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Kinetically Constrained Models, a.k.a. KCM

Configurations : n € Q := {0, 1}22, 0 = empty, 1 = occupied
Fix a density parameter ¢ € [0, 1] and an update family &/ with

U={Uy,...,Upn}, U CZ?*\0, |U]<oo, m<oo

i.e. U is a finite collection of local neighbourhoods of the origin

Fixn € Qand x € Z?: 7the constraint is satisfied at 2” iff at
least one of the translated sets U; + x is completely empty

Dynamics: each site with the constraint satisfied is updated to
empty at rate ¢ and to occupied at rate 1 — ¢
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An example: 2-neighbour KCM a.k.a. FA-2f model

U = collection of sets containing 2 nearest neighb. of the origin
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Other popular KCM

FA-jf model:
U = all sets containing j nearest neighbours of the origin

East model: U = {U;,Us} with U; = (0, 1), U2 = (—1,0)

North-East model: ¢/ = {U;} with U; = {(0,1),(1,0)}

Duarte model: U = {Uy, Us, U3} with
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Kinetically Constrained Models, a.k.a. KCM

KCM are a class of IPS with Glauber dynamics featuring:

reversibility w.r.t. 14, the product measure of density 1 — ¢;

e non attractive dynamics ;

blocked structures and blocked configurations;

several invariant measures;

anomalous divergence of time scales for ¢ | 0.
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Kinetically Constrained Models, a.k.a. KCM

e non attractive dynamics ;

— injecting more vacancies has unpredictable consequences
— coupling and censoring arguments fail

e blocked structures and blocked configurations;

— relaxation is not uniform on the initial condition
— worst case analysis is too rough
— coercive inequalities fail

e anomalous divergence of time scales for ¢ | 0.

= many standard IPS tools fail for KCM — new tools needed!
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Origins of KCM

Introduced in the ’80’s to model the liquid/glass transition

e understanding this transition is a major open problem in
condensed matter physics;
e sharp divergence of timescales;

e no significant structural changes.

= kinetic constraints mimic cage effect :
if temperature is lowered free volume shrinks (¢ < e~ 1/T)

= trivial equilibrium and yet sharp divergence of timescales
when ¢ | 0, aging, heterogeneities, ... — glassy dynamics
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Blocked clusters and bootstrap percolation

Choose a configuration 7 € €.
Is n blocked? does it contain a subset of blocked particles?

A deterministic discrete time algorithm:

kill particles on all sites that have the constraint satisfied;
iterate until reaching a stable configuration.

Clusters of particles in the stable configuration <+ blocked
clusters of i

the algorithm is //-Bootstrap Percolation (BP)
[Bollobds, Smith, Uzzell CPC ’15 ]

For FA-jf the corresponding algorithm is j-neighbour BP.
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BP: critical density and infection time

e Is the whole lattice empty in the stable configuration? What
happens typically if n) is distributed with g, 1 ~ pe?

¢c = inf{q € [0,1] : p,(origin is emptied eventually) = 1}
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BP: critical density and infection time

e Is the whole lattice empty in the stable configuration? What
happens typically if n) is distributed with g, 1 ~ pe?

¢c = inf{q € [0,1] : p,(origin is emptied eventually) = 1}
e How many steps do we need to empty the origin?
15" = first time at which origin is emptied

How does 7* behave if n ~ jq and q | q.?

C.TONINELLI



BP: universality classes

Three universality classes

e Supercritical: g. =0, 75°(q) = 1/¢°" wh.p.asq |0
o Critical: . =0, 78°(q) = exp(1/¢®™) wh.p. as ¢ | 0
e Subcritical: ¢g. > 0

Easy-to-use criterion to determine the class of any ¢/
(m simple geometric checks, m= # of rules)

[Bollobds, Smith, Uzzell CPC ’15 + Balister, Bollobds, Przykucki,
Smith TAMS ’16]
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BP: universality classes

Three universality classes

e Supercritical: g. =0, 75°(q) = 1/¢°" wh.p.asq |0
o Critical: . =0, 78°(q) = exp(1/¢®™) wh.p. as ¢ | 0
e Subcritical: ¢, > 0

Easy-to-use criterion to determine the class of any ¢/

(m simple geometric checks, m= # of rules)

[Bollobds, Smith, Uzzell CPC ’15 + Balister, Bollobds, Przykucki,

Smith TAMS ’16]

e East and FA-1f are supercritical,
e Duarte and FA-2f are critical;
e North-East is subcritical.
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KCM: time scales

7o:= first time at which origin is emptied

e How does 7 diverge under 1, when ¢ | ¢.?
e How does it compare with 75°?
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KCM: time scales

7o:= first time at which origin is emptied

e How does 7 diverge under 1, when ¢ | ¢.?
e How does it compare with 75°?

An (easy) lower bound:
Let T%(q) :=inf{t > 0: pu(ry" > t) <1/2}, then
E,,(10) > c¢T™(q) for q small enough

General, but it does not capture the correct behavior
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Supercritical KCM : a refined classification

We identify 2 subclasses: supercritical rooted and unrooted
Easy-to-use criterion to check the subclass of each U/

Theorem [Martinelli, Morris, C.T. CMP °19, Maréché, Martinelli,

C.T. AoP ’20]
o for all supercritical unrooted models E,, () = 1/¢°®)

o for all supercritical rooted models E,,, (o) = 1/¢®U0s(1/2)

— For supercritical rooted E,, (79) > T =1/¢°W

e FA-1f is supercritical unrooted

e East model is supercritical rooted
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The FA-1f mechanism

Constraint = to be update we need an empty nearest neighbour

X X X
o o o o e e e o o o e e e o o e o o

e avacancy can move of one step by creating one additional

vacancy — ~ r.w. of rate ¢~ 1;

—~ d=1 E, (r0)~q¢'(1/9)*=q"%
— d=2 ¢ 2<E,(n)<q?logql;
— d>3 B, (1) ~q ' (1/¢"/4)" = ¢

[Cancrini, Martinelli, Roberto, C.T. PTRF ’08 + Shapira JSP ’20]
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The East mechanism in d =1

Constraint = to update a site we need its left neighbour empty
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The East mechanism in d =1

Constraint = to update a site we need its left neighbour empty
T

e If we start from a single vacancy

x
and we can create 1 zero we reach only
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The East mechanism in d =1

Constraint = to update a site we need its left neighbour empty
T

e If we start from a single vacancy

x
and we can create 1 zero we reach only

e if we can create up to 2 simultaneous additional zeros we
reach also:

T X T
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The East mechanism in d =1

Constraint = to update a site we need its left neighbour empty
T

e If we start from a single vacancy

x
and we can create 1 zero we reach only

e if we can create up to 2 simultaneous additional zeros we
reach also:

T X T

e if we can create up to n simultaneous additional zeros

¢ one of the configurations that we can reach has its rightmost
vacancy at z + (2" — 1);
e all the others have rightmost vacancy in [z, x + (2" — 1)]
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The East mechanism in d =1

Constraint = to update a site we need its left neighbour empty
T

e If we start from a single vacancy

x
and we can create 1 zero we reach only

e if we can create up to 2 simultaneous additional zeros we
reach also:

T X T

e if we can create up to n simultaneous additional zeros

¢ one of the configurations that we can reach has its rightmost
vacancy at z + (2" — 1);
e all the others have rightmost vacancy in [z, x + (2" — 1)]

= the East model has logarithmic energy barriers
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The East mechanism in d = 1

The first vacancy at the left of originisat £ ~ 1/q

Trivially, 7§* = ¢ and T ~ 1/q

[E,, (7o) ~ time to create log,(¢) empty sites

— By, (10) = 1/¢®MWHozal [Aldous, Diaconis JSP 02 ]
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The East mechanism in d = 1

The first vacancy at the left of originisat £ ~ 1/q

Trivially, 7§* = ¢ and T ~ 1/q

[E,, (7o) ~ time to create log,(¢) empty sites

— By, (10) = 1/¢®MWHozal [Aldous, Diaconis JSP 02 ]

Sharp result (taking entropy into account) in d > 1

logE,, (70)

= (2dlog2)!
q—=0 |loggql|? (2dlog2)

[Cancrini, Martinelli, Roberto, C.T. PTRF ’'08] ford = 1

[Chleboun, Faggionato, Martinelli AoP '16] for d > 2
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Supercritical models

e Unrooted: large empty droplet can move back and forth

B

— renormalise to an FA-1f with effective density gg = ¢®(")
— ]Equ (7’0) ~ qfe(l)
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Supercritical models

e Unrooted: large empty droplet can move back and forth

B

— renormalise to an FA-1f with effective density gg = ¢®(")
— ]E#q (7’0) ~ qfe(l)

e Rooted: any empty droplet can move only inside a cone

— logarithmic energy barriers as for East
[Maréché SIDMA ’20]

— renormalise to an East with effective density gz = ¢®")

= Eu(r0) ~ qf(?ﬁ(l g gertl) — (O(logq)”
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Critical models: more on BP results

e an empty droplet cannot expand unless it has external help

e o = difficulty of the update family ~ minimal number of
empty sites a droplet should meet to expand

e « is model dependent, o = 1 for 2-neighbour and Duarte

|10gq0(1)>

qOé

T%(q) = exp (

~ distance from origin to nearest "easily expandable” droplet

| log /%)
qa

i.e. empty region of size ~

[Bollobds, Duminil-Copin, Morris, Smith, ’16]
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Critical KCM: a refined classification

We identify 2 subclasses: finitely critical and infinitely critical

Theorem [ Martinelli, Morris, C.T. CMP '19 + Hartarsky, Maréché,

C.T. PTRF '20, Hartarsky, Martinelli, C.T. AoP '21+]
For critical KCM it holds

log q|°™M)
Euq(To) = exp (| g4l )

ql/

e 1 = « for finitely critical models;

e 1 = 2« for infinitely critical models

Easy geometric criterion to distinguish the two subclasses:
e FA-2f model is finitely critical » v = a =1

e Duarte model is infinitely critical - v = 2a = 2
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Duarte model

Constraint at z: at least 2 vacancies in {z — €1,z + €3, x — €2}

MOVE tothe RIGHT : OK MOVE tothe LEFT : NO

An empty segment of length ¢ = 1/q|log ¢| can (typically)
create an empty segment to its right, but never to its left!

— it is a mobile droplet with East-like dynamics and

density gog = ¢¢ = e ©Uos0)*/4
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Duarte model: heuristics

e nearest empty droplet to the origin is at distance L ~ qe’ff1

— T% ~ L =exp 4@(1)\;0gq|2>

[Mountford SPA ’95]
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Duarte model: heuristics

e nearest empty droplet to the origin is at distance L ~ qe’ff1

s TB [, = exp @(1)\10gq|2>
q
[Mountford SPA ’95]

e Duarte droplets move East like — to empty the origin we
have to create log(L) simultaneous droplets

—log L O(1)|log q|*
— E,Uq<7—0) ~ qeffog ~ exp <4 ( )|q20g(I\ ) > TPP
[Martinelli, Morris, C.T. CMP ’19 + Maréché, Martinelli, C.T. AoP

720]
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Upper bound: main obstacles and tools

droplets move only on a good environment

the environment evolves and can "lose its goodness”
e Nno monotonicity — we cannot "freeze” the environment

the motion of droplets is not random walk like

it is very difficult to use canonical path arguments
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Upper bound: main obstacles and tools

droplets move only on a good environment

the environment evolves and can "lose its goodness”
e Nno monotonicity — we cannot "freeze” the environment

the motion of droplets is not random walk like

it is very difficult to use canonical path arguments

— a very flexible long range Poincaré inequality
[Martinelli, C.T. AoP ’19]

— renormalisation

— Matryoshka Dolls: a new technique to compare Dirichlet
forms avoiding canonical paths
[Martinelli, Morris, C.T. CMP '19]
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Lower bound: how do we exclude a smarter mechanism?

Constructing a bottleneck involving log(L) droplets

Key difficulty: droplets cannot be "rigid objects”
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Lower bound: how do we exclude a smarter mechanism?

Constructing a bottleneck involving log(L) droplets
Key difficulty: droplets cannot be "rigid objects”

Suppose we say ” droplet = empty column of height > ¢ ”

e in this config. there are no droplets
(only sites with a circle are empty);

e 1 has Duarte constraint satisfied;

o if we flip site 2 we create a droplet;

¢ so we have created a droplet from nowhere ... it is not an
East dynamics, and does not have log barriers!!

HO-O-O—0-O-88—
(o
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Lower bound: how do we exclude a smarter mechanism?

Constructing a bottleneck involving log(L) droplets
Key difficulty: droplets cannot be "rigid objects”

Suppose we say ” droplet = empty column of height > ¢ ”

e in this config. there are no droplets
(only sites with a circle are empty);

e 1 has Duarte constraint satisfied;

HO-O-O—0-O-88—
(o

o if we flip site 2 we create a droplet;

¢ so we have created a droplet from nowhere ... it is not an
East dynamics, and does not have log barriers!!

Solution: a subtle algorithmic identification of droplets
[Maréché, Martinelli, C.T. "18]
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The general critical case

e Droplets are empty regions with model dependent shape
of size ¢ = ¢~|log ¢q| and density q.g = ¢*
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The general critical case

e Droplets are empty regions with model dependent shape
of size ¢ = ¢~|log ¢q| and density q.g = ¢*

e For infinitely critical KCM the droplet motion is East like

o)
0(|log e log q
= 70~ g 2 = exp <‘ qQL )
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The general critical case

e Droplets are empty regions with model dependent shape
of size ¢ = ¢~|log ¢q| and density q.g = ¢*

e For infinitely critical KCM the droplet motion is East like

o)
0(|log e log q
= 70~ g 2 = exp <‘(fiﬁ>

e For finitely critical KCM the droplet motion is a subtle
combination of East on mesoscopic scales (L ~ ¢~®1)) and
FA-1f on macroscopic scales ( ~ qgﬂl)

o(1)
O(log L lo
»mN%ﬁ%)szCiﬂ)
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Summary

e KCM are the stochastic counterpart of BP

¢ time scales for KCM and BP can diverge very differently
e 757 = length of the optimal path to empty origin

o 75 = time to overcome energy barriers of optimal path

e we establish the universality picture for KCM in d = 2

e the results are novel also for the physicists: KCM time scales
are very difficult to guess from numerical simulations!

Thanks for your e-attention !
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Addenda




Finitely critical U: an example

Uy Us Us Uy

Suoec) [ - _'l

To move of one step towards é5 the droplet has to move East-like
to the right till reaching the first infected pair of empty sites
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Finitely critical U: an example

P
~
] ]
< ..............
S log(1/q) jg'faggﬁ
%

The move of one step in the —¢&; direction the droplet has to
move in the direction &> until reaching the first infected pair of
empty sites. A subtle hierarchical combination of East paths. ..
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How can you identify the universality class of U ?

We need the notion of stable and unstable directions
e Fix a direction «

e Start from a configuration which is

e completely empty on the half plane perpendicular to % in
the negative direction (H,,)

o filled otherwise

e Run the bootstrap dynamics

s stable  if no other site can be emptied
otherwise
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How to easily identify all stable and unstable directions

Draw the half planes H, and Z? \ H, so that the separation line
contains the origin. # is unstable iff U; C H, for at least one i

, R+R=R
C)\\ / C) //‘/ G+G:G
) ' G+R=G
Uy Uz Us
+ + =
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which does
not contain stable directions.

A supercritical model is

e rooted if it has at least 2 non opposite stable directions
e unrooted otherwise

FA-1f East
Unrooted Rooted
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Guess who is rooted. .. ¢

Model A

o
v
o
v
o
v
o0

(Gt
OO

HH B H B

\—y

Lesson: rooted models are not necessarily oriented (# East)!
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Critical universality class

U is critical if it is not supercritical and there exists an open
semicircle C with only a finite number of stable directions

A critical model is

e finitely critical if it has a finite number of stable directions
e infinitely critical otherwise

FA-2f Duarte
Finitely critical Infinitely critical
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Subcritical universality class

Two equivalent definitions

U is subcritical iff it is neather supercritical nor critical
or
U is subcritical iff each open semicircle has infinite stable

directions

= ¢, > 0: blocked clusters percolate at ¢ < g,

Example: North East model
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