5. As we saw, for model M., the corresponding backprojection prior for
full model M is: 3 3
By = (XTX,) XX )

with 3 is the prior mean of § in M. The prior distribution for B,Y in the
first level G-prior setting should not be simply partition in a (X, X_,) way.
Instead, using the projection matrix P = (XWTXW)*lXWTX, we have:

Byl o? ~ qw+1(6~'wi) (2)

where

S = Pco®(XTX)'PT = co®(XT X)) ' XTIX(XTX) ' XTIX(XTX,)
(3)
This is different from the prior variance CO‘Q(Xz X)~t. This is equivalent to
shrink your original variance hyperparameter by a fact of hat matrix H =
X(XTX)1XT,
By orthogonal design assumption: X7 X_, = X* X = 0, and expanding

Y., we can easily derive:
DE CUZ(X«YTXV)_l(HW +H_,) (4)

where H, = X, (XIX,)"'X] and H_, = X_,(X” X_)7'X"  ie. hat
matrix of corresponding blocks.

An important notice is that if assuming X = (X,, X_,) is an orthogonal
design then we have

S = co®(XTX,)(H,+ H_,)
= co’(X]X,)

which exactly what you got in the book. However, in general case where
orthogonal design is not applicable, then dependency between X, and X_,
may be introduced. In this more general settings, Zellner’s G-prior should
be exactly as Eq.(1).

Cosequently, the joint prior, marginal density of y and v are all not in-
correct in the rest of Section 3.5.2.

To mitigate the unclearness, we could just assume the orthogonal design
without loss of generality to a wider settings. This assumption, however,
would be proper for comparing just a nested small model to the full model.



For the model selection issue, e.g. using stochastic search, this orthogonal
design would probably harm for further inference! (You have to assume
orthogonality for every possible model partition!) Hence, I think, more for-
mally, presenting the general results to the readers is a better idea.



