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Generalisation of Linear Models

Linear models model connection between a response variable y and
a set = of explanatory variables by a linear dependence relation
with [approximately] normal perturbations.

Many instances where either of these assumptions not appropriate,
e.g. when the support of y restricted to R or to N.
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|—Generalized linear models

I—Generalisa':ion of linear models

Four measurements on 100 genuine Swiss banknotes and 100
counterfeit ones:

x1 length of the bill (in mm),

xg width of the left edge (in mm),
x3 width of the right edge (in mm),
x4 bottom margin width (in mm).

Response variable y: status of the banknote [0 for genuine and 1
for counterfeit]

Probabilistic model that predicts counterfeiting based on the four
measurements
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The impossible linear model

Example of the influence of x4 on y
Since y is binary,
ylza ~ B(p(x4))

(© Normal model is impossible

Linear dependence in p(z) = Ely|z|'s
p(x4i) = Bo + B124i ,
estimated [by MLE] as
b = —2.02 + 0.268 244

which gives p; = .12 for x;4 = 8 and ... p; = 1.19 for x;4 = 12111
(© Linear dependence is impossible

181/ 459



Generalisation of the linear dependence

Broader class of models to cover various dependence structures.

Class of generalised linear models (GLM) where

ylx, B~ flylx"5).

i.e., dependence of y on x partly linear

182 / 459



Notations

Same as in linear regression chapter, with n—sample

y =y,

and corresponding explanatory variables/covariates

Z11
Z21
X = Z31

Tnl

Z12
Z22
Z32

Tn2

L1k
T2k
T3k

Tnk
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L Generalisation of linear models

Definition (GLM)
A GLM is a conditional model specified by two functions:

@ the density f of y given x parameterised by its expectation
parameter = p(x) [and possibly its dispersion parameter
o = p(x)]

@ the link g between the mean u and the explanatory variables,
written customarily as g(u) = x '3 or, equivalently,

Elylx, 8] = g1 (x*3).

For identifiability reasons, g needs to be bijective.
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Likelihood

Obvious representation of the likelihood

(B, ly, X) =T f (wilx""8, )

i=1

with parameters 3 € RF and ¢ > 0.
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Examples

o Ordinary linear regression
Case of GLM where

glx) =z, p= 0%, and v|X, 3, o2 ~ %(Xﬁ,az).
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Examples (2)

Case of binary and binomial data, when
yilx" ~ B(ni, p(x"))
with known n;

o Logit [or logistic regression] model
Link is logit transform on probability of success

g(pi) = log(pi/(1 — pi)),
with likelihood

105 ) (25ars) (ramemm)

=1
x exp {ZszZTﬂ} /H (1 +eXP(XiTﬁ)>ni_yi
i i=1

i=1
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L Generalisation of linear models

Special link function g that appears in the natural exponential
family representation of the density

g"(w) =0 it flylp) occexp{T(y) -0 — ¥(0)}

Example

Logit link is canonical for the binomial model, since

fartp) = () exp Lo tog (2 ) 4 s 0w =) |

and thus

; = logp;/(1 — p;)
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Examples (3)

Customary to use the canonical link, but only customary ...

o Probit model
Probit link function given by

g(s) = @71 (s)

where ® standard normal cdf
Likelihood

((Bly, X) o [Je="B)% (1 — o(x"Tp))m v

=1

» Full processing
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|—Generalized linear models

I—Generalisa':ion of linear models

Standard approach to describe associations between several
categorical variables, i.e, variables with finite support
Sufficient statistic: contingency table, made of the cross-classified

counts for the different categorical variables.

Example (Titanic survivor)

Child Adult
Survivor | Class Male Female Male Female
1st 0 0 118 4
2nd 0 0 154 13
No 3rd 85 17 387 89
Crew 0 670 3
1st 5 1 57 140
2nd 11 13 14 80
Yes 3rd 13 14 75 76
Crew 0 0 192 20
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Poisson regression model

@ Each count y; is Poisson with mean u; = u(x;)
@ Link function connecting RT with R, e.g. logarithm
g(pi) = log(ps).

Corresponding likelihood

n

LBy, X) = H (%) exp {iniTﬁ _ eXp(XiTﬂ)} '

i=1 v
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Metropolis—Hastings algorithms

Posterior inference in GLMs harder than for linear models

(© Working with a GLM requires specific numerical or simulation
tools [E.g., GLIM in classical analyses]

Opportunity to introduce universal MCMC method:
Metropolis—Hastings algorithm
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Generic MCMC sampler

o Metropolis—Hastings algorithms are generic/down-the-shelf
MCMC algorithms

o Only require likelihood up to a constant [difference with Gibbs
sampler]

o can be tuned with a wide range of possibilities [difference with
Gibbs sampler & blocking]

o natural extensions of standard simulation algorithms: based
on the choice of a proposal distribution [difference in Markov
proposal ¢(z,y) and acceptance]
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|—Generalized linear models

I—Metropolis—Hastings algorithms

Originally introduced by Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller in a setup of optimization on a discrete state-space. All
authors involved in Los Alamos during and after WWII:

@ Physicist and mathematician, Nicholas Metropolis is considered
(with Stanislaw Ulam) to be the father of Monte Carlo methods.

9 Also a physicist, Marshall Rosenbluth worked on the development of
the hydrogen (H) bomb

o Edward Teller was one of the first scientists to work on the
Manhattan Project that led to the production of the A bomb. Also
managed to design with Ulam the H bomb.
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Generic Metropolis—Hastings sampler

For target m and proposal kernel ¢(z,y)
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Universality

Algorithm only needs to simulate from

q

which can be chosen [almost!] arbitrarily, i.e. unrelated with 7 [¢
also called instrumental distribution]

Note: 7 and ¢ known up to proportionality terms ok since
proportionality constants cancel in p.
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|—Generalized linear models

L Metropolis—Hastings algorithms

Markov chain theory

Target 7 is stationary distribution of Markov chain (z(!)); because
probability p(x,y) satisfies

m(z)q(z,y)p(z,y) = 7(y)q(y, ©)p(y, )

[Integrate out x to see that w is stationary]

For convergence/ergodicity, Markov chain must be irreducible: q
has positive probability of reaching all areas with positive 7
probability in a finite number of steps.
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L Metropolis—Hastings algorithms

Theoretical guarantees of convergence very high, but choice of ¢ is
crucial in practice. Poor choice of ¢ may result in

o very high rejection rates, with very few moves of the Markov
chain (z(®); hardly moves, or in

o a myopic exploration of the support of 7, that is, in a

dependence on the starting value 37(0), with the chain stuck in

a neighbourhood mode to z(9).

Note: hybrid MCMC

Simultaneous use of different kernels valid and recommended

198 / 459



The independence sampler

Pick proposal ¢ that is independent of its first argument,

q(z,y) = q(y)

p simplifies into

Special case: g < 7
Reduces to p(z,y) = 1 and iid sampling

Analogy with Accept-Reject algorithm where max 7/q replaced
with the current value 7(z(*~1)/q(z*=1)) but sequence of
accepted z(®’s not i.i.d.
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Choice of ¢

Convergence properties highly dependent on q.
9 ¢ needs to be positive everywhere on the support of 7

o for a good exploration of this support, /g needs to be
bounded.

Otherwise, the chain takes too long to reach regions with low ¢/7
values.
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The random walk sampler

Independence sampler requires too much global information about
m: opt for a local gathering of information

Means exploration of the neighbourhood of the current value z(*)
in search of other points of interest.

Simplest exploration device is based on random walk dynamics.
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Random walks

Proposal is a symmetric transition density

q(z,y) = qrw (y — ) = qrw ( — y)

Acceptance probability p(x,y) reduces to the simpler form

play) =min (1.7

Only depends on the target 7 [accepts all proposed values that
increase ]
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Choice of grw

Considerable flexibility in the choice of grwy,
o tails: Normal versus Student’s ¢

o scale: size of the neighbourhood

Can also be used for restricted support targets [with a waste of
simulations near the boundary]

Can be tuned towards an acceptance probability of 0.234 at the
burnin stage [Magic number!]
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I—Metropolis—Hastings algorithms

9@ Rule # 1 There is no absolute number of simulations, i.e.
1,000 is neither large, nor small.

o Rule # 2 It takes [much] longer to check for convergence
than for the chain itself to converge.

o Rule # 3 MCMC is a ‘“what-you-get-is-what-you-see”
algorithm: it fails to tell about unexplored parts of the space.

o Rule # 4 When in doubt, run MCMC chains in parallel and
check for consistency.

Many “quick-&-dirty” solutions in the literature, but not
necessarily trustworthy.
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Prohibited dynamic updating

4 Tuning the proposal in terms of its past performances can
only be implemented at burnin, because otherwise this cancels
Markovian convergence properties.

Use of several MCMC proposals together within a single algorithm
using circular or random design is ok. It almost always brings an
improvement compared with its individual components (at the cost
of increased simulation time)
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Effective sample size

How many iid simulations from 7 are equivalent to N simulations
from the MCMC algorithm?

Based on estimated k-th order auto-correlation,

Pr = COV (a:(t), m(t+k)) ,

effective sample size

T —1/2
Ne==n <1+2Zﬁk> :

k=1

4 Only partial indicator that fails to signal chains stuck in one
mode of the target
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The Probit Model

Likelihood

(Bly, X) oc [ [@TB)¥(1 - d(x"Tg))" .

i=1

If no prior information available, resort to the flat prior 7(3) o 1
and then obtain the posterior distribution

m(Bly, X) o [J® (x"T8)" (1 — 2(xTp))" ™",
=1

nonstandard and simulated using MCMC techniques.
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MCMC resolution

Metropolis—Hastings random walk sampler works well for binary
regression problems with small number of predictors

Uses the maximum likelihood estimate B as starting value and
asymptotic (Fisher) covariance matrix of the MLE, ¥, as scale
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MLE proposal

R function glm very useful to get the maximum likelihood estimate
of 3 and its asymptotic covariance matrix X.

Terminology used in R program
mod=summary (glm(y~X-1,family=binomial (link="probit")))

with mod$coeff[,1] denoting 3 and mod$cov.unscaled .
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|—Generalized linear models
L The Probit Model

Probit random-walk Metropolis-Hastings

Initialization: Set 3(®) = 3 and compute &
Iteration ¢:

@ Generate § ~ A1 (84D, 75)

@ Compute

=1 3) = min M
AT (17ﬂ(ﬂ(t1>ly)>

@ With probability p(3¢=1), 3) set 3 = 3;
otherwise set 3(1) = gt=1).
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‘—Generalized linear models
L The Probit Model

Probit modelling with
no intercept over the 3
four measurements. L
Three different scales
7=1,0.1,10: best
mixing behavior is

20 -10
L1
00 10
L1
00 04 08
L

T 1 1 1
8000 -20 -15 -10 -05 0 200 600 1000

123

-1
Ll
04
[
00 04 08
L1

|

T T T
8000 10 1 2 3 0200 600 1000

T T
0 4000

associated with 7 = 1. 8 2]
Average of the wm .‘.‘w\IH\H‘ ““Mh . e
parameters over 9, 000 oo e e e
iterations gives plug-in s B e
estimate . OV Y

pi = ® (—1.21932;1 + 0.954025 + 0979523 4+ 1.1481244) .
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G-priors for probit models

Flat prior on (3 inappropriate for comparison purposes and Bayes
factors.
Replace the flat prior with a hierarchical prior,

Blo*, X ~ M (0, 0*(XTX)™)  and 7(0?|X) x o732,

as in normal linear regression

The matrix XT X is not the Fisher information matrix
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G-priors for testing

Same argument as before: while 7 is improper, use of the same
variance factor o2 in both models means the normalising constant
cancels in the Bayes factor.

Posterior distribution of 3

—@k=1)/4 o,
m

"Bl X) x [XTX[VID(k - 1)/4) (67 (X" X)8)
x H o(x"" B [1 - @(xiTﬁ)] e

[where k matters!]
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Marginal approximation
Marginal
flylX) « |XTX|1/27r_k/2F{(2k—1)/4}/(5T(XTX)ﬁ)_(2k_l)/4

o6 [1- @6"s) " as,

=1
approximated by

XTX|1/2 (m)| [~ @F—1)/2
xgm
S |

) 1-y;
H o(xT gy 1 [ _@(XzTﬁm))] Y
x D{(2k — 1)/4} |V|1/2(47r)k/2 e(ﬁ("‘) -BTV- ("™ —p)/a ’
where

B~ A(B,2V)

with 3 MCMC approximation of E7[8]y, X] and V MCMC
approximation of V(S|y, X).
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Linear hypothesis

Linear restriction on 3
HO : Rﬁ =T

(r € RY, R q x k matrix) where 8° is (k — q) dimensional and X,
and xg are linear transforms of X and of x of dimensions
(n,k —q) and (k — q).

Likelihood

(3 ly. Xo) oc [T @68 [1 - 258%™
i=1
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Linear test

Associated [projected] G-prior

32102, Xo ~ Nieg (0p—q 03 (X Xo)™')  and  7(0?|Xo) ox 0= %/2,

Marginal distribution of y of the same type

(h— k 2(k—q)—1)/2
Fy1X0) o xdxof /oo { BRI ey etoo-

T @i [1 - (@] 4o
i=1
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banknote

For Hy : 1 = B2 = 0, B, = 157.73 [against H)]

Generic regression-like output:

Estimate Post. var. loglO(BF)

X1 -1.1552  0.0631 4.5844 (x*xx)
X2 0.9200 0.3299 -0.2875
X3 0.9121  0.2595 -0.0972
X4 1.0820 0.0287 15.6765 (**xx)

evidence against HO: (***x) decisive, (***) strong,
(*x) subtantial, (*) poor
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Informative settings

If prior information available on p(x), transform into prior
distribution on 3 by technique of imaginary observations:

Start with k different values of the covariate vector, X!, ..., %"
For each of these values, the practitioner specifies
(i) a prior guess g; at the probability p; associated with x?;

(i1) an assessment of (un)certainty about that guess given by a
number K of equivalent “prior observations”.

On how many imaginary observations did you build this guess?

218 / 459



Informative prior

k
Kigi—1 (1—g;)—
w(prs-oopr) o [ [ o9 (1 = py)ilimo0
i=1

translates into [Jacobian rule]

k

W(ﬂ) OCH ( zTﬂ) Zgz—l[ ( lTﬂ)]Ki(l—gi)_l ¢()~clTﬂ)

i=1

[Almost] equivalent to using the G-prior

el
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The logit model

Recall that [for n; = 1]

exp( ;)
yilpi ~ B(L ), =1 and g(u;) = <1+T(p(u)> |
Thus ( iTﬂ)
_ _ PP
Py = 1|6) = 1 + exp(xiT3)
with likelihood

Ty (_eeT8) " exp(x'T) '
o= (7 7557) (- rhee)
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Links with probit

o usual vague prior for 3, () o 1

o Posterior given by

exp xiT 5) Yi eXp(XiT 5) 1-y;
By, X H(1+exp w15) (1 Teomt)

[intractable]
o Same Metropolis—Hastings sampler
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|—Generalized linear models
I—The logit model

3 -1
00 03 06
[ENERENN]
00 04 08

Same scale factor equal to .
7 = 1: slight increase in
the skewness of the ]
histograms of the 3;'s. e e T

\\\\\\
7777777777
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2 246
00 02 04
oLl
|
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N
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Plug-in estimate of
predictive probability of a
counterfeit
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00 06

[
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 oxp (~2.5888 + 199672 + 21260255 + 2.187924)
Pi= 1+ exp (—25888111 + 1.9967x;2 + 2.1260x;3 + 21879$Z4)
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‘—Generalized linear models
I—The logit model

Same story: Flat prior on G inappropriate for Bayes factors, to be
replaced with hierarchical prior,

Blo?, X ~ M (0, 0*(XTX)™!)  and 7(0?X) o o3/?

Example (bank)

Estimate Post. var. loglO(BF)

X1 -2.3970
X2 1.6978
X3 2.1197
X4 2.0230

evidence against HO:

0.3286 4.8084 (k**x*)
1.2220 -0.2453
1.0094 -0.1529
0.1132 15.9530 (k**x)

(x***) decisive, (x**) strong,

(**) subtantial, (%) poor
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‘—Generalized linear models

I—Loglinear models

Example (airquality)

Benchmark in R

> air=data(airquality)
Repeated measurements over 111 consecutive days of ozone u (in
parts per billion) and maximum daily temperature v discretized
into dichotomous variables

month 5 6 7 8 9

ozone temp

[1,31] [57,79]1 17 4 2 5 18
(79,971 0 2 3 3 2

(31,168] [67,791 6 1 0 3 1
(79,971 1 221 12 8

Contingency table with 5 x 2 x 2 = 20 entries
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Poisson regression

Observations/counts y = (y1, ..., Yn) are integers, so we can
choose
Yi ~ P (i)
Saturated likelihood
o1
(uly) =11 mﬂf’ exp(—4i)
i=1

GLM constraint via log-linear link

log(p;) =x18,  yi|x' ~ 2 <€xiTﬁ)
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I—Loglinear models

Special feature

Incidence matrix X = (x') such that its elements are all zeros or
ones, i.e. covariates are all indicators/dummy variables!

Several types of (sub)models are possible depending on relations
between categorical variables.

Re-special feature

Variable selection problem of a specific kind, in the sense that all
indicators related with the same association must either remain or
vanish at once. Thus much fewer submodels than in a regular
variable selection problem.
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Parameterisations

Example of three variables 1 <u <[, 1<v<jand 1 <w < K.

Simplest non-constant model is

log NT Z/Bb]lb Ur +Zﬂb]lb Ur +Z,3b ]Ib wT

that is,
log(tuijky) = Bi' + 55 + Bk

where index [(i, 7, k) corresponds to u =14, v = j and w = k.
Saturated model is

log(tu(ijk)) = Bijk”
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Log-linear model (over-)parameterisation

Representation

log(tu(igy) = A+ N+ AT+ A+ N+ N+ A+ NG

as in Anova models.

o )\ appears as the overall or reference average effect

o A} appears as the marginal discrepancy (against the reference
effect \) when u =i,

o AjY as the interaction discrepancy (against the added effects
A+ A+ AY) when (u,v) = (4, 5)

and so on...
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Example of submodels

@ if both v and w are irrelevant, then
log(tu(i k) = A+ A,
@ if all three categorical variables are mutually independent, then
log(pu(ijky) = A+ A+ A7 + A,
@ if u and v are associated but are both independent of w, then
log (i k) = A+ MY + AL+ A+ N
@ if u and v are conditionally independent given w, then
log(pu(igm) = A+ N+ A7+ A+ A+ AT

@ if there is no three-factor interaction, then

log(pugijky) = A+ A+ A7+ A+ N+ N+ AG

[the most complete submodel]
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I—Loglinear models

Representation
log(pugijky) = A+ A+ A7+ A+ N+ N+ AT+ AR

not identifiable but Bayesian approach handles non-identifiable
settings and still estimate properly identifiable quantities.
Customary to impose identifiability constraints on the parameters:
set to 0 parameters corresponding to the first category of each
variable, i.e. remove the indicator of the first category.

E.g., if u € {1,2} and v € {1, 2}, constraint could be

U . \U UV . \UV UV __
1 — 71— 11_>‘12_>‘21_0'



Inference under a flat prior

Noninformative prior 7(/3) o< 1 gives posterior distribution

m(Bly, X) o H{exp(xiTﬁ)}yiexp{—exp(xiTﬂ)}

= exp {Z v xTp — Zexp(xiTﬁ)}
i=1 i=1

Use of same random walk M-H algorithm as in probit and logit cases,
starting with MLE evaluation

> mod=summary (glm(y~-1+X,family=poisson()))
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|—Generalized linear models

I—Loglinear models

Identifiable non-saturated model
involves 16 parameters
Obtained with 10,000 MCMC
iterations with scale factor
=05

Effect | Post. mean Post. var.
A 2.8041 0.0612
Ay -1.0684 0.2176
A5 -5.8652 1.7141
Ay -1.4401 0.2735
Y -2.7178 0.7915
Ay -1.1031 0.2295
MY -0.0036 0.1127

55 3.3559 0.4490
55 -1.6242 1.2869
53 - 0.3456 0.8432
A5’ -0.2473 0.6658
55 -1.3335 0.7115
55 4.5493 2.1997
A58 6.8479 2.5881
A5y 4.6557 1.7201
55 3.9558 1.7128

N

N

©
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I—Loglinear models
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Model choice with G-prior

G-prior alternative used for probit and logit models still available:

(Bly,X) o |XTX[VT {@} 11X )|~ 2h /2 /2

n T n
X exp (Z Yi x’) 08— Z exp(xiTﬁ)
i=1

i=1

Same MCMC implementation and similar estimates for airquality
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I—Loglinear models

Bayes factors once more approximated by importance sampling
based on normal importance functions

Anova-like output
Effect logl0(BF)

u:v 6.0983 (k*xx)
u:w -0.5732
vViw 6.0802 (xx*xx%)

evidence against HO: (**x*) decisive, (***) strong,
(x*) subtantial, (%) poor



