.k.a. KCM

KCM are a class of IPS with Glauber dynamics featuring:

• reversibility w.r.t. μ_q , the product measure of density 1 - q;

- non attractive dynamics ;
- blocked structures and blocked configurations;
- several invariant measures;
- anomalous divergence of time scales for $q \downarrow 0$.

Kinetically Constrained Models, a.k.a. KCM

- non attractive dynamics ;
 - $\rightarrow\,$ injecting more vacancies has unpredictable consequences
 - $\rightarrow~{\rm coupling}$ and censoring arguments fail
- blocked structures and blocked configurations;
 - $\rightarrow~{\rm relaxation}$ is not uniform on the initial condition
 - \rightarrow worst case analysis is too rough
 - \rightarrow coercive inequalities fail
- anomalous divergence of time scales for $q \downarrow 0$.
- \Rightarrow many standard IPS tools fail for KCM \rightarrow new tools needed!

Origins of KCM

Introduced in the '80's to model the liquid/glass transition

- understanding this transition is a major open problem in condensed matter physics;
- sharp divergence of timescales;
- no significant structural changes.
- ⇒ kinetic constraints mimic *cage effect* : if temperature is lowered free volume shrinks ($q \leftrightarrow e^{-1/T}$)
- ⇒ trivial equilibrium and yet sharp divergence of timescales when $q \downarrow 0$, aging, heterogeneities, ... → glassy dynamics

Blocked clusters and bootstrap percolation

Choose a configuration $\eta \in \Omega$.

Is η blocked? does it contain a subset of blocked particles?

A deterministic discrete time algorithm:

- kill particles on all sites that have the constraint satisfied;
- iterate until reaching a stable configuration.
- Clusters of particles in the stable configuration \leftrightarrow blocked clusters of η
- the algorithm is *U*-Bootstrap Percolation (BP) [Bollobás, Smith, Uzzell CPC '15]
- For FA-*j*f the corresponding algorithm is *j*-neighbour BP.

BP: critical density and infection time

 Is the whole lattice empty in the stable configuration? What happens typically if η is distributed with μ_q, η ~ μ_q?

 $q_c := \inf\{q \in [0,1] : \mu_q(\text{origin is emptied eventually}) = 1\}$

A D > A B > A B > A B > B

BP: critical density and infection time

 Is the whole lattice empty in the stable configuration? What happens typically if η is distributed with μ_q, η ~ μ_q?

 $q_c := \inf\{q \in [0,1] : \mu_q(\text{origin is emptied eventually}) = 1\}$

(ロ)、(型)、(E)、(E)、(E)、(O)(O)

• How many steps do we need to empty the origin?

 $\tau_0^{\scriptscriptstyle \mathrm{BP}} = \mathrm{first}$ time at which origin is emptied

How does τ_0^{BP} behave if $\eta \sim \mu_q$ and $q \downarrow q_c$?

BP: universality classes

Three universality classes

- Supercritical: $q_c = 0$, $\tau_0^{\text{BP}}(q) = 1/q^{\Theta(1)}$ w.h.p. as $q \downarrow 0$
- Critical: $q_c = 0$, $\tau_0^{\text{BP}}(q) = \exp(1/q^{\Theta(1)})$ w.h.p. as $q \downarrow 0$
- Subcritical: $q_c > 0$

Easy-to-use criterion to determine the class of any \mathcal{U} (*m* simple geometric checks, m = # of rules)

[Bollobás, Smith, Uzzell CPC '15 + Balister, Bollobás, Przykucki, Smith TAMS '16]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BP: universality classes

Three universality classes

- Supercritical: $q_c = 0$, $\tau_0^{\text{BP}}(q) = 1/q^{\Theta(1)}$ w.h.p. as $q \downarrow 0$
- Critical: $q_c = 0$, $\tau_0^{\text{BP}}(q) = \exp(1/q^{\Theta(1)})$ w.h.p. as $q \downarrow 0$
- Subcritical: $q_c > 0$

Easy-to-use criterion to determine the class of any \mathcal{U} (*m* simple geometric checks, m = # of rules)

[Bollobás, Smith, Uzzell CPC '15 + Balister, Bollobás, Przykucki, Smith TAMS '16]

- East and FA-1f are supercritical;
- Duarte and FA-2f are critical;
- North-East is subcritical.

KCM: time scales

τ_0 := first time at which origin is emptied

- How does τ_0 diverge under μ_q when $q \downarrow q_c$?
- How does it compare with τ_0^{BP} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

KCM: time scales

 τ_0 := first time at which origin is emptied

- How does τ_0 diverge under μ_q when $q \downarrow q_c$?
- How does it compare with τ_0^{BP} ?

An (easy) lower bound:

Let $T^{\text{\tiny{BP}}}(q) := \inf\{t \ge 0: \ \mu(\tau_0^{\text{\tiny{BP}}} \ge t) \le 1/2\}$, then

 $\mathbb{E}_{\mu_q}(\tau_0) \ge c T^{\text{BP}}(q)$ for q small enough

General, but it does not capture the correct behavior

Supercritical KCM : a refined classification

We identify 2 subclasses: supercritical rooted and unrooted Easy-to-use criterion to check the subclass of each U

Theorem [Martinelli, Morris, C.T. CMP '19, Marêché, Martinelli, C.T. AoP '20]

- for all supercritical unrooted models $\mathbb{E}_{\mu_q}(\tau_0) = 1/q^{\Theta(1)}$
- for all supercritical rooted models $\mathbb{E}_{\mu_q}(\tau_0) = 1/q^{\Theta(\log(1/q))}$

 \longrightarrow For supercritical rooted $\mathbb{E}_{\mu_q}(\tau_0) \gg T^{\text{BP}} = 1/q^{\Theta(1)}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

- FA-1f is supercritical unrooted
- East model is supercritical rooted

The FA-1f mechanism

Constraint = to be update we need an empty nearest neighbour

 a vacancy can move of one step by creating one additional vacancy → ~ r.w. of rate q⁻¹;

$$\rightarrow d = 1 \quad \mathbb{E}_{\mu_q}(\tau_0) \sim q^{-1} (1/q)^2 = q^{-3};$$

 $\to d = 2 \quad q^{-2} \leq \mathbb{E}_{\mu_q}(\tau_0) \leq q^{-2} |\log q|;$

$$\rightarrow d \ge 3 \quad \mathbb{E}_{\mu_q}(\tau_0) \sim q^{-1} (1/q^{1/d})^d = q^{-2}$$

[Cancrini, Martinelli, Roberto, C.T. PTRF '08 + Shapira JSP '20]

Constraint = to update a site we need its left neighbour empty

Constraint = to update a site we need its left neighbour empty

• If we start from a single vacancy $x \rightarrow x \rightarrow x$ and we can create 1 zero we reach only $x \rightarrow x \rightarrow x \rightarrow x$

(日)

Constraint = to update a site we need its left neighbour empty

- If we start from a single vacancy $x \rightarrow x \rightarrow x$ and we can create 1 zero we reach only $x \rightarrow x \rightarrow x \rightarrow x$
- if we can create up to 2 simultaneous additional zeros we reach also:

イロト イポト イヨト イヨト 二日

Constraint = to update a site we need its left neighbour empty

- If we start from a single vacancy
 and we can create 1 zero we reach only
- if we can create up to 2 simultaneous additional zeros we reach also:

- if we can create up to *n* simultaneous additional zeros
 - one of the configurations that we can reach has its rightmost vacancy at $x + (2^n 1)$;
 - all the others have rightmost vacancy in $[x, x + (2^n 1)]$

Constraint = to update a site we need its left neighbour empty

- If we start from a single vacancy
 and we can create 1 zero we reach only
- if we can create up to 2 simultaneous additional zeros we reach also:

- if we can create up to *n* simultaneous additional zeros
 - one of the configurations that we can reach has its rightmost vacancy at $x + (2^n 1)$;
 - all the others have rightmost vacancy in $[x, x + (2^n 1)]$
- \Rightarrow the East model has logarithmic energy barriers

- The first vacancy at the left of origin is at $\ell \sim 1/q$
- Trivially, $au_0^{ ext{BP}} = \ell$ and $T^{ ext{BP}} \sim 1/q$
- $\mathbb{E}_{\mu_q}(\tau_0) \sim \text{time to create } \log_2(\ell) \text{ empty sites}$
- $\rightarrow \mathbb{E}_{\mu_q}(\tau_0) = 1/q^{\Theta(1)|\log q|}$ [Aldous, Diaconis JSP '02]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The first vacancy at the left of origin is at $\ell \sim 1/q$
- Trivially, $au_0^{ ext{BP}} = \ell$ and $T^{ ext{BP}} \sim 1/q$
- $\mathbb{E}_{\mu_q}(\tau_0) \sim \text{time to create } \log_2(\ell) \text{ empty sites}$
- $\rightarrow \mathbb{E}_{\mu_q}(\tau_0) = 1/q^{\Theta(1)|\log q|}$ [Aldous, Diaconis JSP '02]
- Sharp result (taking entropy into account) in $d \ge 1$

$$\lim_{q \to 0} \frac{\log \mathbb{E}_{\mu_q}(\tau_0)}{|\log q|^2} = (2d \log 2)^{-1}$$

[Cancrini, Martinelli, Roberto, C.T. PTRF '08] for d = 1[Chleboun, Faggionato, Martinelli AoP '16] for d > 2

Supercritical models

• Unrooted: large empty droplet can move back and forth

 $\rightarrow~$ renormalise to an FA-1f with effective density $q_{\rm eff}=q^{\Theta(1)}$ $\rightarrow~\mathbb{E}_{\mu_q}(\tau_0)\sim q^{-\Theta(1)}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Supercritical models

• Unrooted: large empty droplet can move back and forth

 $\rightarrow\,$ renormalise to an FA-1f with effective density $q_{\rm eff}=q^{\Theta(1)}$ $\rightarrow\,\mathbb{E}_{\mu_q}(\tau_0)\sim q^{-\Theta(1)}$

• Rooted: any empty droplet can move only inside a cone

 $\begin{array}{l} \rightarrow \mbox{ renormalise to an East with effective density } q_{\rm eff} = q^{\Theta(1)} \\ \rightarrow \quad \mathbb{E}_{\mu_q}(\tau_0) \sim q_{\rm eff}^{\Theta(|\log q_{\rm eff}|)} = e^{\Theta(\log q)^2} \end{array}$

Critical models: more on BP results

- an empty droplet cannot expand unless it has external help
- *α* = difficulty of the update family ~ minimal number of empty sites a droplet should meet to expand
- α is model dependent, $\alpha = 1$ for 2-neighbour and Duarte

$$T^{\rm BP}(q) = \exp\left(\frac{|\log q|^{O(1)}}{q^{\alpha}}\right)$$

 \sim distance from origin to nearest "easily expandable" droplet

i.e. empty region of size
$$\sim rac{|\log q|^{O(1)}}{q^{lpha}}$$

[Bollobás, Duminil-Copin, Morris, Smith, '16]

Critical KCM: a refined classification

We identify 2 subclasses: finitely critical and infinitely critical

Theorem [Martinelli, Morris, C.T. CMP '19 + Hartarsky, Marêché, C.T. PTRF '20, Hartarsky, Martinelli, C.T. AoP '21+]

For critical KCM it holds

$$\mathbb{E}_{\mu_q}(\tau_0) = \exp\left(\frac{|\log q|^{O(1)}}{q^{\nu}}\right)$$

- $\nu = \alpha$ for finitely critical models;
- $\nu = 2\alpha$ for infinitely critical models

Easy geometric criterion to distinguish the two subclasses:

- FA-2f model is finitely critical $\rightarrow \nu = \alpha = 1$
- Duarte model is infinitely critical $\rightarrow \nu = 2\alpha = 2$

Duarte model

Constraint at x: at least 2 vacancies in $\{x - \vec{e_1}, x + \vec{e_2}, x - \vec{e_2}\}$

An empty segment of length $\ell = 1/q |\log q|$ can (typically) create an empty segment to its right, but never to its left!

 \rightarrow it is a mobile droplet with East-like dynamics and

density
$$q_{\rm eff} = q^{\ell} = e^{-\Theta(\log q)^2/q}$$

Duarte model: heuristics

- nearest empty droplet to the origin is at distance $L \sim q_{\rm eff}^{-1}$

$$ightarrow T^{\mathrm{BP}} \sim L = \exp\left(rac{\Theta(1)|\log q|^2}{q}
ight)$$
[Mountford SPA '95]

Duarte model: heuristics

• nearest empty droplet to the origin is at distance $L \sim q_{\text{eff}}^{-1}$

$$\rightarrow T^{\text{BP}} \sim L = \exp\left(\frac{\Theta(1)|\log q|^2}{q}\right)$$
[Mountford SPA '95]

• Duarte droplets move East like \rightarrow to empty the origin we have to create $\log(L)$ simultaneous droplets

$$\rightarrow \mathbb{E}_{\mu_q}(\tau_0) \sim q_{\text{eff}}^{-\log L} \sim \exp\left(\frac{\Theta(1)|\log q|^4}{q^2}\right) \gg T^{\text{BP}}$$

[Martinelli, Morris, C.T. CMP '19 + Marêché, Martinelli, C.T. AoP '20]

Upper bound: main obstacles and tools

- droplets move only on a good environment
- the environment evolves and can "lose its goodness"
- no monotonicity \rightarrow we cannot "freeze" the environment
- the motion of droplets is not random walk like
- it is very difficult to use canonical path arguments

Upper bound: main obstacles and tools

- droplets move only on a good environment
- the environment evolves and can "lose its goodness"
- no monotonicity \rightarrow we cannot "freeze" the environment
- the motion of droplets is not random walk like
- it is very difficult to use canonical path arguments
- → a very flexible long range Poincaré inequality [Martinelli, C.T. AoP '19]
- \rightarrow renormalisation
- → Matryoshka Dolls: a new technique to compare Dirichlet forms avoiding canonical paths [Martinelli, Morris, C.T. CMP '19]

Constructing a bottleneck involving $\log(L)$ droplets Key difficulty: droplets cannot be "rigid objects" Constructing a bottleneck involving $\log(L)$ droplets

Key difficulty: droplets cannot be "rigid objects"

Suppose we say " droplet = empty column of height $\geq \ell$ "

- in this config. there are no droplets (only sites with a circle are empty);
- *x* has Duarte constraint satisfied;
- if we flip site x we create a droplet;

Constructing a bottleneck involving $\log(L)$ droplets

Key difficulty: droplets cannot be "rigid objects"

Suppose we say " droplet = empty column of height $\geq \ell$ "

- in this config. there are no droplets (only sites with a circle are empty);
- *x* has Duarte constraint satisfied;
- if we flip site x we create a droplet;

• so we have created a droplet from nowhere ... it is not an East dynamics, and does not have log barriers!!

Solution: a subtle algorithmic identification of droplets [Marêché, Martinelli, C.T. '18]

The general critical case

• Droplets are empty regions with model dependent shape of size $\ell = q^{-\alpha} |\log q|$ and density $q_{\text{eff}} = q^{\ell}$

The general critical case

- Droplets are empty regions with model dependent shape of size $\ell = q^{-\alpha} |\log q|$ and density $q_{\text{eff}} = q^{\ell}$
- For infinitely critical KCM the droplet motion is East like

$$\to \tau_0 \sim q_{\text{eff}}^{\Theta(|\log q_{\text{eff}}|)} = \exp\left(\frac{|\log q|^{O(1)}}{q^{2\alpha}}\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The general critical case

- Droplets are empty regions with model dependent shape of size ℓ = q^{-α} | log q| and density q_{eff} = q^ℓ
- For infinitely critical KCM the droplet motion is East like

$$\rightarrow au_0 \sim q_{\text{eff}}^{\Theta(|\log q_{\text{eff}}|)} = \exp\left(\frac{|\log q|^{O(1)}}{q^{2\alpha}}\right)$$

• For finitely critical KCM the droplet motion is a subtle combination of East on mesoscopic scales $(L \sim q^{-\Theta(1)})$ and FA-1f on macroscopic scales ($\sim q_{eff}^{-1}$)

$$\rightarrow \tau_0 \sim q_{eff}^{\Theta(\log L)} = \exp\left(\frac{|\log q|^{O(1)}}{q^{\alpha}}\right)$$

Summary

- KCM are the stochastic counterpart of BP
- time scales for KCM and BP can diverge very differently
 - $\tau_0^{\text{BP}} = \text{length of the optimal path to empty origin}$
 - τ_0^{KCM} = time to overcome energy barriers of optimal path
- we establish the universality picture for KCM in d = 2
- the results are novel also for the physicists: KCM time scales are very difficult to guess from numerical simulations!

Thanks for your e-attention !

Addenda

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

C.TONINELLI

Finitely critical \mathcal{U} : an example

To move of one step towards \vec{e}_2 the droplet has to move East-like to the right till reaching the first infected pair of empty sites

Finitely critical \mathcal{U} : an example

The move of one step in the $-\vec{e_1}$ direction the droplet has to move in the direction $\vec{e_2}$ until reaching the first infected pair of empty sites. A subtle hierarchical combination of East paths...

How can you identify the universality class of \mathcal{U} ?

We need the notion of stable and unstable directions

- Fix a direction \vec{u}
- Start from a configuration which is
 - completely empty on the half plane perpendicular to \vec{u} in the negative direction (H_u)
 - filled otherwise
- Run the bootstrap dynamics

How to easily identify all stable and unstable directions

Draw the half planes H_u and $\mathbb{Z}^2 \setminus H_u$ so that the separation line contains the origin. \vec{u} is unstable iff $U_i \subset H_u$ for at least one i

Supercritical universality class

 \mathcal{U} is supercritical iff there exists an open semicircle \mathcal{C} which does not contain stable directions.

A supercritical model is

- rooted if it has at least 2 non opposite stable directions
 unrooted otherwise

Guess who is rooted...?

Model A

Model B

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト … ヨ

Lesson: rooted models are not necessarily oriented (\neq East)!

C.TONINELLI

Critical universality class

 \mathcal{U} is critical if it is not supercritical and there exists an open semicircle C with only a finite number of stable directions

A critical model is

- finitely critical if it has a finite number of stable directionsinfinitely critical otherwise

イロト イポト イヨト イヨト 二日

Subcritical universality class

Two equivalent definitions

 $\ensuremath{\mathcal{U}}$ is subcritical iff it is neather supercritical nor critical

or

 $\ensuremath{\mathcal{U}}$ is subcritical iff each open semicircle has infinite stable directions

 $\Rightarrow q_c > 0$: blocked clusters percolate at $q < q_c$

Example: North East model

