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Kinetically Constrained Models, a.k.a. KCM

Configurations : η ∈ Ω := {0, 1}Z2
, 0 = empty, 1 = occupied

Fix a density parameter q ∈ [0, 1] and an update family U with

U = {U1, . . . , Um}, Ui ⊂ Z2 \ 0, |Ui| <∞, m <∞

i.e. U is a finite collection of local neighbourhoods of the origin

Fix η ∈ Ω and x ∈ Z2: ”the constraint is satisfied at x” iff at
least one of the translated sets Ui + x is completely empty

Dynamics: each site with the constraint satisfied is updated to
empty at rate q and to occupied at rate 1− q

C.Toninelli Universality results for IPS with kinetic constraints



An example: 2-neighbour KCM a.k.a. FA-2f model

U = collection of sets containing 2 nearest neighb. of the origin

q

1−q
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Other popular KCM

• FA-jf model:
U = all sets containing j nearest neighbours of the origin

• East model: U = {U1, U2} with U1 = (0,−1), U2 = (−1, 0)

• North-East model: U = {U1} with U1 = {(0, 1), (1, 0)}

• Duarte model: U = {U1, U2, U3} with

xxx

U1 U2 U3
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Kinetically Constrained Models, a.k.a. KCM

KCM are a class of IPS with Glauber dynamics featuring:

• reversibility w.r.t. µq, the product measure of density 1− q;

• non attractive dynamics ;

• blocked structures and blocked configurations;

• several invariant measures;

• anomalous divergence of time scales for q ↓ 0.
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Kinetically Constrained Models, a.k.a. KCM

• non attractive dynamics ;
→ injecting more vacancies has unpredictable consequences
→ coupling and censoring arguments fail

• blocked structures and blocked configurations;
→ relaxation is not uniform on the initial condition
→ worst case analysis is too rough
→ coercive inequalities fail

• anomalous divergence of time scales for q ↓ 0.

⇒ many standard IPS tools fail for KCM→ new tools needed!
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Origins of KCM

Introduced in the ’80’s to model the liquid/glass transition

• understanding this transition is a major open problem in
condensed matter physics;

• sharp divergence of timescales;
• no significant structural changes.

⇒ kinetic constraints mimic cage effect :
if temperature is lowered free volume shrinks (q ↔ e−1/T )

⇒ trivial equilibrium and yet sharp divergence of timescales
when q ↓ 0, aging, heterogeneities, . . .→ glassy dynamics
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Blocked clusters and bootstrap percolation

Choose a configuration η ∈ Ω.
Is η blocked? does it contain a subset of blocked particles?

A deterministic discrete time algorithm:
• kill particles on all sites that have the constraint satisfied;
• iterate until reaching a stable configuration.

• Clusters of particles in the stable configuration↔ blocked
clusters of η

• the algorithm is U -Bootstrap Percolation (BP)
[Bollobás, Smith, Uzzell CPC ’15 ]

• For FA-jf the corresponding algorithm is j-neighbour BP.
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BP: critical density and infection time

• Is the whole lattice empty in the stable configuration? What
happens typically if η is distributed with µq, η ∼ µq?

qc := inf{q ∈ [0, 1] : µq(origin is emptied eventually) = 1}

• How many steps do we need to empty the origin?

τ BP
0 = first time at which origin is emptied

How does τ BP
0 behave if η ∼ µq and q ↓ qc?
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BP: universality classes

Three universality classes

• Supercritical: qc = 0, τ BP
0 (q) = 1/qΘ(1) w.h.p. as q ↓ 0

• Critical: qc = 0, τ BP
0 (q) = exp(1/qΘ(1)) w.h.p. as q ↓ 0

• Subcritical: qc > 0

Easy-to-use criterion to determine the class of any U
(m simple geometric checks, m= # of rules)

[Bollobás, Smith, Uzzell CPC ’15 + Balister, Bollobás, Przykucki,
Smith TAMS ’16]

• East and FA-1f are supercritical;
• Duarte and FA-2f are critical;
• North-East is subcritical.
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KCM: time scales

τ0:= first time at which origin is emptied

• How does τ0 diverge under µq when q ↓ qc?
• How does it compare with τ BP

0 ?

An (easy) lower bound:

Let T BP(q) := inf{t ≥ 0 : µ(τ BP
0 ≥ t) ≤ 1/2}, then

Eµq(τ0) ≥ c T BP(q) for q small enough

General, but it does not capture the correct behavior
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Supercritical KCM : a refined classification

We identify 2 subclasses: supercritical rooted and unrooted

Easy-to-use criterion to check the subclass of each U

Theorem [Martinelli, Morris, C.T. CMP ’19, Marêché, Martinelli,
C.T. AoP ’20]

• for all supercritical unrooted models Eµq(τ0) = 1/qΘ(1)

• for all supercritical rooted models Eµq(τ0) = 1/qΘ(log(1/q))

−→ For supercritical rooted Eµq(τ0)� T BP = 1/qΘ(1)

• FA-1f is supercritical unrooted
• East model is supercritical rooted
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The FA-1f mechanism

Constraint = to be update we need an empty nearest neighbour

x x x

• a vacancy can move of one step by creating one additional
vacancy → ∼ r.w. of rate q−1;

→ d = 1 Eµq(τ0) ∼ q−1(1/q)2 = q−3;

→ d = 2 q−2 ≤ Eµq(τ0) ≤ q−2| log q|;

→ d ≥ 3 Eµq(τ0) ∼ q−1(1/q1/d)
d

= q−2

[Cancrini, Martinelli, Roberto, C.T. PTRF ’08 + Shapira JSP ’20]
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The East mechanism in d = 1

Constraint = to update a site we need its left neighbour empty

• If we start from a single vacancy
x

and we can create 1 zero we reach only
x

• if we can create up to 2 simultaneous additional zeros we
reach also:

x x x

• if we can create up to n simultaneous additional zeros
• one of the configurations that we can reach has its rightmost

vacancy at x+ (2n − 1);
• all the others have rightmost vacancy in [x, x+ (2n − 1)]

⇒ the East model has logarithmic energy barriers

C.Toninelli Universality results for IPS with kinetic constraints



The East mechanism in d = 1

Constraint = to update a site we need its left neighbour empty

• If we start from a single vacancy
x

and we can create 1 zero we reach only
x

• if we can create up to 2 simultaneous additional zeros we
reach also:

x x x

• if we can create up to n simultaneous additional zeros
• one of the configurations that we can reach has its rightmost

vacancy at x+ (2n − 1);
• all the others have rightmost vacancy in [x, x+ (2n − 1)]

⇒ the East model has logarithmic energy barriers

C.Toninelli Universality results for IPS with kinetic constraints



The East mechanism in d = 1

Constraint = to update a site we need its left neighbour empty

• If we start from a single vacancy
x

and we can create 1 zero we reach only
x

• if we can create up to 2 simultaneous additional zeros we
reach also:

x x x

• if we can create up to n simultaneous additional zeros
• one of the configurations that we can reach has its rightmost

vacancy at x+ (2n − 1);
• all the others have rightmost vacancy in [x, x+ (2n − 1)]

⇒ the East model has logarithmic energy barriers

C.Toninelli Universality results for IPS with kinetic constraints



The East mechanism in d = 1

Constraint = to update a site we need its left neighbour empty

• If we start from a single vacancy
x

and we can create 1 zero we reach only
x

• if we can create up to 2 simultaneous additional zeros we
reach also:

x x x

• if we can create up to n simultaneous additional zeros
• one of the configurations that we can reach has its rightmost

vacancy at x+ (2n − 1);
• all the others have rightmost vacancy in [x, x+ (2n − 1)]

⇒ the East model has logarithmic energy barriers

C.Toninelli Universality results for IPS with kinetic constraints



The East mechanism in d = 1

Constraint = to update a site we need its left neighbour empty

• If we start from a single vacancy
x

and we can create 1 zero we reach only
x

• if we can create up to 2 simultaneous additional zeros we
reach also:

x x x

• if we can create up to n simultaneous additional zeros
• one of the configurations that we can reach has its rightmost

vacancy at x+ (2n − 1);
• all the others have rightmost vacancy in [x, x+ (2n − 1)]

⇒ the East model has logarithmic energy barriers

C.Toninelli Universality results for IPS with kinetic constraints



The East mechanism in d = 1

• The first vacancy at the left of origin is at ` ∼ 1/q

• Trivially, τ BP
0 = ` and T BP ∼ 1/q

• Eµq(τ0) ∼ time to create log2(`) empty sites

• → Eµq(τ0) = 1/qΘ(1)| log q| [Aldous, Diaconis JSP ’02 ]

• Sharp result (taking entropy into account) in d ≥ 1

lim
q→0

logEµq(τ0)

| log q|2
= (2d log 2)−1

[Cancrini, Martinelli, Roberto, C.T. PTRF ’08] for d = 1

[Chleboun, Faggionato, Martinelli AoP ’16] for d ≥ 2
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Supercritical models

• Unrooted: large empty droplet can move back and forth

→ renormalise to an FA-1f with effective density qeff = qΘ(1)

→ Eµq
(τ0) ∼ q−Θ(1)

• Rooted: any empty droplet can move only inside a cone

=⇒ logarithmic energy barriers as for East
[Marêché SIDMA ’20]

→ renormalise to an East with effective density qeff = qΘ(1)

→ Eµq
(τ0) ∼ qΘ(| log qeff |)

eff = eΘ(log q)2
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Critical models: more on BP results

• an empty droplet cannot expand unless it has external help

• α = difficulty of the update family ∼ minimal number of
empty sites a droplet should meet to expand

• α is model dependent, α = 1 for 2-neighbour and Duarte

T BP(q) = exp

(
| log q|O(1)

q α

)

∼ distance from origin to nearest ”easily expandable” droplet

i.e. empty region of size ∼ | log q|O(1)

qα

[Bollobás, Duminil-Copin, Morris, Smith, ’16]
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Critical KCM: a refined classification

We identify 2 subclasses: finitely critical and infinitely critical

Theorem [ Martinelli, Morris, C.T. CMP ′19 + Hartarsky, Marêché,
C.T. PTRF ′20, Hartarsky, Martinelli, C.T. AoP ′21+]

For critical KCM it holds

Eµq(τ0) = exp

(
| log q|O(1)

q ν

)

• ν = α for finitely critical models;
• ν = 2α for infinitely critical models

Easy geometric criterion to distinguish the two subclasses:
• FA-2f model is finitely critical→ ν = α = 1

• Duarte model is infinitely critical→ ν = 2α = 2
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Duarte model

Constraint at x: at least 2 vacancies in {x− ~e1, x+ ~e2, x− ~e2}

: OK MOVE to the LEFT : NOMOVE to the RIGHT

An empty segment of length ` = 1/q | log q| can (typically)
create an empty segment to its right, but never to its left!

→ it is a mobile droplet with East-like dynamics and

density qeff = q` = e−Θ(log q)2/q
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Duarte model: heuristics

• nearest empty droplet to the origin is at distance L ∼ q−1
eff

→ T BP ∼ L = exp
(

Θ(1)| log q|2
q

)
[Mountford SPA ’95]

• Duarte droplets move East like→ to empty the origin we
have to create log(L) simultaneous droplets

→ Eµq(τ0) ∼ q− logL
eff ∼ exp

(
Θ(1)| log q|4

q2

)
� T BP

[Martinelli, Morris, C.T. CMP ’19 + Marêché, Martinelli, C.T. AoP
’20]
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Upper bound: main obstacles and tools

• droplets move only on a good environment
• the environment evolves and can ”lose its goodness”
• no monotonicity→ we cannot ”freeze” the environment
• the motion of droplets is not random walk like
• it is very difficult to use canonical path arguments

→ a very flexible long range Poincaré inequality
[Martinelli, C.T. AoP ’19]

→ renormalisation

→ Matryoshka Dolls: a new technique to compare Dirichlet
forms avoiding canonical paths
[Martinelli, Morris, C.T. CMP ’19]
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Lower bound: how do we exclude a smarter mechanism?

Constructing a bottleneck involving log(L) droplets

Key difficulty: droplets cannot be ”rigid objects”

Suppose we say ” droplet = empty column of height ≥ ` ”

`− 1

x
• in this config. there are no droplets

(only sites with a circle are empty);
• x has Duarte constraint satisfied;
• if we flip site x we create a droplet;
• so we have created a droplet from nowhere . . . it is not an

East dynamics, and does not have log barriers!!

Solution: a subtle algorithmic identification of droplets
[Marêché, Martinelli, C.T. ’18]
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The general critical case

• Droplets are empty regions with model dependent shape
of size ` = q−α| log q| and density qeff = q`

• For infinitely critical KCM the droplet motion is East like

→ τ0 ∼ qΘ(| log qeff |)
eff = exp

(
| log q|O(1)

q2α

)

• For finitely critical KCM the droplet motion is a subtle
combination of East on mesoscopic scales

(
L ∼ q−Θ(1)

)
and

FA-1f on macroscopic scales ( ∼ q−1
eff )

→ τ0 ∼ qΘ(logL)
eff = exp

(
| log q|O(1)

qα

)
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Summary

• KCM are the stochastic counterpart of BP

• time scales for KCM and BP can diverge very differently

• τ BP
0 = length of the optimal path to empty origin

• τ KCM
0 = time to overcome energy barriers of optimal path

• we establish the universality picture for KCM in d = 2

• the results are novel also for the physicists: KCM time scales
are very difficult to guess from numerical simulations!

Thanks for your e-attention !
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Addenda
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Finitely critical U : an example

x x x x

U1 U2 U3 U4

C log(1/q)/q2

C
q log(1

q )

To move of one step towards ~e2 the droplet has to move East-like
to the right till reaching the first infected pair of empty sites
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Finitely critical U : an example

C
q2 log(1

q )
C
q2 log(1/q)

The move of one step in the −~e1 direction the droplet has to
move in the direction ~e2 until reaching the first infected pair of
empty sites. A subtle hierarchical combination of East paths. . .
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How can you identify the universality class of U?

We need the notion of stable and unstable directions

• Fix a direction ~u

• Start from a configuration which is
• completely empty on the half plane perpendicular to ~u in

the negative direction (Hu)
• filled otherwise

• Run the bootstrap dynamics
H_u

u

~u is
{

stable if no other site can be emptied
unstable otherwise
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How to easily identify all stable and unstable directions

Draw the half planes Hu and Z2 \Hu so that the separation line
contains the origin. ~u is unstable iff Ui ⊂ Hu for at least one i

x

U1

+

x

U2

+

x

U3

=

R+R=R

G+G=G

G+R=G
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which does
not contain stable directions.

A supercritical model is{
• rooted if it has at least 2 non opposite stable directions
• unrooted otherwise

FA-1f
Unrooted

East
Rooted
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Guess who is rooted. . . ?

Model A

x
x

x

Model B

x x x x

Lesson: rooted models are not necessarily oriented ( 6= East)!
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Critical universality class

U is critical if it is not supercritical and there exists an open
semicircle C with only a finite number of stable directions

A critical model is{
• finitely critical if it has a finite number of stable directions
• infinitely critical otherwise

FA-2f
Finitely critical

Duarte
Infinitely critical
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Subcritical universality class

Two equivalent definitions

U is subcritical iff it is neather supercritical nor critical

or

U is subcritical iff each open semicircle has infinite stable
directions

⇒ qc > 0: blocked clusters percolate at q < qc

Example: North East model
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