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Dependent data

Huge portion of real-life data involving dependent datapoints

Example (Capture-recapture)

capture histories

capture sizes
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Eurostoxx 50

First four stock indices of of the financial index Eurostoxx 50
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Dependent data

Markov chain

Stochastic process (xt)t∈T where distribution of xt given the past
values x0:(t−1) only depends on xt−1.
Homogeneity: distribution of xt given the past constant in t ∈ T .

Corresponding likelihood

ℓ(θ|x0:T ) = f0(x0|θ)
T∏

t=1

f(xt|xt−1, θ)

[Homogeneity means f independent of t]
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Stationarity constraints

Difference with the independent case: stationarity and causality
constraints put restrictions on the parameter space
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Stationarity processes

Definition (Stationary stochastic process)

(xt)t∈T is stationary if the joint distributions of (x1, . . . , xk) and
(x1+h, . . . , xk+h) are the same for all h, k’s.
It is second-order stationary if, given the autocovariance function

γx(r, s) = E[{xr − E(xr)}{xs − E(xs)}], r, s ∈ T ,

then

E(xt) = µ and γx(r, s) = γx(r + t, s+ t) ≡ γx(r − s)

for all r, s, t ∈ T .
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Imposing or not imposing stationarity

Bayesian inference on a non-stationary process can be [formaly]
conducted

Debate

From a Bayesian point of view, to impose the stationarity
condition is objectionable:stationarity requirement on finite datasets
artificial and/or datasets themselves should indicate whether the model is
stationary

Reasons for imposing stationarity:asymptotics (Bayes estimators are

not necessarily convergent in non-stationary settings) causality,

identifiability and ... common practice.
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Unknown stationarity constraints

Practical difficulty: for complex models, stationarity constraints get
quite involved to the point of being unknown in some cases
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The AR(1) model

Case of linear Markovian dependence on the last value

xt = µ+ ̺(xt−1 − µ) + ǫt , ǫt
i.i.d.∼ N (0, σ2)

If |̺| < 1, (xt)t∈Z can be written as

xt = µ+
∞∑

j=0

̺jǫt−j

and this is a stationary representation.
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The AR(p) model

Stationary but...

If |̺| > 1, alternative stationary representation

xt = µ−
∞∑

j=1

̺−jǫt+j .

This stationary solution is criticized as artificial because xt is
correlated with future white noises (ǫt)s>t, unlike the case when
|̺| < 1.
Non-causal representation...
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The AR(p) model

Standard constraint

c© Customary to restrict AR(1) processes to the case |̺| < 1

Thus use of a uniform prior on [−1, 1] for ̺

Exclusion of the case |̺| = 1 that leads to a random walk because the

process is then a random walk [no stationary solution]
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The AR(p) model

Conditional model

xt|xt−1, . . . ∼ N
(
µ+

p∑

i=1

̺i(xt−i − µ), σ2

)

Generalisation of AR(1)

Among the most commonly used models in dynamic settings

More challenging than the static models (stationarity
constraints)

Different models depending on the processing of the starting
value x0
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The AR(p) model

Stationarity+causality

Stationarity constraints in the prior as a restriction on the values of
θ.

Theorem

AR(p) model second-order stationary and causal iff the roots of the
polynomial

P(x) = 1−
p∑

i=1

̺ix
i

are all outside the unit circle
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The AR(p) model

Initial conditions

Unobserved initial values can be processed in various ways

1 All x−i’s (i > 0) set equal to µ, for computational
convenience

2 Under stationarity and causality constraints, (xt)t∈Z has a
stationary distribution: Assume x−p:−1 distributed from
stationary Np(µ1p,A) distribution
Corresponding marginal likelihood

Z
σ−T

TY

t=0

exp

(
−1

2σ2

 
xt − µ −

pX

i=1

̺i(xt−i − µ)

!2)

f(x−p:−1|µ, A) dx−p:−1 ,
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Initial conditions (cont’d)

3 Condition instead on the initial observed values x0:(p−1)

ℓc(µ, ̺1, . . . , ̺p, σ|xp:T ,x0:(p−1)) ∝

σ−T
T∏

t=p

exp



−

(
xt − µ−

p∑

i=1

̺i(xt−i − µ)

)2 /
2σ2



 .
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The AR(p) model

Prior selection

For AR(1) model, Jeffreys’ prior associated with the stationary
representation is

πJ1 (µ, σ2, ̺) ∝ 1

σ2

1√
1− ̺2

.

Extension to higher orders quite complicated (̺ part)!

Natural conjugate prior for θ = (µ, ̺1, . . . , ̺p, σ
2) :

normal distribution on (µ, ̺1, . . . , ̺p) and inverse gamma
distribution on σ2

... and for constrained ̺’s?
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Stationarity constraints

Under stationarity constraints, complex parameter space: each
value of ̺ needs to be checked for roots of corresponding
polynomial with modulus less than 1

E.g., for an AR(2) process with autoregressive polynomial
P(u) = 1− ̺1u− ̺2u

2, constraint is

̺1 + ̺2 < 1, ̺1 − ̺2 < 1 and |̺2| < 1 .

Skip Durbin forward
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A first useful reparameterisation

Durbin–Levinson recursion proposes a reparametrisation from the
parameters ̺i to the partial autocorrelations

ψi ∈ [−1, 1]

which allow for a uniform prior on the hypercube.
Partial autocorrelation defined as

ψi = corr (xt − E[xt|xt+1, . . . , xt+i−1],

xt+i − E[xt+1|xt+1, . . . , xt+i−1])

[see also Yule-Walker equations]
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Durbin–Levinson recursion

Transform

1 Define ϕii = ψi and ϕij = ϕ(i−1)j − ψiϕ(i−1)(i−j), for i > 1
and j = 1, · · · , i− 1 .

2 Take ̺i = ϕpi for i = 1, · · · , p.
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Stationarity & priors

For AR(1) model, Jeffreys’ prior associated with the stationary
representation is

πJ1 (µ, σ2, ̺) ∝ 1

σ2

1√
1− ̺2

.

Within the non-stationary region |̺| > 1, Jeffreys’ prior is

πJ2 (µ, σ2, ̺) ∝ 1

σ2

1√
|1− ̺2|

√∣∣∣∣1−
1− ̺2T

T (1− ̺2)

∣∣∣∣ .

The dominant part of the prior is the non-stationary region!
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Alternative prior
The reference prior πJ1 is only defined when the stationary
constraint holds.
Idea Symmetrise to the region |̺| > 1

πB(µ, σ2, ̺) ∝ 1

σ2

{
1/
√

1− ̺2 if |̺| < 1,

1/|̺|
√
̺2 − 1 if |̺| > 1,

,
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MCMC consequences

When devising an MCMC algorithm, use the Durbin-Levinson
recursion to end up with single normal simulations of the ψi’s since
the ̺j’s are linear functions of the ψi’s
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Root parameterisation

Skip Durbin back Lag polynomial representation

(
Id−

p∑

i=1

̺iB
i

)
xt = ǫt

with (inverse) roots

p∏

i=1

(Id− λiB) xt = ǫt

Closed form expression of the likelihood as a function of the
(inverse) roots
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Uniform prior under stationarity

Stationarity The λi’s are within the unit circle if in C [complex
numbers] and within [−1, 1] if in R [real numbers]

Naturally associated with a flat prior on either the unit circle or
[−1, 1]

1

⌊k/2⌋ + 1

∏

λi∈R

1

2
I|λi|<1

∏

λi 6∈R

1

π
I|λi|<1

where ⌊k/2⌋ + 1 number of possible cases

 Term ⌊k/2⌋ + 1 is important for reversible jump applications
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The AR(p) model

MCMC consequences

In a Gibbs sampler, each λi∗ can be simulated conditionaly on the
others since

p∏

i=1

(Id− λiB) xt = yt − λi∗yt−1 = ǫt

where
Yt =

∏

i6=i∗

(Id− λiB) xt
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Metropolis-Hastings implementation

1 use the prior π itself as a proposal on the (inverse) roots of P,
selecting one or several roots of P to be simulated from π;

2 acceptance ratio is likelihood ratio

3 need to watch out for real/complex dichotomy
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A [paradoxical] reversible jump implementation

Define “model” M2k (0 ≤ k ≤ ⌊p/2⌋) as corresponding to a
number 2k of complex roots o ≤ k ≤ ⌊p/2⌋)
Moving from model M2k to model M2k+2 means that two real
roots have been replaced by two conjugate complex roots.

Propose jump from M2k to M2k+2 with probability 1/2 and from
M2k to M2k−2 with probability 1/2 [boundary exceptions]

accept move from M2k to M2k+ or−2 with probability

ℓc(µ, ̺⋆
1, . . . , ̺

⋆
p, σ|xp:T ,x0:(p−1))

ℓc(µ, ̺1, . . . , ̺p, σ|xp:T ,x0:(p−1))
∧ 1 ,
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Checking your code

Try with no data and recover the prior

k
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Checking your code

Try with no data and recover the prior
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Order estimation

Typical setting for model choice: determine order p of AR(p)
model
Roots [may] change drastically from one p to the other.
No difficulty from the previous perspective: recycle above
reversible jump algorithm
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AR(?) reversible jump algorithm

Use (purely birth-and-death) proposals based on the uniform prior

k → k+1 [Creation of real root]

k → k+2 [Creation of complex root]

k → k-1 [Deletion of real root]

k → k-2 [Deletion of complex root]
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Reversible jump output
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The MA(q) model

Alternative type of time series

xt = µ+ ǫt −
q∑

j=1

ϑjǫt−j , ǫt ∼ N (0, σ2)

Stationary but, for identifiability considerations, the polynomial

Q(x) = 1−
q∑

j=1

ϑjx
j

must have all its roots outside the unit circle.
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Identifiability

Example

For the MA(1) model, xt = µ+ ǫt − ϑ1ǫt−1,

var(xt) = (1 + ϑ2
1)σ

2

can also be written

xt = µ+ ǫ̃t−1 −
1

ϑ1
ǫ̃t, ǫ̃ ∼ N (0, ϑ2

1σ
2) ,

Both pairs (ϑ1, σ) & (1/ϑ1, ϑ1σ) lead to alternative
representations of the same model.
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Properties of MA models

Non-Markovian model (but special case of hidden Markov)

Autocovariance γx(s) is null for |s| > q
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Representations

x1:T is a normal random variable with constant mean µ and
covariance matrix

Σ =




σ2 γ1 γ2 . . . γq 0 . . . 0 0
γ1 σ2 γ1 . . . γq−1 γq . . . 0 0

. . .

0 0 0 . . . 0 0 . . . γ1 σ2


 ,

with (|s| ≤ q)

γs = σ2

q−|s|∑

i=0

ϑiϑi+|s|

Not manageable in practice [large T’s]
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Representations (contd.)

Conditional on past (ǫ0, . . . , ǫ−q+1),

L(µ, ϑ1, . . . , ϑq, σ|x1:T , ǫ0, . . . , ǫ−q+1) ∝

σ−T
T∏

t=1

exp




−


xt − µ+

q∑

j=1

ϑj ǫ̂t−j




2

/
2σ2




,

where (t > 0)

ǫ̂t = xt − µ+

q∑

j=1

ϑj ǫ̂t−j , ǫ̂0 = ǫ0, . . . , ǫ̂1−q = ǫ1−q

Recursive definition of the likelihood, still costly O(T × q)
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Recycling the AR algorithm

Same algorithm as in the AR(p) case when modifying the likelihood

Simulation of the past noises ǫ−i (i = 1, . . . , q) done via a
Metropolis-Hastings step with target

f(ǫ0, . . . , ǫ−q+1|x1:T , µ, σ,ϑ) ∝
0∏

i=−q+1

e−ǫ
2
i /2σ

2
T∏

t=1

e−bǫ2t/2σ
2
,
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Representations (contd.)

Encompassing approach for general time series models

State-space representation

xt = Gyt + εt , (1)

yt+1 = Fyt + ξt , (2)

(1) is the observation equation and (2) is the state equation

Note

As seen below, this is a special case of hidden Markov model
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MA(q) state-space representation

For the MA(q) model, take

yt = (ǫt−q, . . . , ǫt−1, ǫt)
′

and then

yt+1 =




0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
0 0 0 . . . 0




yt + ǫt+1




0
0
...
0
1




xt = µ−
(
ϑq ϑq−1 . . . ϑ1 −1

)
yt .
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MA(q) state-space representation (cont’d)

Example

For the MA(1) model, observation equation

xt = (1 0)yt

with
yt = (y1t y2t)

′

directed by the state equation

yt+1 =

(
0 1
0 0

)
yt + ǫt+1

(
1
ϑ1

)
.
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ARMA extension

ARMA(p, q) model

xt −
p∑

i=1

̺ixt−1 = µ+ ǫt −
q∑

j=1

ϑjǫt−j , ǫt ∼ N (0, σ2)

Identical stationarity and identifiability conditions for both groups
(̺1, . . . , ̺p) and (ϑ1, . . . , ϑq)
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Reparameterisation

Identical root representations

p∏

i=1

(Id− λiB)xt =

q∏

i=1

(Id− ηiB)ǫt

State-space representation

xt = xt = µ−
(
ϑr−1 ϑr−2 . . . ϑ1 −1

)
yt

and

yt+1 =

0
BBBB@

0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
̺r ̺r−1 ̺r−2 . . . ̺1

1
CCCCA

yt + ǫt+1

0
BBBBB@

0
0
...
0
1

1
CCCCCA

,

under the convention that ̺m = 0 if m > p and ϑm = 0 if m > q.
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Bayesian approximation

Quasi-identical MCMC implementation:

1 Simulate (̺1, . . . , ̺p) conditional on (ϑ1, . . . , ϑq)
and µ

2 Simulate (ϑ1, . . . , ϑq) conditional on (̺1, . . . , ̺p)
and µ

3 Simulate (µ, σ) conditional on (̺1, . . . , ̺p) and
(ϑ1, . . . , ϑq)

c© Code can be recycled almost as is!
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Hidden Markov models

Generalisation both of a mixture and of a state space model.

Example

Extension of a mixture model with Markov dependence

xt|z, xj j 6= t ∼ N (µzt , σ
2
zt

), P (zt = u|zj , j < t) = pzt−1u,

(u = 1, . . . , k)

 Label switching also strikes in this model!



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Dynamic models

Hidden Markov models

Generic dependence graph
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yt yt+1

xt xt+1

(xt, yt)|x0:(t−1),y0:(t−1) ∼ f(yt|yt−1) f(xt|yt)
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Definition

Observable series {xt}t≥1 associated with a second process
{yt}t≥1, with a finite set of N possible values such that

1. indicators Yt have an homogeneous Markov dynamic

p(yt|y1:t−1) = p(yt|yt−1) = Pyt−1yt

where y1:t−1 denotes the sequence {y1, y2, . . . , yt−1}.
2. Observables xt are independent conditionally on the indicators
yt

p(x1:T |y1:T ) =

T∏

t=1

p(xt|yt)
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Dnadataset

DNA sequence [made of A, C, G, and T’s] corresponding to a
complete HIV genome where A, C, G, and T have been recoded as
1, ..., 4.

Possible modeling by a two-state hidden Markov model with

Y = {1, 2} and X = {1, 2, 3, 4}
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Hidden Markov models

Parameterization

For the Markov bit, transition matrix

P = [pij] where
N∑

j=1

pij = 1

and initial distribution
̺ = ̺P

for the observables,

fi(xt) = p(xt|yt = i) = f(xt|θi)

usually within the same parametrized class of distributions.
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Finite case

When both hidden and observed chains are finite, with
Y = {1, . . . , κ} and X = {1, . . . , k}, parameter θ made up of p
probability vectors q1 = (q11 , . . . , q

1
k), . . . ,q

κ = (qκ1 , . . . , q
κ
k )

Joint distribution of (xt, yt)0≤t≤T

̺y0 q
y0
x0

T∏

t=1

pyt−1yt q
yt
xt
,
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Bayesian inference in the finite case

Posterior of (θ,P) given (xt, yt)t factorizes as

π(θ,P) ̺y0

κ∏

i=1

k∏

j=1

(qij)
nij ×

κ∏

i=1

p∏

j=1

p
mij

ij ,

where nij # of visits to state j by the xt’s when the corresponding
yt’s are equal to i and mij # of transitions from state i to state j
on the hidden chain (yt)t∈N

Under a flat prior on pij’s and qij’s, posterior distributions are
[almost] Dirichlet [initial distribution side effect]
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MCMC implementation

Finite State HMM Gibbs Sampler

Initialization:

1 Generate random values of the pij ’s and of the qi
j ’s

2 Generate the hidden Markov chain (yt)0≤t≤T by (i = 1, 2)

P(yt = i) ∝
{
pii q

i
x0

if t = 0 ,

pyt−1i q
i
xt

if t > 0 ,

and compute the corresponding sufficient statistics
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MCMC implementation (cont’d)

Finite State HMM Gibbs Sampler

Iteration m (m ≥ 1):

1 Generate

(pi1, . . . , piκ) ∼ D(1 + ni1, . . . , 1 + niκ)

(qi
1, . . . , q

i
k) ∼ D(1 +mi1, . . . , 1 +mik)

and correct for missing initial probability by a MH step with
acceptance probability ̺′y0

/̺y0

2 Generate successively each yt (0 ≤ t ≤ T ) by

P(yt = i|xt, yt−1, yt+1) ∝
{
pii q

i
x1
piy1 if t = 0 ,

pyt−1i q
i
xt
piyt+1 if t > 0 ,

and compute corresponding sufficient statistics
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Forward-Backward formulae

Existence of a (magical) recurrence relation that provides the
observed likelihood function in manageable computing time
Called forward-backward or Baum–Welch formulas
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Observed likelihood computation

Likelihood of the complete model simple:

ℓc(θ|x,y) =

T∏

t=2

pyt−1yt f(xt|θyt)

but likelihood of the observed model is not:

ℓ(θ|x) =
∑

y∈{1,...,κ}T

ℓc(θ|x,y)

c© O(κT ) complexity
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Forward-Backward paradox

It is possible to express the (observed) likelihood LO(θ|x) in

O(T 2 × κ)

computations, based on the Markov property of the pair (xt, yt).
Direct to backward smoothing
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Conditional distributions

We have

p(y1:t|x1:t) =
f(xt|yt) p(y1:t|x1:(t−1))

p(xt|x1:(t−1))

[Smoothing/Bayes]
and

p(y1:t|x1:(t−1)) = k(yt|yt−1)p(y1:(t−1)|x1:(t−1))

[Prediction]
where k(yt|yt−1) = pyt−1yt associated with the matrix P and

f(xt|yt) = f(xt|θyt)
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Update of predictive

Therefore

p(y1:t|x1:t) =
p(yt|x1:(t−1)) f(xt|yt)

p(xt|x1:(t−1))

=
f(xt|yt) k(yt|yt−1)

p(xt|x1:(t−1))
p(y1:(t−1)|x1:(t−1))

with the same order of complexity for p(y1:t|x1:t) as for
p(xt|x1:(t−1))
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Propagation and actualization equations

p(yt|x1:(t−1)) =
∑

y1:(t−1)

p(y1:(t−1)|x1:(t−1)) k(yt|yt−1)

[Propagation]
and

p(yt|x1:t) =
p(yt|x1:(t−1)) f(xt|yt)

p(xt|x1:(t−1))
.

[Actualization]
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Forward–backward equations (1)

Evaluation of
p(yt|x1:T ) t ≤ T

by forward-backward algorithm
Denote t ≤ T

γt(i) = P (yt = i|x1:T )

αt(i) = p(x1:t, yt = i)

βt(i) = p(xt+1:T |yt = i)
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Recurrence relations
Then 




α1(i) = f(x1|yt = i)̺i

αt+1(j) = f(xt+1|yt+1 = j)

κ∑

i=1

αt(i)pij

[Forward]





βT (i) = 1

βt(i) =

κ∑

j=1

pijf(xt+1|yt+1 = j)βt+1(j)

[Backward]

and

γt(i) =
αt(i)βt(i)
κ∑

j=1

αt(j)βt(j)
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Extension of the recurrence relations

For

ξt(i, j) = P (yt = i, yt+1 = j|x1:T ) i, j = 1, . . . , κ,

we also have

ξt(i, j) =
αt(i)Pijf(xt+1|yt = j)βt+1(j)

κ∑

i=1

κ∑

j=1

αt(i)Pijf(xt+1|yt+1 = j)βt+1(j)
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Overflows and underflows

 On-line scalings of the αt(i)’s and βT (i)’s for each t by

ct = 1
/ κ∑

i=1

αt(i) and dt = 1
/ κ∑

i=1

βt(i)

avoid overflows or/and underflows for large datasets
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Backward smoothing

Recursive derivation of conditionals
We have

p(ys|ys−1,x1:t) = p(ys|ys−1,xs:t)

[Markov property!]
Therefore (s = T, T − 1, . . . , 1)

p(ys|ys−1,x1:T ) ∝ k(ys|ys−1) f(xs|ys)
∑

ys+1

p(ys+1|ys,x1:T )

[Backward equation]
with

p(yT |yT−1,x1:T ) ∝ k(yT |yT−1)f(xT |yt) .
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End of the backward smoothing

The first term is

p(y1|x1:t) ∝ π(y1) f(x1|y1)
∑

y2

p(y2|y1,x1:t) ,

with π stationary distribution of P

The conditional for ys needs to be defined for each of the κ values
of ys−1

c© O(t× κ2) operations



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Dynamic models

Hidden Markov models

Details

Need to introduce unnormalized version of the conditionals
p(yt|yt−1,x0:T ) such that

p⋆T (yT |yT−1,x0:T ) = pyT−1yT
f(xT |yT )

p⋆t (yt|yt−1,x1:T ) = pyt−1ytf(xt|yt)
κ∑

i=1

p⋆t+1(i|yt,x1:T )

p⋆0(y0|x0:T ) = ̺y0 f(x0|y0)

κ∑

i=1

p⋆1(i|y0,x0:t)
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Likelihood computation

Bayes formula

p(x1:T ) =
p(x1:T |y1:T )p(y1:T )

p(y1:T |x1:T )

gives a representation of the likelihood based on the
forward–backward formulae and an arbitrary sequence xo1:T (since
the l.h.s. does not depend on x1:T ).

Obtained through the p⋆t ’s as

p(x0:T ) =

κ∑

i=1

p⋆1(i|x0:T )
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Prediction filter

If
ϕt(i) = p(yt = i|x1:t−1)

Forward equations

ϕ1(j) = p(y1 = j)

ϕt+1(j) =
1

ct

κ∑

i=1

f(xt|yt = i)ϕt(i)pij (t ≥ 1)

where

ct =
κ∑

k=1

f(xt|yt = k)ϕt(k) ,
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Likelihood computation (2)

Follows the same principle as the backward equations
The (log-)likelihood is thus

log p(x1:t) =
t∑

r=1

log

[
κ∑

i=1

p(xt, yt = i|x1:(r−1))

]

=
t∑

r=1

log

[
κ∑

i=1

f(xt|yt = i)ϕt(i)

]


