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Generalisation of linear models

Generalisation of Linear Models

Linear models model connection between a response variable y and
a set x of explanatory variables by a linear dependence relation
with [approximately] normal perturbations.

Many instances where either of these assumptions not appropriate,
e.g. when the support of y restricted to R+ or to N.
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Generalisation of linear models

bank

Four measurements on 100 genuine Swiss banknotes and 100
counterfeit ones:

x1 length of the bill (in mm),

x2 width of the left edge (in mm),

x3 width of the right edge (in mm),

x4 bottom margin width (in mm).

Response variable y: status of the banknote [0 for genuine and 1
for counterfeit]

Probabilistic model that predicts counterfeiting based on the four
measurements
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Generalisation of linear models

The impossible linear model

Example of the influence of x4 on y
Since y is binary,

y|x4 ∼ B(p(x4)) ,

c© Normal model is impossible

Linear dependence in p(x) = E[y|x]’s

p(x4i) = β0 + β1x4i ,

estimated [by MLE] as

p̂i = −2.02 + 0.268xi4

which gives p̂i = .12 for xi4 = 8 and ... p̂i = 1.19 for xi4 = 12!!!
c© Linear dependence is impossible
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Generalisation of linear models

Generalisation of the linear dependence

Broader class of models to cover various dependence structures.

Class of generalised linear models (GLM) where

y|x, β ∼ f(y|xTβ) .

i.e., dependence of y on x partly linear
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Generalisation of linear models

Notations

Same as in linear regression chapter, with n–sample

y = (y1, . . . , yn)

and corresponding explanatory variables/covariates

X =




x11 x12 . . . x1k

x21 x22 . . . x2k

x31 x32 . . . x3k
...

...
...

...
xn1 xn2 . . . xnk
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Generalisation of linear models

Specifications of GLM’s

Definition (GLM)

A GLM is a conditional model specified by two functions:

1 the density f of y given x parameterised by its expectation
parameter µ = µ(x) [and possibly its dispersion parameter
ϕ = ϕ(x)]

2 the link g between the mean µ and the explanatory variables,
written customarily as g(µ) = xTβ or, equivalently,
E[y|x, β] = g−1(xTβ).

For identifiability reasons, g needs to be bijective.
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Generalisation of linear models

Likelihood

Obvious representation of the likelihood

ℓ(β, ϕ|y, X) =
n∏

i=1

f
(
yi|xiTβ, ϕ

)

with parameters β ∈ R
k and ϕ > 0.

185 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Generalized linear models

Generalisation of linear models

Examples

Ordinary linear regression
Case of GLM where

g(x) = x, ϕ = σ2, and y|X,β, σ2 ∼ Nn(Xβ, σ2).
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Generalisation of linear models

Examples (2)
Case of binary and binomial data, when

yi|xi ∼ B(ni, p(x
i))

with known ni

Logit [or logistic regression] model
Link is logit transform on probability of success

g(pi) = log(pi/(1− pi)) ,

with likelihood
nY

i=1

„
ni

yi

«„
exp(xiTβ)

1 + exp(xiTβ)

«yi
„

1

1 + exp(xiTβ)

«ni−yi

∝ exp

(
nX

i=1

yix
iTβ

)ffi nY

i=1

“
1 + exp(xiTβ)

”ni−yi
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Generalisation of linear models

Canonical link

Special link function g that appears in the natural exponential
family representation of the density

g⋆(µ) = θ if f(y|µ) ∝ exp{T (y) · θ −Ψ(θ)}

Example

Logit link is canonical for the binomial model, since

f(yi|pi) =

(
ni

yi

)
exp

{
yi log

(
pi

1− pi

)
+ ni log(1− pi)

}
,

and thus
θi = log pi/(1− pi)
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Generalisation of linear models

Examples (3)

Customary to use the canonical link, but only customary ...

Probit model
Probit link function given by

g(µi) = Φ−1(µi)

where Φ standard normal cdf
Likelihood

ℓ(β|y, X) ∝
n∏

i=1

Φ(xiTβ)yi(1− Φ(xiTβ))ni−yi .

Full processing
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Generalisation of linear models

Log-linear models
Standard approach to describe associations between several
categorical variables, i.e, variables with finite support
Sufficient statistic: contingency table, made of the cross-classified
counts for the different categorical variables. Full entry to loglinear models

Example (Titanic survivor)

Child Adult

Survivor Class Male Female Male Female

1st 0 0 118 4

2nd 0 0 154 13

No 3rd 35 17 387 89

Crew 0 0 670 3

1st 5 1 57 140

2nd 11 13 14 80

Yes 3rd 13 14 75 76

Crew 0 0 192 20
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Generalisation of linear models

Poisson regression model

1 Each count yi is Poisson with mean µi = µ(xi)

2 Link function connecting R
+ with R, e.g. logarithm

g(µi) = log(µi).

Corresponding likelihood

ℓ(β|y,X) =

n∏

i=1

(
1

yi!

)
exp

{
yix

iTβ − exp(xiTβ)
}
.
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Metropolis–Hastings algorithms

Posterior inference in GLMs harder than for linear models

c© Working with a GLM requires specific numerical or simulation
tools [E.g., GLIM in classical analyses]

Opportunity to introduce universal MCMC method:
Metropolis–Hastings algorithm
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Metropolis–Hastings algorithms

Generic MCMC sampler

Metropolis–Hastings algorithms are generic/down-the-shelf
MCMC algorithms

Only require likelihood up to a constant [difference with Gibbs
sampler]

can be tuned with a wide range of possibilities [difference with
Gibbs sampler & blocking]

natural extensions of standard simulation algorithms: based
on the choice of a proposal distribution [difference in Markov
proposal q(x, y) and acceptance]
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Metropolis–Hastings algorithms

Why Metropolis?

Originally introduced by Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller in a setup of optimization on a discrete state-space. All
authors involved in Los Alamos during and after WWII:

Physicist and mathematician, Nicholas Metropolis is considered
(with Stanislaw Ulam) to be the father of Monte Carlo methods.

Also a physicist, Marshall Rosenbluth worked on the development of
the hydrogen (H) bomb

Edward Teller was one of the first scientists to work on the
Manhattan Project that led to the production of the A bomb. Also
managed to design with Ulam the H bomb.
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Metropolis–Hastings algorithms

Generic Metropolis–Hastings sampler

For target π and proposal kernel q(x, y)

Initialization: Choose an arbitrary x(0)

Iteration t:

1 Given x(t−1), generate x̃ ∼ q(x(t−1), x)
2 Calculate

ρ(x(t−1), x̃) = min

(
π(x̃)/q(x(t−1), x̃)

π(x(t−1))/q(x̃, x(t−1))
, 1

)

3 With probability ρ(x(t−1), x̃) accept x̃ and set x(t) = x̃;
otherwise reject x̃ and set x(t) = x(t−1).
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Metropolis–Hastings algorithms

Universality

Algorithm only needs to simulate from

q

which can be chosen [almost!] arbitrarily, i.e. unrelated with π [q
also called instrumental distribution]

Note: π and q known up to proportionality terms ok since
proportionality constants cancel in ρ.
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Generalized linear models

Metropolis–Hastings algorithms

Validation

Markov chain theory

Target π is stationary distribution of Markov chain (x(t))t because
probability ρ(x, y) satisfies detailed balance equation

π(x)q(x, y)ρ(x, y) = π(y)q(y, x)ρ(y, x)

[Integrate out x to see that π is stationary]

For convergence/ergodicity, Markov chain must be irreducible: q
has positive probability of reaching all areas with positive π
probability in a finite number of steps.
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Metropolis–Hastings algorithms

Choice of proposal

Theoretical guarantees of convergence very high, but choice of q is
crucial in practice. Poor choice of q may result in

very high rejection rates, with very few moves of the Markov
chain (x(t))t hardly moves, or in

a myopic exploration of the support of π, that is, in a
dependence on the starting value x(0), with the chain stuck in
a neighbourhood mode to x(0).

Note: hybrid MCMC

Simultaneous use of different kernels valid and recommended
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Metropolis–Hastings algorithms

The independence sampler

Pick proposal q that is independent of its first argument,

q(x, y) = q(y)

ρ simplifies into

ρ(x, y) = min

(
1,
π(y)/q(y)

π(x)/q(x)

)
.

Special case: q ∝ π

Reduces to ρ(x, y) = 1 and iid sampling

Analogy with Accept-Reject algorithm where maxπ/q replaced
with the current value π(x(t−1))/q(x(t−1)) but sequence of
accepted x(t)’s not i.i.d.
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Generalized linear models

Metropolis–Hastings algorithms

Choice of q

Convergence properties highly dependent on q.

q needs to be positive everywhere on the support of π

for a good exploration of this support, π/q needs to be
bounded.

Otherwise, the chain takes too long to reach regions with low q/π
values.
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Metropolis–Hastings algorithms

The random walk sampler

Independence sampler requires too much global information about
π: opt for a local gathering of information

Means exploration of the neighbourhood of the current value x(t)

in search of other points of interest.

Simplest exploration device is based on random walk dynamics.
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Generalized linear models

Metropolis–Hastings algorithms

Random walks

Proposal is a symmetric transition density

q(x, y) = qRW (y − x) = qRW (x− y)

Acceptance probability ρ(x, y) reduces to the simpler form

ρ(x, y) = min

(
1,
π(y)

π(x)

)
.

Only depends on the target π [accepts all proposed values that
increase π]
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Generalized linear models

Metropolis–Hastings algorithms

Choice of qRW

Considerable flexibility in the choice of qRW ,

tails: Normal versus Student’s t

scale: size of the neighbourhood

Can also be used for restricted support targets [with a waste of
simulations near the boundary]

Can be tuned towards an acceptance probability of 0.234 at the
burnin stage [Magic number!]
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Metropolis–Hastings algorithms

Convergence assessment

Capital question: How many iterations do we need to run???

Rule # 1 There is no absolute number of simulations, i.e.
1, 000 is neither large, nor small.

Rule # 2 It takes [much] longer to check for convergence
than for the chain itself to converge.

Rule # 3 MCMC is a “what-you-get-is-what-you-see”
algorithm: it fails to tell about unexplored parts of the space.

Rule # 4 When in doubt, run MCMC chains in parallel and
check for consistency.

Many “quick-&-dirty” solutions in the literature, but not
necessarily trustworthy.
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Generalized linear models

Metropolis–Hastings algorithms

Prohibited dynamic updating

 Tuning the proposal in terms of its past performances can
only be implemented at burnin, because otherwise this cancels
Markovian convergence properties.

Use of several MCMC proposals together within a single algorithm
using circular or random design is ok. It almost always brings an
improvement compared with its individual components (at the cost
of increased simulation time)
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Metropolis–Hastings algorithms

Effective sample size

How many iid simulations from π are equivalent to N simulations
from the MCMC algorithm?

Based on estimated k-th order auto-correlation,

ρk = cov
(
x(t), x(t+k)

)
,

effective sample size

N ess = n

(
1 + 2

T0∑

k=1

ρ̂k

)−1/2

,

 Only partial indicator that fails to signal chains stuck in one
mode of the target
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The Probit Model

The Probit Model

Likelihood Recall Probit

ℓ(β|y, X) ∝
n∏

i=1

Φ(xiTβ)yi(1− Φ(xiTβ))ni−yi .

If no prior information available, resort to the flat prior π(β) ∝ 1
and then obtain the posterior distribution

π(β|y, X) ∝
n∏

i=1

Φ
(
xiTβ

)yi
(
1− Φ(xiTβ)

)ni−yi
,

nonstandard and simulated using MCMC techniques.
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Generalized linear models

The Probit Model

MCMC resolution

Metropolis–Hastings random walk sampler works well for binary
regression problems with small number of predictors

Uses the maximum likelihood estimate β̂ as starting value and
asymptotic (Fisher) covariance matrix of the MLE, Σ̂, as scale
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Generalized linear models

The Probit Model

MLE proposal

R function glm very useful to get the maximum likelihood estimate
of β and its asymptotic covariance matrix Σ̂.

Terminology used in R program

mod=summary(glm(y~X-1,family=binomial(link="probit")))

with mod$coeff[,1] denoting β̂ and mod$cov.unscaled Σ̂.
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The Probit Model

MCMC algorithm

Probit random-walk Metropolis-Hastings

Initialization: Set β(0) = β̂ and compute Σ̂

Iteration t:
1 Generate β̃ ∼ Nk+1(β

(t−1), τ Σ̂)
2 Compute

ρ(β(t−1), β̃) = min

(
1,

π(β̃|y)
π(β(t−1)|y)

)

3 With probability ρ(β(t−1), β̃) set β(t) = β̃;
otherwise set β(t) = β(t−1).
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Generalized linear models

The Probit Model

bank

Probit modelling with
no intercept over the
four measurements.
Three different scales
τ = 1, 0.1, 10: best
mixing behavior is
associated with τ = 1.
Average of the
parameters over 9, 000
iterations gives plug-in
estimate
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p̂i = Φ(−1.2193xi1 + 0.9540xi2 + 0.9795xi3 + 1.1481xi4) .
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The Probit Model

G-priors for probit models

Flat prior on β inappropriate for comparison purposes and Bayes
factors.
Replace the flat prior with a hierarchical prior,

β|σ2, X ∼ Nk

(
0k, σ

2(XTX)−1
)

and π(σ2|X) ∝ σ−3/2 ,

as in normal linear regression

Note

The matrix XTX is not the Fisher information matrix
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Generalized linear models

The Probit Model

G-priors for testing

Same argument as before: while π is improper, use of the same
variance factor σ2 in both models means the normalising constant
cancels in the Bayes factor.

Posterior distribution of β

π(β|y, X) ∝ |XTX|1/2Γ((2k − 1)/4)
“
βT(XTX)β

”
−(2k−1)/4

π−k/2

×
nY

i=1

Φ(xiTβ)yi

h
1− Φ(xiTβ)

i1−yi

[where k matters!]

213 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Generalized linear models

The Probit Model

Marginal approximation
Marginal

f(y|X) ∝ |XTX|1/2 π−k/2Γ{(2k − 1)/4}

Z “
βT(XTX)β

”
−(2k−1)/4

×

nY

i=1

Φ(xiTβ)yi

h
1− (Φ(xiTβ)

i1−yi

dβ ,

approximated by

|XTX|1/2

πk/2M

MX

m=1

˛̨
˛
˛̨
˛Xβ(m)

˛̨
˛
˛̨
˛
−(2k−1)/2

nY

i=1

Φ(xiTβ(m))yi

h
1− Φ(xiTβ(m))

i1−yi

× Γ{(2k − 1)/4} |bV |1/2(4π)k/2 e(β(m)
−

bβ)T bV−1(β(m)
−

bβ)/4 ,

where
β(m) ∼ Nk(β̂, 2 V̂ )

with β̂ MCMC approximation of E
π[β|y, X] and V̂ MCMC

approximation of V(β|y, X).
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The Probit Model

Linear hypothesis

Linear restriction on β
H0 : Rβ = r

(r ∈ R
q, R q × k matrix) where β0 is (k − q) dimensional and X0

and x0 are linear transforms of X and of x of dimensions
(n, k − q) and (k − q).

Likelihood

ℓ(β0|y, X0) ∝
n∏

i=1

Φ(xiT
0 β

0)yi
[
1− Φ(xiT

0 β
0)
]1−yi

,
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Generalized linear models

The Probit Model

Linear test

Associated [projected] G-prior

β0|σ2, X0 ∼ Nk−q

(
0k−q, σ

2(XT
0 X0)

−1
)

and π(σ2|X0) ∝ σ−3/2 ,

Marginal distribution of y of the same type

f(y|X0) ∝ |XT
0 X0|

1/2π−(k−q)/2Γ


(2(k − q)− 1)

4

ffZ ˛̨˛̨
Xβ0

˛̨˛̨
−(2(k−q)−1)/2

nY

i=1

Φ(xiT
0 β0)yi

h
1− (Φ(xiT

0 β0)
i1−yi

dβ0 .

216 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Generalized linear models

The Probit Model

banknote

For H0 : β1 = β2 = 0, Bπ
10 = 157.73 [against H0]

Generic regression-like output:

Estimate Post. var. log10(BF)

X1 -1.1552 0.0631 4.5844 (****)

X2 0.9200 0.3299 -0.2875

X3 0.9121 0.2595 -0.0972

X4 1.0820 0.0287 15.6765 (****)

evidence against H0: (****) decisive, (***) strong,

(**) subtantial, (*) poor

217 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Generalized linear models

The Probit Model

Informative settings

If prior information available on p(x), transform into prior
distribution on β by technique of imaginary observations:

Start with k different values of the covariate vector, x̃1, . . . , x̃k

For each of these values, the practitioner specifies

(i) a prior guess gi at the probability pi associated with xi;

(ii) an assessment of (un)certainty about that guess given by a
number Ki of equivalent “prior observations”.

On how many imaginary observations did you build this guess?
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Generalized linear models

The Probit Model

Informative prior

π(p1, . . . , pk) ∝
k∏

i=1

pKigi−1
i (1− pi)

Ki(1−gi)−1

translates into [Jacobian rule]

π(β) ∝
k∏

i=1

Φ(x̃iTβ)Kigi−1
[
1− Φ(x̃iTβ)

]Ki(1−gi)−1
φ(x̃iTβ)

[Almost] equivalent to using the G-prior

β ∼ Nk

0
@0k,

"
kX

j=1

x̃
j
x̃

jT

#−1
1
A

219 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Generalized linear models

The logit model

The logit model

Recall that [for ni = 1]

yi|µi ∼ B(1, µi), ϕ = 1 and g(µi) =

(
exp(µi)

1 + exp(µi)

)
.

Thus

P(yi = 1|β) =
exp(xiTβ)

1 + exp(xiTβ)

with likelihood

ℓ(β|y,X) =

n∏

i=1

(
exp(xiTβ)

1 + exp(xiTβ)

)yi
(

1− exp(xiTβ)

1 + exp(xiTβ)

)1−yi
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Generalized linear models

The logit model

Links with probit

usual vague prior for β, π(β) ∝ 1

Posterior given by

π(β|y, X) ∝
n∏

i=1

(
exp(xiTβ)

1 + exp(xiTβ)

)yi (
1− exp(xiTβ)

1 + exp(xiTβ)

)1−yi

[intractable]

Same Metropolis–Hastings sampler
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Generalized linear models

The logit model

bank

Same scale factor equal to
τ = 1: slight increase in
the skewness of the
histograms of the βi’s.

Plug-in estimate of
predictive probability of a
counterfeit
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p̂i =
exp (−2.5888xi1 + 1.9967xi2 + 2.1260xi3 + 2.1879xi4)

1 + exp (−2.5888xi1 + 1.9967xi2 + 2.1260xi3 + 2.1879xi4)
.
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Generalized linear models

The logit model

G-priors for logit models
Same story: Flat prior on β inappropriate for Bayes factors, to be
replaced with hierarchical prior,

β|σ2,X ∼ Nk

(
0k, σ

2(XTX)−1
)

and π(σ2|X) ∝ σ−3/2

Example (bank)

Estimate Post. var. log10(BF)

X1 -2.3970 0.3286 4.8084 (****)

X2 1.6978 1.2220 -0.2453

X3 2.1197 1.0094 -0.1529

X4 2.0230 0.1132 15.9530 (****)

evidence against H0: (****) decisive, (***) strong,

(**) subtantial, (*) poor
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Generalized linear models

Loglinear models

Loglinear models
Introduction to loglinear models

Example (airquality)

Benchmark in R
> air=data(airquality)

Repeated measurements over 111 consecutive days of ozone u (in
parts per billion) and maximum daily temperature v discretized
into dichotomous variables

month 5 6 7 8 9

ozone temp

[1,31] [57,79] 17 4 2 5 18

(79,97] 0 2 3 3 2

(31,168] [57,79] 6 1 0 3 1

(79,97] 1 2 21 12 8

Contingency table with 5× 2× 2 = 20 entries
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Generalized linear models

Loglinear models

Poisson regression

Observations/counts y = (y1, . . . , yn) are integers, so we can
choose

yi ∼ P(µi)

Saturated likelihood

ℓ(µ|y) =
n∏

i=1

1

µi!
µyi

i exp(−µi)

GLM constraint via log-linear link

log(µi) = xiTβ , yi|xi ∼ P

(
ex

iTβ
)
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Generalized linear models

Loglinear models

Categorical variables

Special feature

Incidence matrix X = (xi) such that its elements are all zeros or
ones, i.e. covariates are all indicators/dummy variables!

Several types of (sub)models are possible depending on relations
between categorical variables.

Re-special feature

Variable selection problem of a specific kind, in the sense that all
indicators related with the same association must either remain or
vanish at once. Thus much fewer submodels than in a regular
variable selection problem.
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Generalized linear models

Loglinear models

Parameterisations

Example of three variables 1 ≤ u ≤ I, 1 ≤ v ≤ j and 1 ≤ w ≤ K.

Simplest non-constant model is

log(µτ ) =
I∑

b=1

βu
b Ib(uτ ) +

J∑

b=1

βv
b Ib(vτ ) +

K∑

b=1

βw
b Ib(wτ ) ,

that is,
log(µl(i,j,k)) = βu

i + βv
j + βw

k ,

where index l(i, j, k) corresponds to u = i, v = j and w = k.
Saturated model is

log(µl(i,j,k)) = βuvw
ijk
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Generalized linear models

Loglinear models

Log-linear model (over-)parameterisation

Representation

log(µl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij + λuw
ik + λvw

jk + λuvw
ijk ,

as in Anova models.

λ appears as the overall or reference average effect

λu
i appears as the marginal discrepancy (against the reference

effect λ) when u = i,

λuv
ij as the interaction discrepancy (against the added effects
λ+ λu

i + λv
j ) when (u, v) = (i, j)

and so on...
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Generalized linear models

Loglinear models

Example of submodels

1 if both v and w are irrelevant, then

log(µl(i,j,k)) = λ+ λu
i ,

2 if all three categorical variables are mutually independent, then

log(µl(i,j,k)) = λ+ λu
i + λv

j + λw
k ,

3 if u and v are associated but are both independent of w, then

log(µl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij ,

4 if u and v are conditionally independent given w, then

log(µl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuw

ik + λvw
jk ,

5 if there is no three-factor interaction, then

log(µl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij + λuw
ik + λvw

jk

[the most complete submodel]
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Generalized linear models

Loglinear models

Identifiability

Representation

log(µl(i,j,k)) = λ+ λu
i + λv

j + λw
k + λuv

ij + λuw
ik + λvw

jk + λuvw
ijk ,

not identifiable but Bayesian approach handles non-identifiable
settings and still estimate properly identifiable quantities.
Customary to impose identifiability constraints on the parameters:
set to 0 parameters corresponding to the first category of each
variable, i.e. remove the indicator of the first category.

E.g., if u ∈ {1, 2} and v ∈ {1, 2}, constraint could be

λu
1 = λv

1 = λuv
11 = λuv

12 = λuv
21 = 0 .
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Generalized linear models

Loglinear models

Inference under a flat prior

Noninformative prior π(β) ∝ 1 gives posterior distribution

π(β|y,X) ∝
n∏

i=1

{
exp(xiTβ)

}yi
exp{− exp(xiTβ)}

= exp

{
n∑

i=1

yi x
iTβ −

n∑

i=1

exp(xiTβ)

}

Use of same random walk M-H algorithm as in probit and logit cases,
starting with MLE evaluation

> mod=summary(glm(y~-1+X,family=poisson()))
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Generalized linear models

Loglinear models

airquality

Identifiable non-saturated model
involves 16 parameters
Obtained with 10, 000 MCMC
iterations with scale factor
τ2 = 0.5

Effect Post. mean Post. var.

λ 2.8041 0.0612
λu

2 -1.0684 0.2176
λv

2 -5.8652 1.7141
λw

2 -1.4401 0.2735
λw

3 -2.7178 0.7915
λw

4 -1.1031 0.2295
λw

5 -0.0036 0.1127
λuv

22 3.3559 0.4490
λuw

22 -1.6242 1.2869
λuw

23 - 0.3456 0.8432
λuw

24 -0.2473 0.6658
λuw

25 -1.3335 0.7115
λvw

22 4.5493 2.1997
λvw

23 6.8479 2.5881
λvw

24 4.6557 1.7201
λvw

25 3.9558 1.7128
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Generalized linear models

Loglinear models

airquality: MCMC output
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Generalized linear models

Loglinear models

Model choice with G-prior

G-prior alternative used for probit and logit models still available:

π(β|y, X) ∝ |XTX|1/2Γ

{
(2k − 1)

4

}
||Xβ||−(2k−1)/2 π−k/2

× exp





(
n∑

i=1

yi x
i

)T

β −
n∑

i=1

exp(xiTβ)





Same MCMC implementation and similar estimates for airquality
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Generalized linear models

Loglinear models

airquality

Bayes factors once more approximated by importance sampling
based on normal importance functions

Anova-like output

Effect log10(BF)

u:v 6.0983 (****)

u:w -0.5732

v:w 6.0802 (****)

evidence against H0: (****) decisive, (***) strong,

(**) subtantial, (*) poor
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