Dynamic models

@ Dynamic models
Dependent data
The AR(p) model
The MA(g) model
Hidden Markov models



Dependent data

Huge portion of real-life data involving dependent datapoints

O capture histories

o capture sizes
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Markov chain

Stochastic process (x¢)ier where distribution of z; given the past
values xg.;—1) only depends on ;1.
Homogeneity: distribution of x; given the past constant int € 7.

Corresponding likelihood

T

(01xo.r) = fo(wol0) T] f(welai-1,0)

t=1

[Homogeneity means f independent of t]



Stationarity constraints

Difference with the independent case: stationarity and causality
constraints put restrictions on the parameter space
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Definition (Stationary stochastic process)

(z¢)teT is stationary if the joint distributions of (x1,...,zx) and
(14hy- -+, Tkyn) are the same for all h, k's.
It is second-order stationary if, given the autocovariance function

Yo(r, 8) = E{zr — E(zy)H{zs — E(zs)}], m,s€7T,
then
E(xt) =p and 7:v(rv 3) - Vz(r +i,5+ t) = 735(7“ - 8)

for all r,s,t € T.
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Bayesian inference on a non-stationary process can be [formaly]
conducted

Debate

From a Bayesian point of view, to impose the stationarity
condition is objectionable:stationarity requirement on finite datasets
artificial and/or datasets themselves should indicate whether the model is
stationary

Reasons for imposing stationarity:asymptotics (Bayes estimators are
not necessarily convergent in non-stationary settings) causality,
identifiability and ... common practice.



Unknown stationarity constraints

Practical difficulty: for complex models, stationarity constraints get
quite involved to the point of being unknown in some cases



The AR(1) model

Case of linear Markovian dependence on the last value
i.i.d.
T =p+ o(xi—1 — p) + €&, € " =/V(0a02)

If |o| <1, (x¢)tez can be written as

[ee]
SEtZM-i-ZQ]Et—j

J=0

and this is a stationary representation.



Stationary but...

If |o| > 1, alternative stationary representation

o0
ve=p—Y 0 e.
=1

This stationary solution is criticized as artificial because x; is
correlated with future white noises (€;)s>¢, unlike the case when
lo| < 1.

Non-causal representation...



Standard constraint

(© Customary to restrict AR(1) processes to the case |g| < 1
Thus use of a uniform prior on [—1,1] for o

Exclusion of the case |p| =1 that leads to a random walk because the
process is then a random walk [no stationary solution]



The AR(p) model

Conditional model

P

Telwo1, ... ~N (M‘i‘ ZQi(th—i - M),U2)

=1

o Generalisation of AR(1)

o Among the most commonly used models in dynamic settings

o More challenging than the static models (stationarity
constraints)

o Different models depending on the processing of the starting
value x



Stationarity+causality

Stationarity constraints in the prior as a restriction on the values of
0.

AR(p) model second-order stationary and causal iff the roots of the
polynomial

P
Plx)=1- Z oix!
i=1

are all outside the unit circle



Initial conditions

Unobserved initial values can be processed in various ways

@ All x_;'s (i > 0) set equal to y, for computational
convenience

@ Under stationarity and causality constraints, (x;):cz has a
stationary distribution: Assume x_,,._ distributed from

stationary .#,(ul,, A) distribution
Correspondlng marginal likelihood

/‘T_TI_IGXP{Q_TI2 (mt_N_ZQi(xt—i_H)> }

fxepimtlp, A)dx—p1,



Initial conditions (cont'd)

@ Condition instead on the initial observed values x.(,_1)

ec(#, 01,---,0p; U|Xp:Ta xO:(p—l)) X

T p 2
e H expi — (mt — - Z 0i(xe—i — ,u)) /202
t=p =1



Prior selection

For AR(1) model, Jeffreys' prior associated with the stationary
representation is

Wi](M,OJ,Q)OC;TQz-

Extension to higher orders quite complicated (o part)!

Natural conjugate prior for 6 = (u, 01, ..., 0p,02) :
normal distribution on (u, o1, ..., 0p) and inverse gamma
distribution on o2

. and for constrained ¢'s?



Stationarity constraints

Under stationarity constraints, complex parameter space: each
value of g needs to be checked for roots of corresponding
polynomial with modulus less than 1

E.g., for an AR(2) process with autoregressive polynomial
P(u) = 1 — pyu — pu?, constraint is

o1+02<1, p1—p2<1l and g <1.

>



A first useful reparameterisation

Durbin—Levinson recursion proposes a reparametrisation from the
parameters g; to the partial autocorrelations

Y; € [—1, 1]

which allow for a uniform prior on the hypercube.
Partial autocorrelation defined as

Yy = corr (xy — Elwg|2igr, .. 2eqio1],

Topi — Blrg1] T, - oo Tegi1])

[see also Yule-Walker equations]



Durbin—Levinson recursion

@ Define ¢ = 1; and ¢ = =17 — ;0= D=3) for > 1
and j=1,---,i—1.
@ Take g; =P fori=1,---,p.



Stationarity & priors

For AR(1) model, Jeffreys' prior associated with the stationary
representation is

1 1

J
’/Tl (/‘1/7 59) -
vl—g

Within the non-stationary region |o| > 1, Jeffreys' prior is

1_Q2T

J
7T 5 7
5 (1,07, 0) ,7‘1_9 \/‘ T — 02

‘The dominant part of the prior is the non-stationary region! ‘




Alternative prior
J

The reference prior i is only defined when the stationary
constraint holds.
|dea Symmetrise to the region |p| > 1

(,U, ) {1/\/1_9 if|9|<17
7 1lolv/? =1 iffof > 1,




MCMC consequences

When devising an MCMC algorithm, use the Durbin-Levinson
recursion to end up with single normal simulations of the ;s since
the o;'s are linear functions of the 1;'s



Root parameterisation

‘< Lag polynomial representation

P
<Id - Z giBi) T = €

=1

with (inverse) roots

p
[[0d=XiB) 2 =«
=1

Closed form expression of the likelihood as a function of the
(inverse) roots



Uniform prior under stationarity

Stationarity The A;'s are within the unit circle if in C [complex
numbers] and within [—1, 1] if in R [real numbers]

Naturally associated with a flat prior on either the unit circle or
[_17 1]

1 1
lk/2] +1 H 2 Tixij<1 H ]IIA I<1

MR T
where |k/2| 4+ 1 number of possible cases

4 Term |k/2| + 1 is important for reversible jump applications



MCMC consequences

In a Gibbs sampler, each A\;« can be simulated conditionaly on the
others since

(|d - )‘iB) Tp =Y — ANi*Yi—1 = €

p
=1

where
Y, =[] (1d = X\iB) z
ii*



Metropolis-Hastings implementation

@ use the prior 7 itself as a proposal on the (inverse) roots of P,
selecting one or several roots of P to be simulated from ;

@ acceptance ratio is likelihood ratio

@ need to watch out for real/complex dichotomy



A [paradoxical] reversible jump implementation

o Define “model” My, (0 < k < [p/2]) as corresponding to a
number 2k of complex roots 0o < k < |p/2])

o Moving from model 9y, to model 9Mai o means that two real
roots have been replaced by two conjugate complex roots.

o Propose jump from 9y, to May12 with probability 1/2 and from
Moy to Mok_o with probability 1/2 [boundary exceptions]

9@ accept move from Mgy, to Mokt or —2 With probability

gc(’u/’ g]fa ey Q;’ U|Xp:T7 XOz(p—l))
fc(’u, 015+, Op; U|Xp:T7 XO:(p—l))

A,



Checking your code

Try with no data and recover the prior
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Checking your code

Try with no data and recover the prior
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Order estimation

Typical setting for model choice: determine order p of AR(p)
model

Roots [may] change drastically from one p to the other.

No difficulty from the previous perspective: recycle above
reversible jump algorithm



AR(?) reversible jump algorithm

Use (purely birth-and-death) proposals based on the uniform prior
@ k — k+1 [Creation of real root]
@ k — k+2 [Creation of complex root]
0 k — k-1  [Deletion of real root|

@ k — k-2 [Deletion of complex root]
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AR(3) simulated dataset of 530 points (upper left) with true parameters o
(=0.1,0.3,—0.4) and o = 1. First histogram associated with p, following
histograms with the a's, for different values of p, and of o2. Final graph:

scatterplot of the complex roots. One before last: evolution of a1, as, as.



The MA(q) model

Alternative type of time series

q
mt:ﬂ_‘_et_zﬁjft—ja EtNN(O,O'Q)
j=1

Stationary but, for identifiability considerations, the polynomial
q .
Qz)=1- Zﬁjxj
j=1

must have all its roots outside the unit circle.



|dentifiability

Example
For the MA(1) model, z; = p + ¢, — V1641,

var(z;) = (1 + 92)o?
can also be written

1
—&, E~N(0,%0%),

xt:N‘i‘gt—l—ﬂl

Both pairs (¥1,0) & (1/91,010) lead to alternative
representations of the same model.



Properties of MA models

o Non-Markovian model (but special case of hidden Markov)

o Autocovariance 7, (s) is null for |s| > ¢



Representations

X1.7 is a normal random variable with constant mean y and
covariance matrix

o2 vy oy ... Yq 0 ... 0 O
M o2 M ooe. Yge1 Vg .- 00
Y= . ;
0 0 0 0 0 moo°
with (|s| < q)
q—s|
2
Vs =0 Z 191191+|s|
=0

Not manageable in practice [large T's|



Representations (contd.)

Conditional on past (e, ..., €_g+1),
L(/L, 1917 s ’79q, U|x1:T, €0y -+ 6—q-l—l) X
T q 2
o Hexp — |z —p+ Zﬁjét_j /20% 5,

t=1 =1

where (t > 0)
q
G=ai—pt Yy Vb, =€, ooy g = €14

j=1

Recursive definition of the likelihood, still costly O(T" x q)



Recycling the AR algorithm

Same algorithm as in the AR(p) case when modifying the likelihood

Simulation of the past noises €_; (i =1,...,q) done via a
Metropolis-Hastings step with target

—€2/2 —€2/2
f(EO’ 6—(1'|'1|X1 Ty 1,0, 19 H e i i/ o H et/ o )
i=—q+1 t=1



Representations (contd.)

Encompassing approach for general time series models

State-space representation

x; = Gyi+eq, (1)
yiri = Fyi+&, (2)

(1) is the observation equation and (2) is the state equation

As seen below, this is a special case of hidden Markov model



MA(q) state-space representation

For the MA(q) model, take

Yt = (Et—qa e >€t—1a€t)l
and then
01 0 0 0
00 1 0 0
Vi1 = Yt + €41

o O
o o
o o
O =
= O

Ty = u—(z?q Pg1 ... —l)yt.



MA(q) state-space representation (cont'd)

Example
For the MA(1) model, observation equation
= (1 0)y

with
ye = (Y1t y2t)/
directed by the state equation

0 1 1
Yit1 = (0 0) Yt + €1 (191) .



ARMA extension

ARMA(p, ¢) model

D q
Tt — Zgixt—l = p+e— Z’ﬁj&—j, €t NN(OaUQ)

i=1 j=1

Identical stationarity and identifiability conditions for both groups
(01,---,0p) and (V1,...,7)



Reparameterisation

Identical root representations

p q

[0d = AiB)z, = [[(d — n;B)es

i=1 i=1

State-space representation

Xt =T = U — (197-_1 197»_2 ’191 —1) y:
and
0 1 0 0 0
0 0 1 ... 0 0
Yi+1 = . Yt + €141 ,
0 0 0 o1 0
Or Or—1 Qr—2 ... Q1 1

under the convention that g,, =0 if m > p and ¥,,, =0 if m > ¢q.



Bayesian approximation

Quasi-identical MCMC implementation:

(© Code can be recycled almost as is!



Hidden Markov models

Generalisation both of a mixture and of a state space model.

Extension of a mixture model with Markov dependence

mtlzamj J #t ~ N(Mszzt), P(Zt = U|zj ] < t) = Pz_qu

4 Label switching also strikes in this model!



Generic dependence graph
O

(¢, yt)|x0:(t—1):YO:(t—1) ~ f(yelys—1) f(zelye)

@*@



Definition

Observable series {x;}+>1 associated with a second process
{yt}+>1, with a finite set of N possible values such that

@ indicators Y; have an homogeneous Markov dynamic

Py 1i—1) = p(Welyi—1) = Py,_ 1y,

where y1.;—1 denotes the sequence {y1,y2, ..., Y1}
@ Observables z; are independent conditionally on the indicators

Yt
T

perr|yir) = ] pledye)



Dnadataset

DNA sequence [made of A, C, G, and T's] corresponding to a
complete HIV genome where A, C, G, and T have been recoded as
1,...4.

P 0 o

AT Al ARG A A
A 0 L AT i Y o
A0 AL A W
Pt o A YRR

Possible modeling by a two-state hidden Markov model with

% ={1,2} and 2 ={1,2,3,4}



Parameterization

o For the Markov bit, transition matrix
N
P= [p”] where Zpij =1
Jj=1

and initial distribution
0= 0P
o for the observables,

fi(z) = p(@elye = i) = f(24|0;)

usually within the same parametrized class of distributions.



Finite case

When both hidden and observed chains are finite, with

% ={1,...,k} and 2 ={1,...,k}, parameter § made up of p
probability vectors q' = (¢i,...,4i),...,9" = (¢}, ..., q})

Joint distribution of (z¢, yt)o<i<T

T

Yo Yt
Qyo Az H DPyi—1ye dzy >
t=1



Bayesian inference in the finite case

Posterior of (6,P) given (z,y;); factorizes as

GP(Q?]OHH zn”XHHpmw

=1 j=1 i=1 j=1

where n;; # of visits to state j by the x;'s when the corresponding
y:'s are equal to i and m;; # of transitions from state 7 to state j
on the hidden chain (y¢)ien

Under a flat prior on p;;'s and q§'s, posterior distributions are
[almost| Dirichlet [initial distribution side effect]



MCMC implementation

Finite State HMM Gibbs Sampler

Initialization:

@ Generate random values of the p;;'s and of the q;-'s
@ Generate the hidden Markov chain (y;)o<i<7 by (i =1,2)

ji . ift=0
Py, = 1) Pié o . ) ’
Pyirily, f1>0,

and compute the corresponding sufficient statistics



Bayesian Core:A Practical Approach to Computational Bayesian Statistics
I—Dynamic models
L Hidden Markov models

Finite State HMM Gibbs Sampler

Iteration m (m > 1):

@ Generate
(Pi1y -3 Pin) ~ D1+ 141,00, 1+ n4k)
(q@...,q,i) ~ (1 +m, ..., 1+ my)

and correct for missing initial probability by a MH step with
acceptance probability o, /0y,
@ Generate successively each y; (0 <t <T) by

Dii 4%, Py, ift=0,

P(y: = i|ze, Ye—1, Yet1) X , .
Pyi_qi q;t Piyeiq if ¢ > 07

and compute corresponding sufficient statistics



Dnadataset
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Forward-Backward formulae

Existence of a (magical) recurrence relation that provides the
observed likelihood function in manageable computing time
Called forward-backward or Baum—Welch formulas



Observed likelihood computation

Likelihood of the complete model simple:

0|X y prt 1Yt f ﬂft|9yt)

but likelihood of the observed model is not:

(el =Y (8lxy)

yE{l,_“,K‘/}T

© O(k") complexity




Forward-Backward paradox

It is possible to express the (observed) likelihood LO(6|x) in
O(T? x k)

computations, based on the Markov property of the pair (z, y:).

Direct to backward smoothing



Conditional distributions

We have
f(mt|yt)P(Y1:t|X1;(t—1))

p(@e|x1:4—1))

P(Y1:tx1:t) =

[Smoothing/Bayes]
and

p()’l;t|x1:(t—1)) = k(yt|Yt—1)P(Y1;(t—1)|X1;(t—1))

[Prediction]
where k(y¢|yt—1) = Dy,_y, associated with the matrix P and

f(@ilye) = f(x4]0y,)



Update of predictive

Therefore

(Y% e—1)) f(@e|ye)
p($t|x1:(t—1))
f@ely) k(yelye—1)

N (t—1) X1 (0=
P(fl?t|X1;(t_1)) p(yut 1)| 1:(¢ 1))

p(y1:elx1:e) =

with the same order of complexity for p(y1.¢|x1.t) as for
p($t|X1:(t—1))



Propagation and actualization equations

P(yt|x1:(t—1))= Z p(Yl:(t—1)|X1:(t—1))k(yt|yt—1)
Yi:(t—1)
[Propagation]

and
P(Z/t|x1;(t—1)) f(@e|yr)

p(@elx1: 1))

P(ytlfﬂlzt) =

[Actualization]



Forward—backward equations (1)

Evaluation of
p(yelx1.r) t<T

by forward-backward algorithm
Denote t < T

(i) = Py =ilrir)
ai(i) = p(X1t,y: = 1)
Bi(i) = p(xXerrrlye = 1)



Recurrence relations

Then
(i) = flzilye =)o ;
at1(d) = f@eralye =) Z a(1)pij
[Forward]
Br(i) = 1’~i
Be(i) = Zpijf($t+1|yt+1 = J)Be+1(5)
[Backward]
and . .
’Yt(@) o at(l)/ﬁt(l)

> an(4)B: ()
j=1



Extension of the recurrence relations

For

§&(1,5) = Pyt = 4,911 = jlxir) 4,5 =1,...,K,

we also have

&i(i,7) = — a(1)Ps; f (xe1lye = J)Bev1(4)
Z Z ()P f(Te41|ye+1 = J)Bev1(4)

i=1 j=1



Overflows and underflows

4 On-line scalings of the a4 (i)'s and B (i)'s for each t by

o = 1/iat(i) and d; = 1/iﬁt(i)

avoid overflows or/and underflows for large datasets



Backward smoothing

Recursive derivation of conditionals
We have

p(ys‘ys—laxlzt) = p(ys|ys—1axs:t)

[Markov property!]
Therefore (s =T7,T —1,...,1)

PWslys—1,x11) < k(Yslys—1) F(@alys) > pWstlys, x17)
Ys+1

[Backward equation]
with
p(yrlyr—1,x1:1) o< k(yrlyr—1)f (@7lye) -



End of the backward smoothing

The first term is

plyilxie) o w(yn) f(xalyn) Y plyolyr, xi)
Y2

with 7 stationary distribution of P

The conditional for ys needs to be defined for each of the x values
of Ys—1

© O(t x %) operations




Details

Need to introduce unnormalized version of the conditionals
p(yt|yt—1,X0;T) such that

p}(yT|yT—17X0:T) = pyT—lny(xT|yT)
K
pi(Yelye—1,x1:7) = Pyt_lytf($t|yt)ZP?H(Hyt,Xl:T)
i=1
K
po(wolxo:r) = oy f@olyo) D pi(ilyo. xo:)

=1



Likelihood computation

Bayes formula

p(x1.7|y1r)p(yiT)
p(y17|X1:7)

p(XI:T) —

’ S
gives a representation of the likelihood based on the
forward—backward formulae and an arbitrary sequence x9., (since
the I.h.s. does not depend on x;.7).

Obtained through the p;'s as

p(xo:1) Zpl (ilxo:1)



Prediction filter

o1(1) = p(yr = i[x1:4-1)

Forward equations
e1(7) = plyr=1J)
, 1 ¢ -
erp1(d) = o D Flilye = deu(ipiy (> 1)
i=1

where

=y flalye = k)ei(k),
k=1



Likelihood computation (2)

Follows the same principle as the backward equations
The (log-)likelihood is thus

t K
log p(x1:) = Zlog lzp(xmyt = i|x1;(r—1))]



