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1 Introduction

1.1 Definition and concept

Financial markets allow the transfer of liquidities between investors and agents with financing needs.
They can provide information on economic agents but this information isn’t always accurate or timely
(for instance company’s stock prices and their financial health are not always available to all agents
of the market at the same time). This brings us to define the notion of market efficiency. A market
is efficient if at each time, prices and return rates of financial instruments reflect completely all the
information available at that time. Securities always trade at their fair value and only unpredictable
events can cause price variations.
In 1979, Harrison and Kreps show that the absence of arbitrage, under some regularity conditions, is
equivalent to the existence of a risk neutral probability measure. Under this probability measure, the
expected rate of return of a risky asset is equal to the risk-free rate and thus, economic agents can
not reasonably expect to make more money by investing in the risky assets rather than in the risk-free
one.
We study here the no-arbitrage conditions and the conditions for the completeness of a market. The
Dalang-Morton-Willinger theorem (1990) is a generalisation of the Harrison-Pliska theorem (1981) as
it also works for non finite probability spaces.

1.2 Notations and initial framework

We consider a probability space pΩ,F ,Pq representing the possible outcomes affecting prices and their
probability to happen.

Definition 1. In order to represent the information accumulated at a time, we introduce the notion
of filtration. We call filtration on pΩ,Fq an increasing sequence Fn of sub σ ´ algebras F .

Definition 2. We will denote S the price process. A stochastic process is a collection of random
variables pSnq defined on a probability space pΩ,F ,Pq and assuming values in R

m .

Definition 3. S is an F-adapted process if for @n P N, Sn is Fn-measurable . Recall that the price
process take into account all the past informations, therefore S must be F-adapted.

Definition 4. pθqTt“0 is a predictable process if @n P N, θn`1 is Fn-measurable. Here, pθqTt“0 denotes
the strategy of the agent, it is predictable as it only depends on the previous portfolio changes.

Definition 5. pMnq is a martingale with respect to the filtration (Fn) if:

• pMnq is adapted (Fn)

• pMnq is integrable for all n

• ErMn`1 | Fns “ Mn
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2 The First fundamental theorem of asset pricing

2.1 The no-arbitrage condition

An arbitrage is a set of financial operations with zero initial capital, which ill generate non-negative
cash flows in the future, with a positive probability that at least one of the positive cashflows will be
positive.

Let L0pΩ,FT ,Pq the set of random variables measurable with respect to the σ-algebra FT .
If the agent chooses the strategy pθqTt“0 , then his total gain or loss would be given by

H “
T
ř

t“1

ă Sptq´Spt´1q, θptq ą We can now consider the linear subspace of L0pΩ,FT ,Pq representing

all the possible gains, with θ running through the set of predictable m-dimensionnal processes :

K “ tH | H “
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąu

Let us introduce the convex cone :

C “ K ´ L0
` “ tk P K | Dl P L0 such that k ě lu

C denotes the set of all super-replicable contingent claims with no initial investment.

2.2 The Dalang-Morton-Willinger Theorem

Definition 6. Given a measurable space pΩ,Fq, if a σ-finite measure ν is abolutely continous with
respect to a σ-finite measure µ, then we denote by dν

dµ
the Radon-Nikodym’s derivative.

Theorem 1. The market satisfies the no-arbitrage condition if it satisfies any of the following equiv-
alent statements :

1. C X L0
` “ t0u

2. C X L0
` “ t0u and C “ C

3. There is a probability measure Q with bounded and positive Radon–Nikodym’s derivative dQ/dP,
such that the coordinates of the m-dimensional process S are martingales under Q.

Remark. The first statement is the basic interpretation of no arbitrage (H ě 0 ùñ H “ 0)

2.3 A look at the case T “ 1

The convergence in probability implies the existence of a sub-sequence almost surely convergent and
the almost surely convergence implies the convergence in probability when the measure is finite. Thus,
a set Z Ă L0 is closed if and only if the limit of every almost surely convergent sequence from Z is
in Z. With this in mind, we show the following lemma which allows us to avoid measurable selection
arguments in further proofs.
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Lemma 1. Let (ηn) be an R
m-valued sequence of measurable functions. If for every outcome ω the

sequence (ηnpωq) is bounded, then there is a strictly increasing, measurable sequence of integers (σk)
such that for every outcome the sequence pησk

q is convergent. If supn||ηn|| “ 8 then there is a strictly
increasing, measurable sequence of integers, (σk) such that for every outcome ω, limkÑ8||ησk

pωq|| “ 8

Remark. Fixing ω, (ηnpωq) is just a sequence of vectors of Rm so that any norm can be used here.

Proof. The existence of a strictly increasing sequence such that pησk
q is convergent stems from Bolzano-

Weierstrass theorem. The essential aspect of this lemma lies in the measurability of the subsequence.
Looking first at the case m=1, for all ω, η8pωq “ lim inf

n
ηnpωq exists by definition and is finite. η8 is

measurable as a limit of measurable functions. Now, let us construct a measurable sequence (σk) such
that ησk

Ñ η8. Letting σ0 “ 0, we define the random variable :

σk “ inftn P N | n ą σk´1 and ||ηn ´ η8|| ď
1

k
u

For m ě 1, by induction, we construct a strictly increasing function σ1 making the first coordinate
converge. We then compose this by σ2 so that the first two coordinates of ησ2˝σ1

converge. We repeat
the process until all m coordinates converge.
Similary, we prove the second part by constructing :

σk “ inftn P N | n ą σk´1 and ||ηn|| ě ku

This lemma allows us to keep finite-dimensionnal sub-spaces closedness when changing stability
under scalar multiplication by stability under measurable function multiplication.

Lemma 2. (Stricker) Let f1, ..., fm A-measurable functions with F Ă A.

L “ tf | f “
m
ÿ

i“1

fiθi, θi P L0pΩ,F ,Pqu

L is a closed sub-space of L0pΩ,A,Pq

Remark. If at least one of the fi is a non-zero constant function, then L0pΩ,F ,Pq Ă L

Proof. The stability under addition and scalar multiplication is clear. Letting plnq P LN such that :

ln “
m
ÿ

i“1

fiθi,n “ F ¨ Θn
P

ÝÑ l8

where F “ pf1, ..., fmq and Θn “ pθ1,n, ..., θm,nq. Without loss of generality, we assume ln
a.s.

ÝÝÑ l8 and
we want to show l8 P L. The idea is to find a strictly increasing measurable sequence pσkq such that
Θσk

Ñ Θ8 and then F ¨ Θσk
Ñ F ¨ Θ8 “ l8 resulting in l8 P L. In order to use Lemma 1, we need

to show that for all ω, Θnpωq is bounded. Assume that this is not the case and let :

Ω0 “ tω P Ω | sup
n

||Θnpωq|| “ 8u
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For ω P Ω0, let us divide lnpωq by ||Θnpωq|| :

lnpωq

||Θnpωq||
“ F ¨ Θnpωq

Since Θnpωq
||Θnpωq|| is bounded, there is a strictly increasing measurable sequence σk such that

Θσk
pωq

||Θσk
pωq|| is

convergent. Let us define :
Ω1 “ tω P Ω0 | sup

n
||Θσk

pωq|| “ 8u

From this step,for all ω P Ω1, ||Θσk
|| Ñ 8 and since ln is convergent,

lσnpωq

||Θσk
||

Ñ 0

Thus, we have :
F ¨ Θ8pωq “ 0, ω P Ω1

Θ8 is the limit of vectors of norm equal to one, therefore Θ8pωq is not zero for all ω P Ω1, so that at
least one coordinate is not zero. Denote it θj,8. For ω P Ω1,

m
ÿ

i“1

fipωqθi,8pωq “ 0

Since θj,8 is not zero, we obtain an expression with m-1 measurable weights :

fjpωq “

ř

i‰j

fipωqθi,8pωq

θj,8pωq

Substituting θj,8 back to the definition of lσn
,

lσn
pωq “ F ¨ Θσn

pωq

“
ÿ

i‰j

fipωqθi,σn
pωq ` fjpωqθj,σn

pωq

“
ÿ

i‰j

fipωq pθi,σn
pωq ` θj,σn

pωq
θi,8pωq

θj,8pωq
q

Hence, we can change one coordinate of Θσn
pωq to zero and assume that for every ω P Ω1, only m-1

coordinates in Θσn
pωq are not zero. If Θσn

is not bounded, we repeat the argument. After at most m
steps, we denote Ωm the last set and we can assume that there exists i P v1,mw such that ln “ fiθi,n.
If θi,n is not bounded for all ω, then fipωq “ 0. Replacing θi,n by θi,n1ΩC

m
, we obtain that Θn remains

measurable and bounded. As there are at most m steps, we can assume that Θn is bounded, so l8 P L.
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2.4 Intermediary lemmas

We now generalize the lemma 2 to multiple periods (e.g. T ě 1).

Lemma 3. (Kabanov-Stricker) Let pXT
t“1q be an m-dimensionnal adapted process and :

L “ tf | f “
T

ÿ

t“1

m
ÿ

i“1

Xi,tθi,tu “ tf | f “
T

ÿ

t“1

Xtθtu

where pθqTt“1 runs through the set of m-dimensionnal predictable processes. L is a closed subspace of
L0

Proof. We prove this lemma by induction with respect to T. We have proved the case T “ 1 with the
previous lemma. Let T ě 1 and assume the lemma holds for T ´ 1. Let

fn “
T

ÿ

t“1

Xptq ¨ θptq

bn “ Xp1q ¨ θnp1q

cn “ fn ´ bn

If θnp1q is bounded, then taking a subsequence, we could assume θnp1q is convergent. One can
select the indexes of the subsequence in an F0-measurable way so that pθσk

ptqqTt“2 remain predictable.
The convergence of pbnq implies the convergence of pcnq and we would have :

c8 “
T

ÿ

t“2

Xptq ¨ θ8ptq

Now, if θnp1q is not bounded,then as in the previous lemma, for ω P Ωm, we divide by ||θnp1q|| :

fnpωq

||θnp1q||
“ Xp1q ¨

θnp1q

||θnp1q||
`

T
ÿ

t“1

Xptq ¨
θptq

||θnp1q||

Using Lemma 1, one can assume that bn
||θnp1q|| is convergent so that the other part is also convergent.

With θ8 on the unit sphere, we get :

Xp1q ¨ θ8p1q `
T

ÿ

t“1

Xptq ¨ θ8ptq “ 0

Let t0 the first time period where θpt0q ‰ 0. Similarly to the previous lemma, we find an expression
of coordinates of Xptq with Ft´1-measurable weigths. The procedure stops after at most m steps,
which results in the first case where θnp1q is bounded.

We will now enunciate two lemmas without proving them, the idea of the proof of Lemma 4 being
similar to the previous lemma and the proof of the Kreps-Yan’s lemma relying on arguments of duality
of L1.
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Lemma 4. If L X L`
0 pΩ,A,Pq “ 0 then C “ L ´ L`

0 pΩ,A,Pq is a closed cone in L0pΩ,A,Pq

Lemma 5. (Kreps-Yan) Let C a closed convex cone in L0pΩ,A,Pq and assume that L1
` Ď C and

C X L1
` “ 0, then there is a probability measure Q on pΩ,Aq equivalent to P such that dQ

dP
P

L8pΩ,A,Pq and @c P C,

EQpcq “

ż

Ω

cdQ “ EPpc ¨
dQ

dP
q ď 0

2.5 Proof of the theorem

Let us now begin the proof of the first fundamental theorem.
1q ùñ 2q If L X L`

0 pΩ,A,Pq “ 0 then by Lemma 4, C is closed in L0

2q ùñ 3q A sequence is convergent in probability if and only if every of its subsequences has a
subsequence converging almost surely to the same variable. Thus, the convergence in L0 remains
under equivalent change of measure. For instance, given a random variable S, we can define a new
probability measure equivalent to P such that η remains integrable under this measure.

PepAq “ c

ż

A

expp´||s||qdP,@A P A

Without loss of generality, we assume that for all t P v1, T w, St is integrable. Since the convergence
in L1 implies the convergence in probability, the cone C0 “ C̄XL1 is closed in L1. Using the hypothesis
C0 X L1

` “ 0, by the Kreps-Yan lemma, there is an equivalent probability measure Q with dQ/dP
P L8 such that :

@k P C0, EQpkq ď 0

Then choosing k “ ˘pSptq ´ Spt ´ 1q, θptqq with θ measurable, we get that :

EQpSptq ´ Spt ´ 1q, θptqq “ 0

In particular, taking θptq “ 1F with F P Ft´1, we obtain the definition of a martingale under Q that
is :

EQpSptq ´ Spt ´ 1q | Ft´1q “ 0

3q ùñ 4q Assume there exists an equivalent measure Q such that S is a martingale under Q. Let
h P C X L0

`, there is a predictable process pθqTt“1 such that

0 ď h ď
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ą

We have to show that h is almost surely zero under P which is equivalent almost surely zero under Q.
Hence it is sufficient to prove that

0 ď EQphq ď EQp
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąq
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Let ǫ ą 0. 1||θp1q||ďn1q is F0-measurable and θp1q1||θp1q||ďn1q is bounded by construction so it is
predictable. Given S is a Q-martingale,

EQpă Sp1q ´ Sp0q, θp1q1||θp1q||ďn1
ąq “ EQpEQpă Sp1q ´ Sp0q, θp1q1||θp1q||ďn1

ą| F0qq

“ EQpă EQpSp1q ´ Sp0q | F0q, θp1q1||θp1q||ďn1
ąq

“ EQpă 0, θp1q1||θp1q||ďn1
ąq

“ 0

Now we repeat the process by multiplying by 1||θp2q||ďn2
,

EQph ¨ 1||θp1q||ďn1
1||θp2q||ďn2

q ď EQpă Sp1q ´ Sp0q, θp1q1||θp1q||ďn1
1||θp2q||ďn2

ąq

` EQp
T

ÿ

t“2

ă Sptq ´ Spt ´ 1q, θptq1||θp1q||ďn1
1||θp2q||ďn2

ąq

By dominated convergence theorem for some n2,

EQpă Sp1q ´ Sp0q, θp1q1||θp1q||ďn1
1||θp2q||ďn2

ąq ď
ǫ

T

We repeat the procedure by multiplying each time by 1||θp1q||ďnt
and obtain :

EQph ¨
T

ź

t“1

1||θptq||ďnt
q ď ǫ

Finally, by tending nt to 8, we conclude by monotone convergence theorem that

EQphq ď ǫ

3 The second fundamental theorem of asset pricing

3.1 The completeness of the market

Definition 7. The market is complete if every contingent claim is replicable, e.g. for every FT -
measurable claim HT , there is a predictable m-dimensionnal process pθqTt“1 and a real number λ such
that

HT “ λ `
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ą

Theorem 2. Assume the no-arbitrage condition holds on a market defined by the m-dimensionnal
price process pSqTt“1. This market is complete if and only if there exists a unique risk-neutral measure
on pΩ,FT q

Proof. 1q ùñ 2q Assume by contradiction that the market is complete and there exist two different
risk-neutral measuresQ andR. There exists F P FT with QpF q ‰ RpF q. By definition of completeness,
there exist λ P R and a predictable process pθqTt“1 such that

1F “ λ `
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ą

8



The idea is to calculate the expected value of each side with respect to the measures Q and R. It is
sufficient to show that

EPp
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąq “ 0

Indeed, by equivalence of the measures, we would have

λ “ PpF q “ Q “ R

which is absurd. Note that we cannot use the additivity of the integral if θpωq is not bounded for
all ω. Using the same argument as in the proof of the first fundamental theorem by multiplying by
1||θptq||ďnt

and using monotone convergence theorem, we conclude that the expected value is indeed
zero.

2q ùñ 1q We are going to show the negation. Assume the market is not complete. By no-arbitrage
condition, there exists Q such that the coordinates of pSqTt“1 are martingales under Q. Let us define

L “ tH | H “ λ `
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąu

with λ P R and θ a predictable process. As the market is not complete, there exists a claim HT R L.
By a change of measure, we can assume without loss of generality that coordinates of S and HT are
integrable. By the first fundamental theorem, we assume that the Radon-Nikodym’s derivative dQ/dP
is bounded hence coordinates of S and HT are integrable under the risk-neutral measure Q. We want
to exhibit an integrable function that is not in L. We have to show that L is closed in L1pΩ,FT ,Qq
As we work on probability measures, 1 P L1 and Ls “ L X L1 is the direct sum of the hyperplane K
and of a one-dimensionnal subspace. If the vector 1 is in K then L is closed. If 1 R L, then let

ln “ λn ¨ 1 ` rn Ñ l8 with λn P R and rn P K

Let d the distance between K and the real line. Since K is closed and 1 R K, d ą 0. The sequence plnq
is convergent, so there exists c P R

@n, ||ln||1 ď c

By definition, if rn P K, then ´ rn
λn

P K. Hence,

c ě ||λn ¨ 1 ` rn||

“| λn | ||1 ´ p´
rn

λn

q||

ě| λn | ¨d

with d positive, so that | λn |ď c
d
, e.g. λn is bounded. Denoting pλnq the convergent subsequence, we

have that λn1 is also convergent. Thus, rn “ ln ´ λn1 converges. Since rn P K closed subspace, the
limite of prnq is in K. Finally, we proved that the limit of a subsequence of ln is in L, so l8 P L and L
is closed.
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Because HT is integrable and does not belong to the subspace L, there exists a function in L1 that
is not in L. Using the geometrical version of the Hahn-Banach theorem, there exists z P L8 which
separates the subspace L and the variable HT . For all l P L,

ă z, l ą“

ż

z ¨ l dQ “ EQpz ¨ lq “ 0

Taking the predictable strategy θ “ 0 and λ “ 1, 1 is in L.

ă z, 1 ą“

ż

z dQ “ 0

Let

g “ 1 `
z

2||z||8
and RpAq “

ż

A

g dQ

Note that | z
2||z||8

|ď 0.5, hence the derivative g=dR/dQ is positive and bounded.

RpΩq “ EQp1q `
EQpzq

2||z||8
“ 1

thus, R and Q are equivalent probability measures. Taking a predictable bounded strategy θ and
λ “ 0, as S is a martingale under Q, we have :

ERp
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąq “ EQp
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ą p1 `
z

2||z||8
qq

“ EQp
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąq

“
T

ÿ

t“1

EQpă Sptq ´ Spt ´ 1q, θptq ąq

“
T

ÿ

t“1

EQpEQpă Sptq ´ Spt ´ 1q, θptq ą| Ft´1qq

“
T

ÿ

t“1

EQpă EQpSptq ´ Spt ´ 1q | Ft´1q, θptq ąq

“
T

ÿ

t“1

EQp0, θptqq

“ 0

In particular, taking the strategy that is zero except in T where it is 1F with F P Ft´1,

EQppSptq ´ Spt ´ 1qq1F q “ 0

e.g.

ż

F

Sptq dR “

ż

F

Spt ´ 1q dR
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then by definition of a martingale,

ERpSptq|Ft´1q “ Spt ´ 1q

Finally, we found a measure R such that S is an R-martingale, so the risk-neutral measure is not
unique.

3.2 Pricing European contingent claims on finite and discrete time-horizon

In this paper, we focus on valuing European options and ignore the American options which can be
exercised at any time up to the maturity date.

Let HT be a contingent claim HT of terminal date T. HT is FT -measurable. Our goal is to find its
price at time t “ 0. Assuming there are no arbitrage opportunities and that the market is complete,
we can replicate HT with λ P R and θ predictable strategy

HT “ λ `
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ą

By contradiction, assume that the risk-free amount of asset λ is not unique, e.g. there exist λ1, λ2 with
λ1 ą λ2 and θ1, θ2 such that for i “ 1, 2

HT “ λi `
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θiptq ą

Then

λ2 ´ λ1 `
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θ2ptq ´ θ1ptq ą“ 0

Thus, θ2 ´ θ1 is an arbitrage strategy. Denoting λ as a function of HT , the no-arbitrage price is
πpHT q “ λ. By the first fundamental theorem, there exists a martingale measure Q with bounded
derivative dP/dQ. Again, with a change of measure, we can assume HT is integrable under P and
thus Q. Therefore, we have

EQpHT q “ λ ` EQp
T

ÿ

t“1

ă Sptq ´ Spt ´ 1q, θptq ąq “ λ “ πpHT q

Remark. We used the completeness assumption for the existence of a replicating strategy. Assuming
there exists a replicating strategy for HT , by uniqueness of λ, this price does not depend of the
martingale measure used.
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4 Conclusion

A key assumption in our model is that agents can only make decisions for finite and discrete time
periods, which means they can’t modify their portfolios between two time periods. Furthermore, this
model can not be used to price other derivatives such as American options, as it is much harder to
determine the optimal early-exercise strategy.

In 1973, Black and Scholes delivered a breakthrough with their continuous model used to price Eu-
ropean options. Their idea relied on a trading strategy consisting of replicating every option through
trades between the risky and the risk-free assets, combined with the understanding that two invest-
ment strategies bearing the same risk should have the same price (in a no-arbitrage context). One
could study the intertemporal asset pricing (Merton, 1973), building on this more realistic framework
to price American options and take into account dividend distribution.
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