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Preface

The scribes didn’t have a large enough set from which to determine
patterns.

Brandon Sauderson
The Hero of Ages

This partial solution manual to our book Introducing Monte Carlo Methods
with R, published by Springer Verlag in the User R! series, on December 2009,
has been compiled both from our own solutions and from homeworks written
by the following Paris-Dauphine students in the 2009-2010 Master in Statis-
tical Information Processing (TSI): Thomas Bredillet, Anne Sabourin, and
Jiazi Tang. Whenever appropriate, the R code of those students has been
identified by a # (C.) Name in the text. We are grateful to those students for
allowing us to use their solutions. A few solutions in Chapter 4 are also taken
verbatim from the solution manual to Monte Carlo Statistical Methods com-
piled by Roberto Casarin from the University of Brescia (and only available
to instructors from Springer Verlag).

We also incorporated in this manual indications about some typos found
in the first printing that came to our attention while composing this solu-
tion manual have been indicated as well. Following the new “print on de-
mand” strategy of Springer Verlag, these typos will not be found in the
versions of the book purchased in the coming months and should thus be
ignored. (Christian Robert’s book webpage at Université Paris-Dauphine
www.ceremade.dauphine.fr/~xian/books.html is a better reference for the
“complete” list of typos.)

Reproducing the warning Jean-Michel Marin and Christian P. Robert
wrote at the start of the solution manual to Bayesian Core, let us stress
here that some self-study readers of Introducing Monte Carlo Methods with R
may come to the realisation that the solutions provided here are too sketchy
for them because the way we wrote those solutions assumes some minimal
familiarity with the maths, the probability theory and with the statistics be-
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hind the arguments. There is unfortunately a limit to the time and to the
efforts we can put in this solution manual and studying Introducing Monte
Carlo Methods with R requires some prerequisites in maths (such as matrix
algebra and Riemann integrals), in probability theory (such as the use of joint
and conditional densities) and some bases of statistics (such as the notions of
inference, sufficiency and confidence sets) that we cannot cover here. Casella
and Berger (2001) is a good reference in case a reader is lost with the “basic”
concepts or sketchy math derivations.

We obviously welcome solutions, comments and questions on possibly er-
roneous or ambiguous solutions, as well as suggestions for more elegant or
more complete solutions: since this manual is distributed both freely and in-
dependently from the book, it can be updated and corrected [almost] in real
time! Note however that the R codes given in the following pages are not opti-
mised because we prefer to use simple and understandable codes, rather than
condensed and efficient codes, both for time constraints and for pedagogical
purposes: some codes were written by our students. Therefore, if you find
better [meaning, more efficient/faster] codes than those provided along those
pages, we would be glad to hear from you, but that does not mean that we will
automatically substitute your R code for the current one, because readability
is also an important factor.

A final request: this manual comes in two versions, one corresponding to
the odd-numbered exercises and freely available to everyone, and another one
corresponding to a larger collection of exercises and with restricted access
to instructors only. Duplication and dissemination of the more extensive “in-
structors only” version are obviously prohibited since, if the solutions to most
exercises become freely available, the appeal of using our book as a textbook
will be severely reduced. Therefore, if you happen to possess an extended ver-
sion of the manual, please refrain from distributing it and from reproducing
it.

Sceaux and Gainesville Christian P. Robert and George Casella
January 17, 2010
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1

Basic R programming

Exercise 1.1

Self-explanatory.

Exercise 1.3

Self-explanatory.

Exercise 1.5

One problem is the way in which R handles parentheses. So

> n=10
> 1:n

produces

1 2 3 4 5 6 7 8 9 10

but

> n=10
> 1:n-1

produces

0 1 2 3 4 5 6 7 8 9

since the 1:10 command is executed first, then 1 is subtracted.
The command seq(1,n-1,by=1) operates just as 1:(n-1). If n is less than

1 we can use something like seq(1,.05,by=-.01). Try it, and try some other
variations.



2 1 Basic R programming

Exercise 1.7

a. To bootstrap the data you can use the code

Boot=2500
B=array(0,dim=c(nBoot, 1))
for (i in 1:nBoot){

ystar=sample(y,replace=T)
B[i]=mean(ystar)
}

The quantile can be estimated with sort(B)[.95*nBoot], which in our
case/sample is 5.8478.

b. To get a confidence interval requires a double bootstrap. That is, for each
bootstrap sample we can get a point estimate of the 95% quantile. We can
then run an histogram on these quantiles with hist, and get their upper
and lower quantiles for a confidence region.

nBoot1=1000
nBoot2=1000
B1=array(0,dim=c(nBoot1, 1))
B2=array(0,dim=c(nBoot2, 1))
for (i in 1:nBoot1){

ystar=sample(y,replace=T)
for (j in 1:nBoot2)

B2[j]=mean(sample(ystar,replace=T))
B1[i]=sort(B2)[.95*nBoot2]
}

A 90% confidence interval is given by

> c(sort(B1)[.05*nBoot1], sort(B1)[.95*nBoot1])
[1] 4.731 6.844

or alternatively

> quantile(B1,c(.05,.95))
5% 95%

4.731 6.844

for the data in the book. The command hist(B1) will give a histogram
of the values.

Exercise 1.9

If you type

> mean
function (x, ...)
UseMethod("mean")
<environment: namespace:base>
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you do not get any information about the function mean because it is not
written in R, while

> sd
function (x, na.rm = FALSE)
{

if (is.matrix(x))
apply(x, 2, sd, na.rm = na.rm)

else if (is.vector(x))
sqrt(var(x, na.rm = na.rm))

else if (is.data.frame(x))
sapply(x, sd, na.rm = na.rm)

else sqrt(var(as.vector(x), na.rm = na.rm))
}

shows sd is written in R. The same applies to var and cov.

Exercise 1.11

When looking at the description of attach, you can see that this command
allows to use variables or functions that are in a database rather than in the
current .RData. Those objects can be temporarily modified without altering
their original format. (This is a fragile command that we do not personaly
recommend!)

The function assign is also rather fragile, but it allows for the creation
and assignment of an arbitrary number of objects, as in the documentation
example:

for(i in 1:6) { #-- Create objects ’r.1’, ’r.2’, ... ’r.6’ --
nam <- paste("r",i, sep=".")
assign(nam, 1:i)
}

which allows to manipulate the r.1, r.2, ..., variables.

Exercise 1.13

This is mostly self-explanatory. If you type the help on each of those functions,
you will see examples on how they work. The most recommended R function
for saving R objects is save. Note that, when using write, the description
states

The data (usually a matrix) ’x’ are written to file
’file’. If ’x’ is a two-dimensional matrix you need
to transpose it to get the columns in ’file’ the same
as those in the internal representation.

Note also that dump and sink are fairly involved and should use with caution.
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Exercise 1.15

Take, for example a=3;x=c(1,2,3,4,5) to see that they are the same, and,
in fact, are the same as max(which(x == a)). For y=c(3,4,5,6,7,8), try
match(x,y) and match(y,x) to see the difference. In contrast, x%in%y and
y%in%y return true/false tests.

Exercise 1.17

Running system.time on the three sets of commands give

a. 0.004 0.000 0.071
b. 0 0 0
c. 0.000 0.000 0.001

and the vectorial allocation is therefore the fastest.

Exercise 1.19

The R code is

> A=matrix(runif(4),ncol=2)
> A=A/apply(A,1,sum)
> apply(A%*%A,1,sum)
[1] 1 1
> B=A;for (t in 1:100) B=B%*%B
> apply(B,1,sum)
[1] Inf Inf

and it shows that numerical inaccuracies in the product leads to the property
to fail when the power is high enough.

Exercise 1.21

The function xyplot is part of the lattice library. Then

> xyplot(age ~ circumference, data=Orange)
> barchart(age ~ circumference, data=Orange)
> bwplot(age ~ circumference, data=Orange)
> dotplot(age ~ circumference, data=Orange)

produce different representations of the dataset. Fitting a linear model is
simply done by lm(age ~ circumference, data=Orange) and using the tree
index as an extra covariate leads to
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>summary(lm(age ~ circumference+Tree, data=Orange))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -90.0596 55.5795 -1.620 0.116
circumference 8.7366 0.4354 20.066 < 2e-16 ***
Tree.L -348.8982 54.9975 -6.344 6.23e-07 ***
Tree.Q -22.0154 52.1881 -0.422 0.676
Tree.C 72.2267 52.3006 1.381 0.178
Tree^4 41.0233 52.2167 0.786 0.438

meaning that only Tree.L was significant.

Exercise 1.23

a. A plain representation is

> s
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0 0 0 0 0 6 0 4 0
[2,] 2 7 9 0 0 0 0 5 0
[3,] 0 5 0 8 0 0 0 0 2
[4,] 0 0 2 6 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 0
[6,] 0 0 1 0 9 0 6 7 3
[7,] 8 0 5 2 0 0 4 0 0
[8,] 3 0 0 0 0 0 0 8 5
[9,] 6 0 0 0 0 0 9 0 1

where empty slots are represented by zeros.
b. A simple cleaning of non-empty (i.e. certain) slots is

for (i in 1:9)
for (j in 1:9){
if (s[i,j]>0) pool[i,j,-s[i,j]]=FALSE
}

c. In R, matrices (and arrays) are also considered as vectors. Hence s[i]
represents the (1 + b(i− 1)/9c, (i− 1) mod 9 + 1) entry of the grid.

d. This is self-explanatory. For instance,

> a=2;b=5
> boxa
[1] 1 2 3
> boxb
[1] 4 5 6
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e. The first loop checks whether or not, for each remaining possible integer,
there exists an identical entry in the same row, in the same column or
in the same box. The second command sets entries for which only one
possible integer remains to this integer.

f. A plain R program solving the grid is

while (sum(s==0)>0){
for (i in sample(1:81)){
if (s[i]==0){

a=((i-1)%%9)+1
b=trunc((i-1)/9)+1
boxa=3*trunc((a-1)/3)+1
boxa=boxa:(boxa+2)
boxb=3*trunc((b-1)/3)+1
boxb=boxb:(boxb+2)

for (u in (1:9)[pool[a,b,]]){
pool[a,b,u]=(sum(u==s[a,])+sum(u==s[,b])

+sum(u==s[boxa,boxb]))==0
}

if (sum(pool[a,b,])==1){
s[i]=(1:9)[pool[a,b,]]
}

if (sum(pool[a,b,])==0){
print("wrong sudoku")
break()
}

}
}

}

and it stops with the outcome

> s
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 3 8 5 2 6 7 4 9
[2,] 2 7 9 3 4 1 8 5 6
[3,] 4 5 6 8 7 9 3 1 2
[4,] 7 4 2 6 3 5 1 9 8
[5,] 9 6 3 1 8 7 5 2 4
[6,] 5 8 1 4 9 2 6 7 3
[7,] 8 9 5 2 1 3 4 6 7
[8,] 3 1 7 9 6 4 2 8 5
[9,] 6 2 4 7 5 8 9 3 1
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which is the solved Sudoku.





2

Random Variable Generation

Exercise 2.1

For a random variable X with cdf F , if

F−(u) = inf{x, F (x) ≤ u},

then, for U ∼ U [0, 1], for all y ∈ R,

P(F−(U) ≤ y) = P(inf{x, F (x) ≤ U} ≤ y)
= P(F (y) ≥ U) as F is non-decreasing
= F (y) as U is uniform

Exercise 2.3

a. It is easy to see that E[U1] = 0, and a standard calculation shows that
var(U1) = 1/12, from which the result follows.

b. Histograms show that the tails of the 12 uniforms are not long enough.
Consider the code

nsim=10000
u1=runif(nsim)
u2=runif(nsim)
X1=sqrt(-2*log(u1))*cos(2*pi*u2)
X2=sqrt(-2*log(u1))*sin(2*pi*u2)
U=array(0,dim=c(nsim,1))
for(i in 1:nsim)U[i]=sum(runif(12,-.5,.5))
par(mfrow=c(1,2))
hist(X1)
hist(U)
a=3
mean(X1>a)
mean(U>a)
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mean(rnorm(nsim)>a)
1-pnorm(a)

c. You should see the difference in the tails of the histogram. Also, the nu-
merical output from the above is

[1] 0.0016
[1] 5e-04
[1] 0.0013
[1] 0.001349898

where we see that the Box-Muller and rnorm are very good when compared
with the exact pnorm. Try this calculation for a range of nsim and a.

Exercise 2.5

For U ∼ U[0,1], Y ∼ g(y), and X ∼ f(x), such that f/g ≤M , the acceptance
condition in the Accept–Reject algorithm is that U ≤ f(Y )/(Mg(Y )). The
probability of acceptance is thus

P(U ≤ f(Y )
/
Mg(Y )) =

∫ +∞

−∞

∫ f(y
Mg(y)

0

dug(y) dy

=
∫ +∞

−∞

f(y)
Mg(y)

g(y) dy

=
1
M

∫ +∞

−∞
f(y) dy

=
1
M

.

Assume f/g is only known up to a normalising constant, i.e. f/g = k.f̃/g̃,
with f̃/g̃ ≤ M̃ , M̃ being a well-defined upper bound different from M because
of the missing normalising constants. Since Y ∼ g,

P(U ≤ f̃(Y )
/
M̃ g̃(Y )) =

∫ +∞

−∞

∫ f̃(y
M̃g̃(y)

0

dug(y) dy

=
∫ +∞

−∞

f̃(y)
M̃ g̃(y)

g(y) dy

=
∫ +∞

−∞

f(y)
kM̃g(y)

g(y) dy

=
1
kM̃

.

Therefore the missing constant is given by

k = 1
/
M̃.P(U ≤ f̃(Y )

/
M̃ g̃(Y )) ,

which can be estimated from the empirical acceptance rate.



2 Random Variable Generation 11

Exercise 2.7

The ratio is equal to

Γ (α+ β)
Γ (α)Γ (β)

Γ (a)Γ (b)
Γ (a+ b)

xα−a (1− x)β−b

and it will not diverge at x = 0 only if a ≤ α and at x = 1 only if b ≤ β. The
maximum is attained for

α− a
x?

=
β − b
1− x?

,

i.e. is

Ma,b =
Γ (α+ β)
Γ (α)Γ (β)

Γ (a)Γ (b)
Γ (a+ b)

(α− a)α−a(β − b)β−b

(α− a+ β − b)α−a+β−b
.

The analytic study of this quantity as a function of (a, b) is quite delicate but
if we define

mab=function(a,b){
lgamma(a)+lgamma(b)+(alph-a)*log(alph-a)+(beta-b)*log(beta-b)
-(alph+bet-a-b)*log(alph+bet-a-b)}

it is easy to see using contour on a sequence of a’s and b’s that the maximum
of Ma,b is achieved over integer values when a = bαc and b = bβc.

Exercise 2.9

Given θ, exiting the loop is driven by X = x0, which indeed has a probability
f(x0|θ) to occur. If X is a discrete random variable, this is truly a probability,
while, if X is a continuous random variable, this is zero. The distribution of
the exiting θ is then dependent on the event X = x0 taking place, i.e. is
proportional to π(θ)f(x0|θ), which is exactly π(θ|x0).

Exercise 2.11

a. Try the R code

nsim<-5000
n=25;p=.2;
cp=pbinom(c(0:n),n,p)
X=array(0,c(nsim,1))
for(i in 1:nsim){

u=runif(1)
X[i]=sum(cp<u)
}

hist(X,freq=F)
lines(1:n,dbinom(1:n,n,p),lwd=2)
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which produces a histogram and a mass function for the binomial B(25, .2).
To check timing, create the function

MYbinom<-function(s0,n0,p0){
cp=pbinom(c(0:n0),n0,p0)
X=array(0,c(s0,1))
for (i in 1:s0){

u=runif(1)
X[i]=sum(cp<u)
}

return(X)
}

and use system.time(rbinom(5000,25,.2)) and system.time(MYbinom(5000,25,.2))
to see how much faster R is.

b. Create the R functions Wait and Trans:

Wait<-function(s0,alpha){
U=array(0,c(s0,1))
for (i in 1:s0){

u=runif(1)
while (u > alpha) u=runif(1)
U[i]=u
}

return(U)
}

Trans<-function(s0,alpha){
U=array(0,c(s0,1))
for (i in 1:s0) U[i]=alpha*runif(1)
return(U)
}

Use hist(Wait(1000,.5)) and hist(Trans(1000,.5)) to see the corre-
sponding histograms. Vary n and α. Use the system.time command as
in part a to see the timing. In particular, Wait is very bad if α is small.

Exercise 2.13

The cdf of the Pareto P(α) distribution is

F (x) = 1− x−α

over (1,∞). Therefore, F−1(U) = (1−U)−1/α, which is also the −1/α power
of a uniform variate.
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Exercise 2.15

Define the R functions

Pois1<-function(s0,lam0){
spread=3*sqrt(lam0)
t=round(seq(max(0,lam0-spread),lam0+spread,1))
prob=ppois(t,lam0)
X=rep(0,s0)
for (i in 1:s0){

u=runif(1)
X[i]=max(t[1],0)+sum(prob<u)-1
}

return(X)
}

and

Pois2<-function(s0,lam0){
X=rep(0,s0)
for (i in 1:s0){
sum=0;k=1
sum=sum+rexp(1,lam0)
while (sum<1){ sum=sum+rexp(1,lam0);k=k+1}
X[i]=k
}
return(X)
}

and then run the commands

> nsim=100
> lambda=3.4
> system.time(Pois1(nsim,lambda))

user system elapsed
0.004 0.000 0.005

> system.time(Pois2(nsim,lambda))
user system elapsed

0.004 0.000 0.004
> system.time(rpois(nsim,lambda))

user system elapsed
0 0 0

for other values of nsim and lambda. You will see that rpois is by far the
best, with the exponential generator (Pois2) not being very good for large
λ’s. Note also that Pois1 is not appropriate for small λ’s since it could then
return negative values.
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Exercise 2.17

a. Since, if X ∼ Ga(α, β), then βX =
∑α
j=1 βXj ∼ Ga(α, 1), β is the inverse

of a scale parameter.
b. The Accept-Reject ratio is given by

f(x)
g(x)

∝ xn−1 e−x

λ e−λx
= λ−1xn−1e−(1−λ)x .

The maximum of this ratio is obtained for

n− 1
x?

− (1− λ) = 0 , i.e. for x? =
n− 1
1− λ

.

Therefore,

M ∝ λ−1

(
n− 1
1− λ

)n−1

e−(n−1)

and this upper bound is minimised in λ when λ = 1/n.
c. If g is the density of the Ga(a, b) distribution and f the density of the
Ga(α, 1) distribution,

g(x) =
xa−1e−bxba

Γ (a)
and f(x) =

xα−1e−x

Γ (α)

the Accept-Reject ratio is given by

f(x)
g(x)

=
xα−1e−xΓ (a)
Γ (α)baxa−1e−bx

∝ b−axα−ae−x(1−b) .

Therefore,

∂

∂x

f

g
= bae−x(1−b)xα−a−1 {(α− a)− (1− b)x}

provides x? = α− a
/

1− b as the argument of the maximum of the ratio,
since f

g (0) = 0. The upper bound M is thus given by

M(a, b) = b−a
(
α− a
1− b

)α−a
e−(α−a1−b )∗(1−b) = b−a

(
α− a

(1− b)e

)α−a
.

It obviously requires b < 1 and a < α.
d. Warning: there is a typo in the text of the first printing, it should

be:

Show that the maximum of b−a(1− b)a−α is attained at b = a/α, and hence
the optimal choice of b for simulating Ga(α, 1) is b = a/α, which gives the
same mean for both Ga(α, 1) and Ga(a, b).
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With this modification, the maximum of M(a, b) in b is obtained by deriva-
tion, i.e. for b solution of

a

b
− α− a

1− b
= 0 ,

which leads to b = a/α as the optimal choice of b. Both Ga(α, 1) and
Ga(a, a/α) have the same mean α.

e. Since

M(a, a/α) = (a/α)−a
(

α− a
(1− a/α)e

)α−a
= (a/α)−aαα−a = αα/aa, ,

M is decreasing in a and the largest possible value is indeed a = bαc.

Exercise 2.19

The ratio f/g is

f(x)
g(x)

=
exp{−x2/2}/

√
2π

α exp{−α|x|}/2
=

√
2/π
α

exp{α|x| − x2/2}

and it is maximal when x = ±α, so M =
√

2/π exp{α2/2}/α. Taking the
derivative in α leads to the equation

α− 1
α2

= 0 ,

that is, indeed, to α = 1.

Exercise 2.21

Warning: There is a typo in this exercise, it should be:

(i). a mixture representation (2.2), where g(x|y) is the density of χ2
p+2y and

p(y) is the density of P(λ/2), and
(ii). the sum of a χ2

p−1 random variable and the square of a N (
√
λ, 1).

a. Show that both those representations hold.
b. Compare the corresponding algorithms that can be derived from these

representations among themselves and also with rchisq for small and
large values of λ.

If we use the definition of the noncentral chi squared distribution, χ2
p(λ) as

corresponding to the distribution of the squared norm ||x||2 of a normal vector
x ∼ Np(θ, Ip) when λ = ||θ||2, this distribution is invariant by rotation over the
normal vector and it is therefore the same as when x ∼ Np((0, . . . , 0,

√
λ), Ip),
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hence leading to the representation (ii), i.e. as a sum of a χ2
p−1 random variable

and of the square of aN (||θ||, 1) variable. Representation (i) holds by a regular
mathematical argument based on the series expansion of the modified Bessel
function since the density of a non-central chi-squared distribution is

f(x|λ) =
1
2

(x/λ)(p−2)/4I(p−2)/2(
√
λx)e−(λ+x)/2 ,

where

Iν(t) =
(
t

2

)ν ∞∑
k=0

(z/2)2k

k!Γ (ν + k + 1)
.

Since rchisq includes an optional non-centrality parameter nc, it can be
used to simulate directly a noncentral chi-squared distribution. The two sce-
narios (i) and (ii) lead to the following R codes.

> system.time({x=rchisq(10^6,df=5,ncp=3)})
user system elapsed

> system.time({x=rchisq(10^6,df=4)+rnorm(10^6,mean=sqrt(3))^2})
user system elapsed

1.700 0.056 1.757
> system.time({x=rchisq(10^6,df=5+2*rpois(10^6,3/2))})

user system elapsed
1.168 0.048 1.221

Repeated experiments with other values of p and λ lead to the same conclu-
sion that the Poisson mixture representation is the fastest.

Exercise 2.23

Since the ratio π(θ|x)/π(θ) is the likelihood, it is obvious that the optimal
bound M is the likelihood function evaluated at the MLE (assuming π is a
true density and not an improper prior).

Simulating from the posterior can then be done via

theta0=3;n=100;N=10^4
x=rnorm(n)+theta0
lik=function(the){prod(dnorm(x,mean=the))}
M=optimise(f=function(the){prod(dnorm(x,mean=the))},
int=range(x),max=T)$obj

theta=rcauchy(N)
res=(M*runif(N)>apply(as.matrix(theta),1,lik));print(sum(res)/N)
while (sum(res)>0){le=sum(res);theta[res]=rcauchy(le)
res[res]=(M*runif(le)>apply(as.matrix(theta[res]),1,lik))}

The rejection rate is given by 0.9785, which means that the Cauchy proposal
is quite inefficient. An empirical confidence (or credible) interval at the level
95% on θ is (2.73, 3.799). Repeating the experiment with n = 100 leads (after
a while) to the interval (2.994, 3.321), there is therefore an improvement.
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Monte Carlo Integration

Exercise 3.1

a. The plot of the integrands follows from a simple R program:

f1=function(t){ t/(1+t*t)*exp(-(x-t)^2/2)}
f2=function(t){ 1/(1+t*t)*exp(-(x-t)^2/2)}
plot(f1,-3,3,col=1,ylim=c(-0.5,1),xlab="t",ylab="",ty="l")
plot(f2,-3,3,add=TRUE,col=2,ty="l")
legend("topright", c("f1=t.f2","f2"), lty=1,col=1 :2)

Both numerator and denominator are expectations under the Cauchy dis-
tribution. They can therefore be approximated directly by

Niter=10^4
co=rcauchy(Niter)
I=mean(co*dnorm(co,mean=x))/mean(dnorm(co,mean=x))

We thus get

> x=0
> mean(co*dnorm(co,mean=x))/mean(dnorm(co,mean=x))
[1] 0.01724
> x=2
> mean(co*dnorm(co,mean=x))/mean(dnorm(co,mean=x))
[1] 1.295652
> x=4
> mean(co*dnorm(co,mean=x))/mean(dnorm(co,mean=x))
[1] 3.107256

b. Plotting the convergence of those integrands can be done via

# (C.) Anne Sabourin, 2009
x1=dnorm(co,mean=x)
estint2=cumsum(x1)/(1:Niter)
esterr2=sqrt(cumsum((x1-estint2)^2))/(1:Niter)
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x1=co*x1
estint1=cumsum(x1))/(1:Niter)
esterr2=sqrt(cumsum((x1-estint1)^2))/(1:Niter)
par(mfrow=c(1,2))
plot(estint1,type="l",xlab="iteration",ylab="",col="gold")
lines(estint1-2*esterr1,lty=2,lwd=2)
lines(estint1+2*esterr1,lty=2,lwd=2)
plot(estint2,type="l",xlab="iteration",ylab="",col="gold")
lines(estint2-2*esterr2,lty=2,lwd=2)
lines(estint2+2*esterr2,lty=2,lwd=2)

Because we have not yet discussed the evaluation of the error for a
ratio of estimators, we consider both terms of the ratio separately.
The empirical variances σ̂ are given by var(co*dnorm(co,m=x)) and
var(dnorm(co,m=x)) and solving 2σ̂/

√
n < 10−3 leads to an evaluation

of the number of simulations necessary to get 3 digits of accuracy.

> x=0;max(4*var(dnorm(co,m=x))*10^6,
+ 4*var(co*dnorm(co,m=x))*10^6)
[1] 97182.02
> x=2; 4*10^6*max(var(dnorm(co,m=x)),var(co*dnorm(co,m=x)))
[1] 220778.1
> x=4; 10^6*4*max(var(dnorm(co,m=x)),var(co*dnorm(co,m=x)))
[1] 306877.9

c. A similar implementation applies for the normal simulation, replacing
dnorm with dcauchy in the above. The comparison is clear in that the
required number of normal simulations when x = 4 is 1398.22, to compare
with the above 306878.

Exercise 3.3

Due to the identity

P(X > 20) =
∫ ∞

20

exp(−x
2

2 )
√

2π
dx =

∫ 1/20

0

exp(− 1
2∗u2 )

20u2
√

2π
20du ,

we can see this integral as an expectation under the U(0, 1/20) distribution
and thus use a Monte Carlo approximation to P(X > 20). The following R
code monitors the convergence of the corresponding approximation.

# (C.) Thomas Bredillet, 2009
h=function(x){ 1/(x^2*sqrt(2*pi)*exp(1/(2*x^2)))}
par(mfrow=c(2,1))
curve(h,from=0,to=1/20,xlab="x",ylab="h(x)",lwd="2")
I=1/20*h(runif(10^4)/20)
estint=cumsum(I)/(1:10^4)
esterr=sqrt(cumsum((I-estint)^2))/(1:10^4)
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plot(estint,xlab="Iterations",ty="l",lwd=2,
ylim=mean(I)+20*c(-esterr[10^4],esterr[10^4]),ylab="")
lines(estint+2*esterr,col="gold",lwd=2)
lines(estint-2*esterr,col="gold",lwd=2)

The estimated probability is 2.505e−89 with an error of ±3.61e−90, compared
with

> integrate(h,0,1/20)
2.759158e-89 with absolute error < 5.4e-89
> pnorm(-20)
[1] 2.753624e-89

Exercise 3.5

Warning: due to the (late) inclusion of an extra-exercise in the book,
the “above exercise” actually means Exercise 3.3!!!

When Z ∼ N (0, 1), with density f , the quantity of interest is P(Z > 4.5),
i.e. Ef [IZ>4.5]. When g is the density of the exponential Exp(λ) distribution
truncated at 4.5,

g(y) =
1y>4.5λ exp(−λy)∫∞
−4.5

λ exp(−λy) dy
= λe−λ(y−4.5)Iy>4.5 ,

simulating iid Y (i)’s from g is straightforward. Given that the indicator func-
tion IY >4.5 is then always equal to 1, P(Z > 4.5) is estimated by

ĥn =
1
n

n∑
i=1

f(Y (i))
g(Y (i))

.

A corresponding estimator of its variance is

vn =
1
n

n∑
i=1

(1− ĥn)2f(Y (i))
/
g(Y (i)) .

The following R code monitors the convergence of the estimator (with λ =
1, 10)

# (C.) Anne Sabourin, 2009
Nsim=5*10^4
x=rexp(Nsim)
par(mfcol=c(1,3))
for (la in c(.5,5,50)){
y=(x/la)+4.5
weit=dnorm(y)/dexp(y-4.5,la)
est=cumsum(weit)/(1:Nsim)
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varest=cumsum((1-est)^2*weit/(1:Nsim)^2)
plot(est,type="l",ylim=c(3e-6,4e-6),main="P(X>4.5) estimate",
sub=paste("based on E(",la,") simulations",sep=""),xlab="",ylab="")
abline(a=pnorm(-4.5),b=0,col="red")
}

When evaluating the impact of λ on the variance (and hence on the conver-
gence) of the estimator, similar graphs can be plotted for different values of λ.
This experiment does not exhibit a clear pattern, even though large values of
λ, like λ = 20 appear to slow down convergence very much. Figure 3.1 shows
the output of such a comparison. Picking λ = 5 seems however to produce a
very stable approximation of the tail probability.

Fig. 3.1. Comparison of three importance sampling approximations to the normal
tail probability P(Z > 4.5) based on a truncated Exp(λ) distribution with λ =
.5, 5.50. The straight red line is the true value.

Exercise 3.7

While the expectation of
√
x/(1− x) is well defined for ν > 1/2, the integral

of x/(1−x) against the t density does not exist for any ν. Using an importance
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sampling representation, ∫
x

1− x
f2(x)
g(x)

dx =∞

if g(1) is finite. The integral will be finite around 1 when 1/(1 − t)g(t) is in-
tegrable, which means that g(t) can go to infinity at any rate. For instance,
if g(t) ≈ (1− t)−α around 1, any α > 0 is acceptable.

Exercise 3.9

As in Exercise 3.1, the quantity of interest is δπ(x) = Eπ(θ|x) =
∫
θπ(θ|x) dθ

where x ∼ N (θ, 1) and θ ∼ C(0, 1). The target distribution is

π(θ|x) ∝ π(θ)e−(x−θ)2/2 = fx(θ) .

A possible importance function is the prior distribution,

g(θ) =
1

π(1 + θ2)

and for every θ ∈ R, fx(θ)
g(θ) ≤ M , when M = π. Therefore, generating from

the prior g and accepting simulations according to the Accept-Reject ratio
provides a sample from π(θ|x). The empirical mean of this sample is then
a converging estimator of Eπ(θ|x). Furthermore, we directly deduce the esti-
mation error for δ. A graphical evaluation of the convergence is given by the
following R program:

f=function(t){ exp(-(t-3)^2/2)/(1+t^2)}
M=pi
Nsim=2500
postdist=rep(0,Nsim)
for (i in 1:Nsim){

u=runif(1)*M
postdist[i]=rcauchy(1)
while(u>f(postdist[i])/dcauchy(postdist[i])){
u=runif(1)*M
postdist[i]=rcauchy(1)
}}

estdelta=cumsum(postdist)/(1:Nsim)
esterrd=sqrt(cumsum((postdist-estdelta)^2))/(1:Nsim)
par(mfrow=c(1,2))
C1=matrix(c(estdelta,estdelta+2*esterrd,estdelta-2*esterrd),ncol=3)
matplot(C1,ylim=c(1.5,3),type="l",xlab="Iterations",ylab="")
plot(esterrd,type="l",xlab="Iterations",ylab="")
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Exercise 3.11

a. If X ∼ Exp(1) then for x ≥ a,

P[a+X < x] =
∫ x−a

0

exp(−t) dt =
∫ x

a

exp(−t+ a) dt = P(Y < x)

when Y ∼ Exp+(a, 1),
b. If X ∼ χ2

3, then

P(X > 25) =
∫ +∞

25

2−3/2

Γ ( 3
2 )
x1/2 exp(−x/2) dx

=
∫ +∞

12.5

√
(x) exp(−12.5)

Γ ( 3
2 )

exp(−x+ 12.5) dx .

The corresponding R code

# (C.) Thomas Bredilllet, 2009
h=function(x){ exp(-x)*sqrt(x)/gamma(3/2)}
X = rexp(10^4,1) + 12.5
I=exp(-12.5)*sqrt(X)/gamma(3/2)
estint=cumsum(I)/(1:10^4)
esterr=sqrt(cumsum((I-estint)^2))/(1:10^4)
plot(estint,xlab="Iterations",ty="l",lwd=2,
ylim=mean(I)+20*c(-esterr[10^4],esterr[10^4]),ylab="")
lines(estint+2*esterr,col="gold",lwd=2)
lines(estint-2*esterr,col="gold",lwd=2)

gives an evaluation of the probability as 1.543e− 05 with a 10−8 error, to
compare with

> integrate(h,12.5,Inf)
1.544033e-05 with absolute error < 3.4e-06
> pchisq(25,3,low=F)
[1] 1.544050e-05

Similarly, when X ∼ t5, then

P(X > 50) =
∫ ∞

50

Γ (3)√
(5 ∗ π)Γ (2, 5)(1 + t2

5 )3 exp(−t+ 50)
exp(−t+ 50) dt

and a corresponding R code

# (C.) Thomas Bredilllet, 2009
h=function(x){ 1/sqrt(5*pi)*gamma(3)/gamma(2.5)*1/(1+x^2/5)^3}
integrate(h,50,Inf)
X = rexp(10^4,1) + 50
I=1/sqrt(5*pi)*gamma(3)/gamma(2.5)*1/(1+X^2/5)^3*1/exp(-X+50)
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estint=cumsum(I)/(1:10^4)
esterr=sqrt(cumsum((I-estint)^2))/(1:10^4)
plot(estint,xlab="Mean and error range",type="l",lwd=2,
ylim=mean(I)+20*c(-esterr[10^4],esterr[10^4]),ylab="")
lines(estint+2*esterr,col="gold",lwd=2)
lines(estint-2*esterr,col="gold",lwd=2)

As seen on the graph, this method induces jumps in the convergence
patterns. Those jumps are indicative of variance problems, as should be
since the estimator does not have a finite variance in this case. The value
returned by this approach differs from alternatives evaluations:

> mean(I)
[1] 1.529655e-08
> sd(I)/10^2
[1] 9.328338e-10
> integrate(h,50,Inf)
3.023564e-08 with absolute error < 2e-08
> pt(50,5,low=F)
[1] 3.023879e-08

and cannot be trusted.
c. Warning: There is a missing line in the text of this question,

which should read:

Explore the gain in efficiency from this method. Take a = 4.5 in part (a) and
run an experiment to determine how many normal N (0, 1) random variables
would be needed to calculate P (Z > 4.5) to the same accuracy obtained from
using 100 random variables in this importance sampler.

If we use the representation

P(Z > 4.5) =
∫ ∞

4.5

ϕ(z) dz =
∫ ∞

0

ϕ(x+ 4.5) exp(x) exp(−x) dx ,

the approximation based on 100 realisations from an Exp(1) distribution,
x1m. . . , x100, is

1
100

100∑
i=1

ϕ(xi + 4.5) exp(xi)

and the R code

> x=rexp(100)
> mean(dnorm(x+4.5)*exp(x))
[1] 2.817864e-06
> var(dnorm(x+4.5)*exp(x))/100
[1] 1.544983e-13
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shows that the variance of the resulting estimator is about 10−13. A simple
simulation of a normal sample of size m and the resulting accounting of
the portion of the sample above 4.5 leads to a binomial estimator with a
variance of P(Z > 4.5)P(Z < 4.5)/m, which results in a lower bound

m ≥ P(Z > 4.5)P(Z < 4.5)/1.510−13 ≈ 0.75107 ,

i.e. close to ten million simulations.

Exercise 3.13

For the three choices, the importance weights are easily computed:

x1=sample(c(-1,1),10^4,rep=T)*rexp(10^4)
w1=exp(-sqrt(abs(x1)))*sin(x1)^2*(x1>0)/.5*dexp(x1)
x2=rcauchy(10^4)*2
w2=exp(-sqrt(abs(x2)))*sin(x2)^2*(x2>0)/dcauchy(x2/2)
x3=rnorm(10^4)
w3=exp(-sqrt(abs(x3)))*sin(x3)^2*(x3>0)/dnorm(x3)

They can be evaluated in many ways, from

boxplot(as.data.frame(cbind(w1,w2,w3)))

to computing the effective sample size 1/sum((w1/sum(w1))^2) introduced
in Example 3.10. The preferable choice is then g1. The estimated sizes are
given by

> 4*10^6*var(x1*w1/sum(w1))/mean(x1*w1/sum(w1))^2
[1] 10332203
> 4*10^6*var(x2*w2/sum(w2))/mean(x2*w2/sum(w2))^2
[1] 43686697
> 4*10^6*var(x3*w3/sum(w3))/mean(x3*w3/sum(w3))^2
[1] 352952159

again showing the appeal of using the double exponential proposal. (Note that
efficiency could be doubled by considering the absolute values of the simula-
tions.)

Exercise 3.15

a. With a positive density g and the representation

m(x) =
∫
Θ

f(x|θ)π(θ)
g(θ)

g(θ) dθ ,

we can simulate θi’s from g to approximate m(x) with

1
n

n∑
i=1

f(x|θi)π(θi)
g(θi)

.
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b. When g(x) = π(θ|x) = f(x|θ)π(θ)/K, then

K
1
n

n∑
i=1

f(x|Xi)π(Xi)
f(Xi|θ)π(θ)

= K

and the normalisation constant is the exact estimate. If the normalising
constant is unknown, we must use instead the self-normalising version
(3.7).

c. Since∫
Θ

τ(θ)
f(x|θ)π(θ)

π(θ|x)dθ =
∫
Θ

τ(θ)
f(x|θ)π(θ)

f(x|θ)π(θ)
m(x)

dθ =
1

m(x)
,

we have an unbiased estimator of 1/m(x) based on simulations from the
posterior,

1
T

T∑
t=1

τ(θ∗i )
f(x|θ∗i )π(θ∗i )

and hence a converging (if biased) estimator of m(x). This estimator of
the marginal density can then be seen as an harmonic mean estimator,
but also as an importance sampling estimator (Robert and Marin, 2010).

Exercise 3.17

Warning: There is a typo in question b, which should read

Let X|Y = y ∼ G(1, y) and Y ∼ Exp(1).

a. If (Xi, Yi) ∼ fXY (x, y), the Strong Law of Large Numbers tells us that

lim
n

1
n

n∑
i=1

fXY (x∗, yi)w(xi)
fXY (xi, yi)

=
∫ ∫

fXY (x∗, y)w(x)
fXY (x, y)

fXY (x, y)dxdy.

Now cancel fXY (x, y) and use that fact that
∫
w(x)dx = 1 to show∫ ∫

fXY (x∗, y)w(x)
fXY (x, y)

fXY (x, y)dxdy =
∫
fXY (x∗, y)dy = fX(x∗).

b. The exact marginal is∫ [
ye−yx

]
e−ydy =

∫
y2−1e−y(1+x)dy =

γ(2)
(1 + x)2

.

We tried the following R version of Monte Carlo marginalization:

X=rep(0,nsim)
Y=rep(0,nsim)
for (i in 1:nsim){
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Y[i]=rexp(1)
X[i]=rgamma(1,1,rate=Y[i])
}

MCMarg=function(x,X,Y){
return(mean((dgamma(x,1,rate=Y)/dgamma(X,1,

rate=Y))*dgamma(X,7,rate=3)))
}

True=function(x)(1+x)^(-2)

which uses a Ga(7, 3) distribution to marginalize. It works ok, as you can
check by looking at the plot

> xplot=seq(0,5,.05);plot(xplot,MCMarg(xplot,X,Y)-True(xplot))

c. Choosing w(x) = fX(x) leads to the estimator

1
n

n∑
i=1

fXY (x∗, yi)fX(xi)
fXY (xi, yi)

=
1
n

n∑
i=1

fX(x∗)fY |X(yi|x∗)fX(xi)
fX(xi)fY |X(yi|xi)

= fX(x∗)
1
n

n∑
i=1

fY |X(yi|x∗)
fY |X(yi|xi)

which produces fX(x∗) modulo an estimate of 1. If we decompose the
variance of the estimator in terms of

var
{

E
[
fXY (x∗, yi)w(xi)
fXY (xi, yi)

∣∣∣∣xi]}+ E
{

var
[
fXY (x∗, yi)w(xi)
fXY (xi, yi)

∣∣∣∣xi]} ,

the first term is

E
[
fXY (x∗, yi)w(xi)
fXY (xi, yi)

∣∣∣∣xi] = fX(x∗)E
[
fY |X(yi|x∗)
fY |X(yi|xi)

∣∣∣∣xi] w(xi)
fX(xi)

= fX(x∗)
w(xi)
fX(xi)

which has zero variance if w(x) = fX(x). If we apply a variation calculus
argument to the whole quantity, we end up with

w(x) ∝ fX(x)
/∫ f2

Y |X(y|x∗)
fY |X(y|x)

dy

minimizing the variance of the resulting estimator. So it is likely fX is not
optimal...
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Exercise 4.1

a. Since
π1(θ|x) = π̃1(θ)/c1 and π2(θ|x) = π̃2(θ)/c2 ,

where only π̃1 and π̃2 are known and where c1 and c2 correspond to the
marginal likelihoods, m1(x) and m2(x) (the dependence on x is removed
for simplification purposes), we have that

% =
m1(x)
m2(x)

=

∫
Θ1
π1(θ)f1(x|θ) dθ∫

Θ1
π2(θ)f2(x|θ) dθ

=
∫
Θ1

π1(θ)f1(x|θ)
π̃2(θ)

π̃2(θ)
m2(x)

dθ1

and therefore π̃1(θ)/π̃2(θ) is an unbiased estimator of % when θ ∼ π2(θ|x).
b. Quite similarly,∫

π̃1(θ)α(θ)π2(θ|x)dθ∫
π̃2(θ)α(θ)π1(θ|x)dθ

=
∫
π̃1(θ)α(θ)π̃2(θ)/c2dθ∫
π̃2(θ)α(θ)π̃1(θ)/c1dθ

=
c1
c2

= % .

Exercise 4.3

We have

ESSn = 1
/ n∑

i=1

w2
i = 1

/ n∑
i=1

wi/ n∑
j=1

wj

2

=
(
∑n
i=1 wi)

2∑n
i=1 w

2
i

=

∑n
i=1 w

2
i +

∑
i 6=j wiwj∑n

i=1 w
2
i

≤ n

(This is also a consequence of Jensen’s inequality when considering that the
wi sum up to one.) Moreover, the last equality shows that

ESSn = 1 +

∑
i 6=j wiwj∑n
i=1 w

2
i

≥ 1 ,

with equality if and only if a single ωi is different from zero.
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Exercise 4.5

Warning: There is a slight typo in the above in that X̄k should not
be in bold. It should thus read

Establish that
cov(X̄k, X̄k′) = σ2

/
max{k, k′}.

Since the Xi’s are iid, for k′ < k, we have

cov(Xk, Xk′) = cov

1
k

k∑
i=1

Xi,
1
k′

k′∑
i=1

Xi


= cov

1
k

k′∑
i=1

Xi,
1
k′

k′∑
i=1

Xi


=

1
kk′

cov

 k′∑
i=1

Xi,

k′∑
i=1

Xi


=

1
kk′

k′cov (Xi, Xi)

= σ2/k

= σ2/max{k, k′} .

Exercise 4.9

Warning: There is a missing variance term in this exercise, which
should read

Show that

E
[
exp−X2|y

]
=

1√
2πσ2/y

∫
exp{−x2} exp{−(x− µ)2y/2σ2} dx

=
1√

2σ2/y + 1
exp

{
− µ2

1 + 2σ2/y

}
by completing the square in the exponent to evaluate the integral.

We have

2x2 + (x− µ)2y/2σ2 = x2(2 + yσ−2)− 2xµyσ−2 + µ2yσ−2

= (2 + yσ−2)
[
x− µyσ−2/(2 + yσ−2)

]2
+

µ2
[
yσ−2 − y2σ−4/(2 + yσ−2)

]
= (2 + yσ−2)

[
x− µ/(1 + 2σ2/y)

]2
+ µ2/(1 + 2σ2/y)



4 Controling and Accelerating Convergence 29

and thus∫
exp{−x2} exp{−(x− µ)2y/2σ2} dx√

2πσ2/y

= exp
{
− µ2

1 + 2σ2/y

}
×
∫

exp
{
−(2 + yσ−2)

[
x− µ/(1 + 2σ2/y)

]2
/2
} dx√

2πσ2/y

= exp
{
− µ2

1 + 2σ2/y

} √
yσ−2√

2 + yσ−2

= exp
{
− µ2

1 + 2σ2/y

}
1√

1 + 2σ2/y

Exercise 4.11

Since H(U) and H(1U ) take opposite values when H is monotone, i.e. one
is large when the other is small, those two random variables are negatively
correlated.

Exercise 4.13

Warning: Another reference problem in this exercise: Exercise 4.2
should be Exercise 4.1.
a. The ratio (4.9) is a ratio of convergent estimators of the numerator and

the denominator in question b of Exercise 4.1 when θ1i ∼ π1(θ|x) and
θ2i ∼ π2(θ|x). (Note that the wording of this question is vague in that it
does not indicate the dependence on x.)

b. If we consider the special choice α(θ) = 1/π̃1(θ)π̃2(θ) in the representation
of question b of Exercise 4.1, we do obtain % = Eπ2 [π̃2(θ)−1]/Eπ1 [π̃1(θ)−1],
assuming both expectations exist. Given that (i = 1, 2)

Eπi [π̃i(θ)−1] =
∫
Θ

1
π̃i(θ)

π̃i(θ)
mi(x)

dθ ,

this implies that the space Θ must have a finite measure. If dθ represents
the dominating measure, Θ is necessarily compact.

Exercise 4.15

Each of those R programs compare the range of the Monte Carlo estimates
with and without Rao–Blackwellization:

a. For the negative binomial mean, Ef (X) = a/b sinceX ∼ N eg(a, b/(b+1)).
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y=matrix(rgamma(100*Nsim,a)/b,ncol=100)
x=matrix(rpois(100*Nsim,y),ncol=100)
matplot(apply(x,2,cumsum)/(1:Nsim),type="l",col="grey80",
lty=1,ylim=c(.4*a/b,2*a/b), xlab="",ylab="")
matplot(apply(y,2,cumsum)/(1:Nsim),type="l",col="grey40",
lty=1,add=T,xlab="",ylab="")
abline(h=a/b,col="gold",lty=2,lwd=2)

b. For the generalized t variable, Ef (X) = BEf [X|Y ] = 0. So the improve-
ment is obvious. To make a more sensible comparison, we consider instead
Ef [X2] = E[Y ] = a/b.

y=matrix(rgamma(100*Nsim,a)/b,ncol=100)
x=matrix(rnorm(100*Nsim,sd=sqrt(y)),ncol=100)
matplot(apply(x^2,2,cumsum)/(1:Nsim),type="l",col="grey80",
lty=1,ylim=(a/b)*c(.2,2), xlab="",ylab="")
matplot(apply(y,2,cumsum)/(1:Nsim),type="l",col="grey40",
lty=1,add=T,xlab="",ylab="")
abline(h=a/b,col="gold",lty=2,lwd=2)

c. Warning: There is a typo in this question with a missing n in
the Bin(y) distribution... It should be

c. X|y ∼ Bin(n, y), Y ∼ Be(a, b) (X is beta-binomial).

In this case, Ef [X] = nEf [Y ] = na/(a+ b).

y=1/matrix(1+rgamma(100*Nsim,b)/rgamma(100*Nsim,a),ncol=100)
x=matrix(rbinom(100*Nsim,n,prob=y),ncol=100)
matplot(apply(x,2,cumsum)/(1:Nsim),type="l",col="grey80",lty=1,
ylim=(n*a/(a+b))*c(.2,2), xlab="",ylab="")
matplot(n*apply(y,2,cumsum)/(1:Nsim),type="l",col="grey40",lty=1,add=T,
xlab="",ylab="")
abline(h=n*a/(a+b),col="gold",lty=2,lwd=2)

Exercise 4.17

It should be clear from display (4.5) that we only need to delete the n2 (k2

in the current notation). We replace it with 2k2 and add the last row and
column as in (4.5).

Exercise 4.19

a. For the accept-reject algorithm,



4 Controling and Accelerating Convergence 31

(X1, . . . , Xm) ∼ f(x)

(U1, . . . , UN ) i.i.d.∼ U[0,1]

(Y1, . . . , YN ) i.i.d.∼ g(y)

and the acceptance weights are the wj = f(Yj)
Mg(Yj)

. N is the stopping time
associated with these variables, that is, YN = Xm. We have

ρi = P (Ui ≤ wi|N = n, Y1, . . . , Yn)

=
P (Ui ≤ wi, N = n, Y1, . . . , Yn)

P (N = n, Y1, . . . , Yn)

where the numerator is the probability that YN is accepted as Xm, Yi is
accepted as one Xj and there are (m− 2) Xj ’s that are chosen from the
remaining (n− 2) Y`’s. Since

P (Yj is accepted) = P (Uj ≤ wj) = wj ,

the numerator is

wi
∑

(i1,...,im−2)

m−2∏
j=1

wij

n−2∏
j=m−1

(1− wij )

where
i)
∏m−2
j=1 wij is the probability that among the N Yj ’s, in addition to

both YN and Yi being accepted, there are (m− 2) other Yj ’s accepted
as X`’s;

ii)
∏n−2
j=m−1(1 − wij ) is the probability that there are (n − m) rejected

Yj ’s, given that Yi and YN are accepted;
iii) the sum is over all subsets of (1, . . . , i − 1, i + 1, . . . , n) since, except

for Yi and YN , other (m − 2) Yj ’s are chosen uniformly from (n − 2)
Yj ’s.

Similarly the denominator

P (N = n, Y1, . . . , Yn) = wi
∑

(i1,...,im−1)

m−1∏
j=1

wij

n−1∏
j=m

(1− wij )

is the probability that YN is accepted as Xm and (m− 1) other Xj ’s are
chosen from (n− 1) Y`’s. Thus

ρi = P (Ui ≤ wi|N = n, Y1, . . . , Yn)

= wi

∑
(i1,...,im−2)

∏m−2
j=1 wij

∏n−2
j=m−1(1− wij )∑

(i1,...,im−1)

∏m−1
j=1 wij

∏n−1
j=m−1(1− wij )
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b. We have

δ1 =
1
m

m∑
i=1

h (Xi) =
1
m

N∑
j=1

h (Yj) IUj≤wj

δ2 =
1
m

N∑
j=1

E
(
IUj≤wj |N,Y1, . . . , YN

)
h (Yj) =

1
m

N∑
i=1

ρih (Yi)

Since E (E (X|Y )) = E (X),

E (δ2) = E

 1
m

N∑
j=1

E
(
IUj≤wj |N,Y1, . . . , YN

)
=

1
m

N∑
j=1

E
(
IUj≤wj

)
h (Yj)

= E

 1
m

N∑
j=1

h (Yj) IUj≤wj

 = E (δ1)

Under quadratic loss, the risk of δ1 and δ2 are:

R (δ1) = E (δ1 − Eh (X))2

= E
(
δ21
)

+ E (E(h(X)))2 − 2E (δ1E(h(X)))

= var (δ1)− (E(δ1))2 + E (E (h(X)))2 − 2E (δ1E (h(X)))

and

R (δ2) = E (δ2 − Eh (X))2

= E
(
δ22
)

+ E (E(h(X)))2 − 2E (δ2E(h(X)))

= var (δ2)− (E(δ2))2 + E (E (h(X)))2 − 2E (δ2E (h(X)))

Since E (δ1) = E (δ2), we only need to compare var (δ1) and var (δ2). From
the definition of δ1 and δ2, we have

δ2(X) = E (δ1(X)|Y )

so
var (E (δ1)) = var (δ2) ≤ var (δ1) .

Exercise 4.21

a. Let us transform I into I =
∫ h(y)f(y)

m(y) m(y)dy, where m is the marginal
density of Y1. We have
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I =
∑
n∈N

[
P (N = n)

∫
h(y)f(y)

m(y|N = n)

]
= EN

[
E
[
h(y)f(y)
m(y)

|N
]]
.

b. As β is constant, for every function c,

I = βE[c(Y )] + E
[
h(Y )f(Y )
m(Y )

− βc(Y )
]
.

c. The variance associated with an empirical mean of the

h(Yi)f(Yi)
m(Yi)

− βc(Yi)

is

var(Î) = β2var(c(Y )) + var
(
h(Y )f(Y )
m(Y )

)
− 2βcov

[
h(Y )f(Y )
m(Y )

, c(Y )
]

= β2var(c(Y ))− 2βcov[d(Y ), c(Y )] + var(d(Y )).

Thus, the optimal choice of β is such that

∂var(Î)
∂β

= 0

and is given by

β∗ =
cov[d(Y ), c(Y )]

var(c(Y ))
.

d. The first choice of c is c(y) = I{y>y0}, which is interesting when p =
P (Y > y0) is known. In this case,

β∗ =

∫
y>y0

hf −
∫
y>y0

hf
∫
y>y0

m∫
y>y0

m− (
∫
y>y0

m)2
=

∫
y>y0

hf

p
.

Thus, β∗ can be estimated using the Accept-reject sample. A second choice
of c is c(y) = y, which leads to the two first moments of Y . When those
two moments m1 and m2 are known or can be well approximated, the
optimal choice of β is

β∗ =
∫
yh(y)f(y)dy − Im1

m2
.

and can be estimated using the same sample or another instrumental
density namely when I′ =

∫
yh(y)f(y)dy is simple to compute, compared

to I.





5

Monte Carlo Optimization

Exercise 5.1

This is straightforward in R

par(mfrow=c(1,2),mar=c(4,4,1,1))
image(mu1,mu2,-lli,xlab=expression(mu[1]),ylab=expression(mu[2]))
contour(mu1,mu2,-lli,nle=100,add=T)
Nobs=400
da=rnorm(Nobs)+2.5*sample(0:1,Nobs,rep=T,prob=c(1,3))
for (i in 1:250)
for (j in 1:250)
lli[i,j]=like(c(mu1[i],mu2[j]))

image(mu1,mu2,-lli,xlab=expression(mu[1]),ylab=expression(mu[2]))
contour(mu1,mu2,-lli,nle=100,add=T)

Figure 5.1 shows that the log-likelihood surfaces are quite comparable, despite
being based on different samples. Therefore the impact of allocating 100 and
300 points to both components, respectively, instead of the random 79 and
321 in the current realisation, is inconsequential.

Exercise 5.3

Warning: as written, this problem has not simple solution! The
constraint should be replaced with

x2(1 + sin(y/3) cos(8x)) + y2(2 + cos(5x) cos(8y)) ≤ 1 ,

We need to find a lower bound on the function of (x, y). The coefficient of y2

is obviously bounded from below by 1, while the coefficient of x2 is positive.
Since the function is bounded from below by y2, this means that y2 < 1,
hence that sin(y/3) > sin(−1/3) > −.33. Therefore, a lower bound on the
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Fig. 5.1. Comparison of two log-likelihood surfaces for the mixture model (5.2)
when the data is simulated with a fixed 100/300 ratio in both components (left) and
when the data is simulated with a binomial B(400, 1/4) random number of points
on the first component.

function is 0.77x2 +y2. If we simulate uniformly over the ellipse 0.77x2 +y2 <
1, we can subsample the points that satisfy the constraint. Simulating the
uniform distribution on 0.77x2 + y2 < 1 is equivalent to simulate the uniform
distribution over the unit circle z2 + y2 < 1 and resizing z into x = z/

√
0.77.

theta=runif(10^5)*2*pi
rho=runif(10^5)
xunif=rho*cos(theta)/.77
yunif=rho*sin(theta)
plot(xunif,yunif,pch=19,cex=.4,xlab="x",ylab="y")
const=(xunif^2*(1+sin(yunif/3)*cos(xunif*8))+
yunif^2*(2+cos(5*xunif)*cos(8*yunif))<1)
points(xunif[const],yunif[const],col="cornsilk2",pch=19,cex=.4)

While the ellipse is larger than the region of interest, Figure 5.2 shows
that it is reasonably efficient. The performances of the method are given by
sum(const)/10^4, which is equal to 73%.

Exercise 5.5

Since the log-likelihood of the mixture model in Example 5.2 has been defined
by

#minus the log-likelihood function
like=function(mu){
-sum(log((.25*dnorm(da-mu[1])+.75*dnorm(da-mu[2]))))
}

in the mcsm package, we can reproduce the R program of Example 5.7 with
the function h now defined as like. The difference with the function h of
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Fig. 5.2. Simulation of a uniform distribution over a complex domain via uni-
form simulation over a simpler encompassing domain for 105 simulations and an
acceptance rate of 0.73%.

Example 5.7 is that the mixture log-likelihood is more variable and thus
the factors αj and βj need to be calibrated against divergent behaviours.
The following figure shows the impact of the different choices (αj , βj) =
(.01/ log(j + 1), 1/ log(j + 1).5), (αj , βj) = (.1/ log(j + 1), 1/ log(j + 1).5),
(αj , βj) = (.01/ log(j+ 1), 1/ log(j+ 1).1), (αj , βj) = (.1/ log(j+ 1), 1/ log(j+
1).1), on the convergence of the gradient optimization. In particular, the sec-
ond choice exhibits a particularly striking behavior where the sequence of
(µ1, µ2) skirts the true mode of the likelihood in a circular manner. (The
stopping rule used in the R program is (diff<10^(-5)).)

Exercise 5.7

The R function SA provided in Example 5.9 can be used in the following R
program to test whether or not the final value is closer to the main mode or
to the secondy mode:

modes=matrix(0,ncol=2,nrow=100)
prox=rep(0,100)
for (t in 1:100){
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Fig. 5.3. Four stochastic gradient paths for four different choices (αj , βj) =
(.01/ log(j + 1), 1/ log(j + 1).5) (u.l.h.s.), (αj , βj) = (.1/ log(j + 1), 1/ log(j + 1).5)
(u.r.h.s.), (αj , βj) = (.01/ log(j + 1), 1/ log(j + 1).1) (l.l.h.s.), (αj , βj) = (.1/ log(j +
1), 1/ log(j + 1).1) (l.r.h.s.).

res=SA(mean(da)+rnorm(2))
modes[t,]=res$the[res$ite,]
diff=modes[t,]-c(0,2.5)
duff=modes[t,]-c(2.5,0)
prox[t]=sum(t(diff)%*%diff<t(duff)%*%duff)
}

For each new temperature schedule, the function SA must be modified ac-
cordingly (for instance by the on-line change SA=vi(SA)). Figure 5.4 illustrates
the output of an experiment for four different schedules.
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Fig. 5.4. Four simulated annealing outcomes corresponding to the temperature
schedules Tt = 1/1 log(1 + t), Tt = 1/10 log(1 + t), Tt = 1/10

p
log(1 + t), and

Tt = (.95)1+t, based on 100 replications. (The percentage of recoveries of the main
mode is indicated in the title of each graph.)

Exercise 5.9

In principle, Q(θ′|θ,x) should also involve the logarithms of 1/4 and 1/3,
raised to the powers

∑
Zi and

∑
(1− Zi), respectively. But, due to the loga-

rithmic transform, the expression does not involve the parameter θ = (µ1, µ2)
and can thus be removed from Q(θ′|θ,x) with no impact on the optimization
problem.

Exercise 5.11

Warning: there is a typo in Example 5.16. The EM sequence should
be



40 5 Monte Carlo Optimization

θ̂1 =
{
θ0 x1

2 + θ0
+ x4

}/{
θ0 x1

2 + θ0
+ x2 + x3 + x4

}
.

instead of having x4 in the denominator.
Note first that some 1/4 factors have been removed from every term as they
were not contributing to the likelihood maximisation. Given a starting point
θ0, the EM sequence will always be the same.

x=c(58,12,9,13)
n=sum(x)
start=EM=cur=diff=.1
while (diff>.001){ #stopping rule

EM=c(EM,((cur*x[1]/(2+cur))+x[4])/((cur*x[1]/(2+cur))+x[2]+x[3]+x[4]))
diff=abs(cur-EM[length(EM)])
cur=EM[length(EM)]
}

The Monte Carlo EM version creates a sequence based on a binomial simula-
tion:

M=10^2
MCEM=matrix(start,ncol=length(EM),nrow=500)
for (i in 2:length(EM)){
MCEM[,i]=1/(1+(x[2]+x[3])/(x[4]+rbinom(500,M*x[1],
prob=1/(1+2/MCEM[,i-1]))/M))
}

plot(EM,type="l",xlab="iterations",ylab="MCEM sequences")
upp=apply(MCEM,2,max);dow=apply(MCEM,2,min)
polygon(c(1:length(EM),length(EM):1),c(upp,rev(dow)),col="grey78")
lines(EM,col="gold",lty=2,lwd=2)
}

and the associated graph shows a range of values that contains the true EM
sequence. Increasing M in the above R program obviously reduces the range.

Exercise 5.13

The R function for plotting the (log-)likelihood surface associated with (5.2)
was provided in Example 5.2. We thus simply need to apply this function to
the new sample, resulting in an output like Figure 5.5, with a single mode
instead of the usual two modes.

Exercise 5.15

Warning: there is a typo in question a where the formula should
involve capital Zi’s, namely
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Fig. 5.5. Log-likelihood surface of a mixture model applied to a five component
mixture sample of size 400.

P (Zi = 1) = 1− P (Zi = 2) =
pλ exp(−λxi)

pλ exp(−λxi) + (1− p)µ exp(−µxi)
.

a. The likelihood is

L(θ|x) =
12∏
i=1

[pλe−λxi + (1− p)µe−µxi ],

and the complete-data likelihood is

Lc(θ|x, z) =
12∏
i=1

[pλe−λxiI(zi=1) + (1− p)µe−µxiI(zi=2)],

where θ = (p, λ, µ) denotes the parameter, using the same arguments as
in Exercise 5.14.

b. The EM algorithm relies on the optimization of the expected log-likelihood



42 5 Monte Carlo Optimization

Q(θ|θ̂(j),x) =
12∑
i=1

[
log (pλe−λxi)Pθ̂(j)(Zi = 1|xi)

+ log ((1− p)µe−µxi)Pθ̂(j)(Zi = 2|xi)
]
.

The arguments of the maximization problem are
p̂(j+1) = P̂ /12
λ̂(j+1) = Ŝ1/P̂

µ̂(j+1) = Ŝ2/P̂ ,

where 

P̂ =
∑12
i=1 Pθ̂(j)(Zi = 1|xi)

Ŝ1 =
∑12
i=1 xiPθ̂(j)(Zi = 1|xi)

Ŝ2 =
∑12
i=1 xiPθ̂(j)(Zi = 2|xi)

with

Pθ̂(j)(Zi = 1|xi) =
p̂(j)λ̂(j)e

−λ̂(j)xi

p̂(j)λ̂(j)e
−λ̂(j)xi + (1− p̂(j))µ̂(j)e

−µ̂(j)xi
.

An R implementation of the algorithm is then

x=c(0.12,0.17,0.32,0.56,0.98,1.03,1.10,1.18,1.23,1.67,1.68,2.33)
EM=cur=c(.5,jitter(mean(x),10),jitter(mean(x),10))
diff=1
while (diff*10^5>1){

probs=1/(1+(1-cur[1])*dexp(x,cur[3])/(cur[1]*dexp(x,cur[2])))
phat=sum(probs);S1=sum(x*probs);S2=sum(x*(1-probs))
EM=rbind(EM,c(phat/12,S1/phat,S2/phat))
diff=sum(abs(cur-EM[dim(EM)[1],]))
cur=EM[dim(EM)[1],]
}

and it always produces a single component mixture.

Exercise 5.17

Warning: Given the notations of Example 5.14, the function φ in
question b should be written ϕ...
a. The question is a bit vague in that the density of the missing data

(Zn−m+1, . . . , Zn) is a normal N (θ, 1) density if we do not condition on
y. Conditional upon y, the missing observations Zi are truncated in a,
i.e. we know that they are larger than a. The conditional distribution of
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the Zi’s is therefore a normal N (θ, 1) distribution truncated in a, with
density

f(z|θ, y) =
exp{−(zi − θ)2/2}√

2π Pθ(Y > a)
Iz ≥ a . =

ϕ(z − θ)
1− Φ(a− θ)

Iz ≥ a .

where ϕ and Φ are the normal pdf and cdf, respectively.
b. We have

Eθ[Zi|Yi] =
∫ ∞
a

z
ϕ(z − θ)

1− Φ(a− θ)
dz

= θ +
∫ ∞
a

(z − θ) ϕ(z − θ)
1− Φ(a− θ)

dz

= θ +
∫ ∞
a−θ

y
ϕ(y)

1− Φ(a− θ)
dy

= θ + [−ϕ(x)]∞a−θ

= θ +
ϕ(a− θ)

1− Φ(a− θ)
,

since ϕ′(x) = −xϕ(x).

Exercise 5.19

Running uniroot on both intervals

> h=function(x){(x-3)*(x+6)*(1+sin(60*x))}
> uniroot(h,int=c(-2,10))
$root
[1] 2.999996
$f.root
[1] -6.853102e-06
> uniroot(h,int=c(-8,1))
$root
[1] -5.999977
$f.root
[1] -8.463209e-06

misses all solutions to 1 + sin(60x) = 0

Exercise 5.21

Warning: this Exercise duplicates Exercise 5.11 and should not have
been included in the book!
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Metropolis-Hastings Algorithms

Exercise 6.1

A simple R program to simulate this chain is

# (C.) Jiazi Tang, 2009
x=1:10^4
x[1]=rnorm(1)
r=0.9
for (i in 2:10^4){
x[i]=r*x[i-1]+rnorm(1) }

hist(x,freq=F,col="wheat2",main="")
curve(dnorm(x,sd=1/sqrt(1-r^2)),add=T,col="tomato"

Exercise 6.3

When q(y|x) = g(y), we have

ρ(x, y) = min
(
f(y)
f(x)

q(x|y)
q(y|x)

, 1
)

= min
(
f(y)
f(x)

g(x)
g(y)

, 1
)

= min
(
f(y)
f(x)

g(x)
g(y)

, 1
)
.

Since the acceptance probability satisfies

f(y)
f(x)

g(x)
g(y)

≥ f(y)/g(y)
max f(x)/g(x)

it is larger for Metropolis–Hastings than for accept-reject.



46 6 Metropolis-Hastings Algorithms

Exercise 6.5

a. The first property follows from a standard property of the normal dis-
tribution, namely that the linear transform of a normal is again normal.
The second one is a consequence of the decomposition y = Xβ + ε, when
ε ∼ Nn(0, σ2In) is independent from Xβ.

b. This derivation is detailed in Marin and Robert (2007, Chapter 3, Exercise
3.9).
Since

y|σ2, X ∼ Nn(Xβ̃, σ2(In + nX(XTX)−1XT)) ,

integrating in σ2 with π(σ2) = 1/σ2 yields

f(y|X) = (n+ 1)−(k+1)/2π−n/2Γ (n/2)
[
yTy − n

n+ 1
yTX(XTX)−1XTy

− 1
n+ 1

β̃TXTXβ̃

]−n/2
.

Using the R function dmt(mnormt), we obtain the marginal density for
the swiss dataset:

> y=log(as.vector(swiss[,1]))
> X=as.matrix(swiss[,2:6])
> library(mnormt)
> dmt(y,S=diag(length(y))+X%*%solve(t(X)%*%X)%*%t(X),d=length(y)-1)
[1] 2.096078e-63

with the prior value β̃ = 0.

Exercise 6.7

a. We generate an Metropolis-Hastings sample from the Be(2.7, 6.3) density
using uniform simulations:

# (C.) Thomas Bredillet, 2009
Nsim=10^4
a=2.7;b=6.3
X=runif(Nsim)
last=X[1]
for (i in 1:Nsim) {

cand=rbeta(1,1,1)
alpha=(dbeta(cand,a,b)/dbeta(last,a,b))/

(dbeta(cand,1,1)/dbeta(last,1,1))
if (runif(1)<alpha)

last=cand
X[i]=last

}
hist(X,pro=TRUE,col="wheat2",xlab="",ylab="",main="Beta(2.7,3) simulation")
curve(dbeta(x,a,b),add=T,lwd=2,col="sienna2")
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The acceptance rate is estimated by

> length(unique(X))/5000
[1] 0.458

If instead we use a Be(20, 60) proposal, the modified lines in the R program
are

cand=rbeta(20,60,1)
alpha=(dbeta(cand,a,b)/dbeta(last,a,b))/

(dbeta(cand,20,60)/dbeta(last,20,60))

and the acceptance rate drops to zero!
b. In the case of a truncated beta, the following R program

Nsim=5000
a=2.7;b=6.3;c=0.25;d=0.75
X=rep(runif(1),Nsim)
test2=function(){
last=X[1]
for (i in 1:Nsim){

cand=rbeta(1,2,6)
alpha=(dbeta(cand,a,b)/dbeta(last,a,b))/

(dbeta(cand,2,6)/dbeta(last,2,6))
if ((runif(1)<alpha)&&(cand<d)&&(c<cand))

last=cand
X[i]=last}

}
test1=function(){
last=X[1]
for (i in 1:Nsim){

cand=runif(1,c,d)
alpha=(dbeta(cand,a,b)/dbeta(last,a,b))
if ((runif(1)<alpha)&&(cand<d)&&(c<cand))

last=cand
X[i]=last
}

}
system.time(test1());system.time(test2())

shows very similar running times but more efficiency for the beta proposal,
since the acceptance rates are approximated by 0.51 and 0.72 for test1
and test2, respectively. When changing to c = 0.25, d = 0.75, test1 is
more efficient than test2, with acceptances rates of approximately 0.58
and 0.41, respectively.

Exercise 6.9

a. The Accept–Reject algorithm with a Gamma G(4, 7) candidate can be
implemented as follows
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# (C.) Jiazi Tang, 2009
g47=rgamma(5000,4,7)
u=runif(5000,max=dgamma(g47,4,7))
x=g47[u<dgamma(g47,4.3,6.2)]
par(mfrow=c(1,3),mar=c(4,4,1,1))
hist(x,freq=FALSE,xlab="",ylab="",col="wheat2",
main="Accept-Reject with Ga(4.7) proposal")
curve(dgamma(x,4.3,6.2),lwd=2,col="sienna",add=T)

The efficiency of the simulation is given by

> length(x)/5000
[1] 0.8374

b. The Metropolis-Hastings algorithm with a Gamma G(4, 7) candidate can
be implemented as follows

# (C.) Jiazi Tang, 2009
X=rep(0,5000)
X[1]=rgamma(1,4.3,6.2)
for (t in 2:5000){

rho=(dgamma(X[t-1],4,7)*dgamma(g47[t],4.3,6.2))/
(dgamma(g47[t],4,7)*dgamma(X[t-1],4.3,6.2))

X[t]=X[t-1]+(g47[t]-X[t-1])*(runif(1)<rho)
}

hist(X,freq=FALSE,xlab="",ylab="",col="wheat2",
main="Metropolis-Hastings with Ga(4,7) proposal")
curve(dgamma(x,4.3,6.2),lwd=2,col="sienna",add=T)

Its efficiency is

> length(unique(X))/5000
[1] 0.79

c. The Metropolis-Hastings algorithm with a Gamma G(5, 6) candidate can
be implemented as follows

# (C.) Jiazi Tang, 2009
g56=rgamma(5000,5,6)
X[1]=rgamma(1,4.3,6.2)
for (t in 2:5000){

rho=(dgamma(X[t-1],5,6)*dgamma(g56[t],4.3,6.2))/
(dgamma(g56[t],5,6)*dgamma(X[t-1],4.3,6.2))

X[t]=X[t-1]+(g56[t]-X[t-1])*(runif(1)<rho)
}

hist(X,freq=FALSE,xlab="",ylab="",col="wheat2",
main="Metropolis-Hastings with Ga(5,6) proposal")
curve(dgamma(x,4.3,6.2),lwd=2,col="sienna",add=T)

Its efficiency is
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> length(unique(X))/5000
[1] 0.7678

which is therefore quite similar to the previous proposal.

Exercise 6.11

1.. Using the candidate given in Example 6.3 mean using the Braking R
program of our package mcsm. In the earlier version, there is a missing
link in the R function which must then be corrected by changing

data=read.table("BrakingData.txt",sep = "",header=T)
x=data[,1]
y=data[,2]

into

x=cars[,1]
y=cars[,2]

In addition, since the original Braking function does not return the sim-
ulated chains, a final line

list(a=b1hat,b=b2hat,c=b3hat,sig=s2hat)

must be added into the function.
2.. If we save the chains as mcmc=Braking() (note that we use 103 simulations

instead of 500), the graphs assessing convergence can be plotted by

par(mfrow=c(3,3),mar=c(4,4,2,1))
plot(mcmc$a,type="l",xlab="",ylab="a");acf(mcmc$a)
hist(mcmc$a,prob=T,main="",yla="",xla="a",col="wheat2")
plot(mcmc$b,type="l",xlab="",ylab="b");acf(mcmc$b)
hist(mcmc$b,prob=T,main="",yla="",xla="b",col="wheat2")
plot(mcmc$c,type="l",xlab="",ylab="c");acf(mcmc$c)
hist(mcmc$c,prob=T,main="",yla="",xla="c",col="wheat2")

Autocorrelation graphs provided by acf show a strong correlation across
iterations, while the raw plot of the sequences show poor acceptance rates.
The histograms are clearly unstable as well. This 103 iterations do not
appear to be sufficient in this case.

3.. Using

> quantile(mcmc$a,c(.025,.975))
2.5% 97.5%

-6.462483 12.511916

and the same for b and c provides converging confidence intervals on the
three parameters.
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Exercise 6.13

Warning: There is a typo in question b in that the candidate must
also be a double-exponential for α, since there is no reason for α to
be positive...
1. The dataset challenger is provided with the mcsm package, thus available

as

> library(mcsm)
> data(challenger)

Running a regular logistic regression is a simple call to glm:

> temper=challenger[,2]
> failur=challenger[,1]
> summary(glm(failur~temper, family = binomial))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.0611 -0.7613 -0.3783 0.4524 2.2175

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.0429 7.3786 2.039 0.0415 *
temper -0.2322 0.1082 -2.145 0.0320 *
---
Signif. codes: 0 "***" .001 "**" .01 "**" .05 "." .1 "" 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28.267 on 22 degrees of freedom
Residual deviance: 20.315 on 21 degrees of freedom
AIC: 24.315

The MLE’s and the associated covariance matrix are given by

> challe=summary(glm(failur~temper, family = binomial))
> beta=as.vector(challe$coef[,1])
> challe$cov.unscaled

(Intercept) temper
(Intercept) 54.4441826 -0.79638547
temper -0.7963855 0.01171512

The result of this estimation can be checked by

plot(temper,failur,pch=19,col="red4",
xlab="temperatures",ylab="failures")
curve(1/(1+exp(-beta[1]-beta[2]*x)),add=TRUE,col="gold2",lwd=2)
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and the curve shows a very clear impact of the temperature.
2. The Metropolis–Hastings resolution is based on the challenge(mcsm)

function, using the same prior on the coefficients, α ∼ N (0, 25), β ∼
N (0, 25/s2x), where s2x is the empirical variance of the temperatures.

Nsim=10^4
x=temper
y=failur
sigmaa=5
sigmab=5/sd(x)

lpost=function(a,b){
sum(y*(a+b*x)-log(1+exp(a+b*x)))+
dnorm(a,sd=sigmaa,log=TRUE)+dnorm(b,sd=sigmab,log=TRUE)
}

a=b=rep(0,Nsim)
a[1]=beta[1]
b[1]=beta[2]
#scale for the proposals
scala=sqrt(challe$cov.un[1,1])
scalb=sqrt(challe$cov.un[2,2])

for (t in 2:Nsim){
propa=a[t-1]+sample(c(-1,1),1)*rexp(1)*scala
if (log(runif(1))<lpost(propa,b[t-1])-
lpost(a[t-1],b[t-1])) a[t]=propa

else a[t]=a[t-1]
propb=b[t-1]+sample(c(-1,1),1)*rexp(1)*scalb
if (log(runif(1))<lpost(a[t],propb)-
lpost(a[t],b[t-1])) b[t]=propb

else b[t]=b[t-1]
}

The acceptance rate is low

> length(unique(a))/Nsim
[1] 0.1031
> length(unique(b))/Nsim
[1] 0.1006

but still acceptable.
3. Exploring the output can be done via graphs as follows

par(mfrow=c(3,3),mar=c(4,4,2,1))
plot(a,type="l",xlab="iterations",ylab=expression(alpha))
hist(a,prob=TRUE,col="wheat2",xlab=expression(alpha),main="")
acf(a,ylab=expression(alpha))
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plot(b,type="l",xlab="iterations",ylab=expression(beta))
hist(b,prob=TRUE,col="wheat2",xlab=expression(beta),main="")
acf(b,ylab=expression(beta))
plot(a,b,type="l",xlab=expression(alpha),ylab=expression(beta))
plot(temper,failur,pch=19,col="red4",

xlab="temperatures",ylab="failures")
for (t in seq(100,Nsim,le=100)) curve(1/(1+exp(-a[t]-b[t]*x)),
add=TRUE,col="grey65",lwd=2)

curve(1/(1+exp(-mean(a)-mean(b)*x)),add=TRUE,col="gold2",lwd=2.5)
postal=rep(0,1000);i=1
for (t in seq(100,Nsim,le=1000)){ postal[i]=lpost(a[t],b[t]);i=i+1}
plot(seq(100,Nsim,le=1000),postal,type="l",
xlab="iterations",ylab="log-posterior")

abline(h=lpost(a[1],b[1]),col="sienna",lty=2)

which shows a slow convergence of the algorithm (see the acf graphs on
Figure 6.1!)

4. The predictions of failure are given by

> mean(1/(1+exp(-a-b*50)))
[1] 0.6898612
> mean(1/(1+exp(-a-b*60)))
[1] 0.4892585
> mean(1/(1+exp(-a-b*70)))
[1] 0.265691

Exercise 6.15

Warning: There is a typo in question c, which should involve N (0, ω)
candidates instead of L(0, ω)...

a. An R program to produce the three evaluations is

# (C.) Thomas Bredillet, 2009
Nsim=5000
A=B=runif(Nsim)
alpha=1;alpha2=3
last=A[1]
a=0;b=1
cand=ifelse(runif(Nsim)>0.5,1,-1) * rexp(Nsim)/alpha
for (i in 1:Nsim){

rate=(dnorm(cand[i],a,b^2)/dnorm(last,a,b^2))/
(exp(-alpha*abs(cand[i]))/exp(-alpha*abs(last)))
if (runif(1)<rate) last=cand[i]
A[i]=last
}

cand=ifelse(runif(Nsim)>0.5,1,-1) * rexp(Nsim)/alpha2
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Fig. 6.1. Graphical checks of the convergence of the Metropolis–Hastings algorithm
associated with the challenger dataset and a logistic regression model.

for (i in 1:Nsim) {
rate=(dnorm(cand[i],a,b^2)/dnorm(last,a,b^2))/
(exp(-alpha2*abs(cand[i]))/exp(-alpha2*abs(last)))
if (runif(1)<rate) last=cand[i]
B[i]=last
}

par (mfrow=c(1,3),mar=c(4,4,2,1))
est1=cumsum(A)/(1:Nsim)
est2=cumsum(B)/(1:Nsim)
plot(est1,type="l",xlab="iterations",ylab="",lwd=2)
lines(est2,lwd="2",col="gold2")
acf(A)
acf(B)
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b. The acceptance rate is given by length(unique(B))/Nsim, equal to 0.49
in the current simulation. A plot of the acceptance rates can be done via
the R program

alf=seq(1,10,le=50)
cand0=ifelse(runif(Nsim)>0.5,1,-1) * rexp(Nsim)
acce=rep(0,50)
for (j in 1:50){
cand=cand0/alf[j]
last=A[1]
for (i in 2:Nsim){
rate=(dnorm(cand[i],a,b^2)/dnorm(last,a,b^2))/
(exp(-alf[j]*abs(cand[i]))/exp(-alf[j]*abs(last)))
if (runif(1)<rate) last=cand[i]
A[i]=last
}

acce[j]=length(unique(A))/Nsim
}

par(mfrow=c(1,3),mar=c(4,4,2,1))
plot(alf,acce,xlab="",ylab="",type="l",main="Laplace iid")

The highest acceptance rate is obtained for the smallest value of α.
c. The equivalent of the above R program is

ome=sqrt(seq(.01,10,le=50))
cand0=rnorm(Nsim)
acce=rep(0,50)
for (j in 1:50){
cand=cand0*ome[j]
last=A[1]
for (i in 2:Nsim){
rate=(dnorm(cand[i],a,b^2)/dnorm(last,a,b^2))/
(dnorm(cand[i],sd=ome[j])/dnorm(last,sd=ome[j]))
if (runif(1)<rate) last=cand[i]
A[i]=last
}

acce[j]=length(unique(A))/Nsim
}

plot(ome^2,acce,xlab="",ylab="",type="l",main="Normal iid")

The highest acceptance rate is (unsurprisingly) obtained for ω close to 1.
d. The equivalent of the above R program is

alf=seq(.1,10,le=50)
cand0=ifelse(runif(Nsim)>0.5,1,-1) * rexp(Nsim)
acce=rep(0,50)
for (j in 1:50){
eps=cand0/alf[j]
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last=A[1]
for (i in 2:Nsim){
cand[i]=last+eps[i]
rate=dnorm(cand[i],a,b^2)/dnorm(last,a,b^2)
if (runif(1)<rate) last=cand[i]
A[i]=last
}

acce[j]=length(unique(A))/Nsim
}

plot(alf,acce,xlab="",ylab="",type="l",main="Laplace random walk")

Unsurprisingly, as α increases, so does the acceptance rate. However, given
that this is a random walk proposal, higher acceptance rates do not mean
better performances (see Section 6.5).
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Gibbs Samplers

Exercise 7.1

The density gt of (Xt, Yt) in Algorithm 7 is decomposed as

gt(Xt, Yt|Xt−1, . . . X0, Yt−1, . . . Y0) = gt,X|Y (Xt|Yt, Xt−1, . . . X0, Yt−1, . . . Y0)
× gt,Y (Yt|Xt−1, . . . X0, Yt−1, . . . Y0)

with
gt,Y (Yt|Xt−1, . . . X0, Yt−1, . . . Y0) = fY |X(Yt|Xt−1)

which only depends on Xt−1, . . . X0, Yt−1, . . . Y0 through Xt−1, according to
Step 1. of Algorithm 7. Moreover,

gt,X|Y (Xt|Yt, Xt−1, . . . X0, Yt−1, . . . Y0) = fX|Y (Xt|Yt)

only depends on Xt−2, . . . X0, Yt, . . . Y0 through Yt. Therefore,

gt(Xt, Yt|Xt−1, . . . X0, Yt−1, . . . Y0) = gt(Xt, Yt|Xt−1) ,

which shows this is truly an homogeneous Markov chain.

Exercise 7.5

a. The (normal) full conditionals are defined in Example 7.4. An R program
that implements this Gibbs sampler is

# (C.) Anne Sabourin, 2009
T=500 ;p=5 ;r=0.25
X=cur=rnorm(p)
for (t in 1 :T){
for (j in 1 :p){
m=sum(cur[-j])/(p-1)
cur[j]=rnorm(1,(p-1)*r*m/(1+(p-2)*r),
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sqrt((1+(p-2)*r-(p-1)*r^2)/(1+(p-2)*r)))
}

X=cbind(X,cur)
}

par(mfrow=c(1,5))
for (i in 1:p){

hist(X[i,],prob=TRUE,col="wheat2",xlab="",main="")
curve(dnorm(x),add=TRUE,col="sienna",lwd=2)}

b. Using instead

J=matrix(1,ncol=5,nrow=5)
I=diag(c(1,1,1,1,1))
s=(1-r)*I+r*J
rmnorm(500,s)

and checking the duration by system.time shows rmnorm is about five
times faster (and exact!).

c. If we consider the constraint

m∑
i=1

x2
i ≤

p∑
i=m+1

x2
i

it imposes a truncated normal full conditional on all components. Indeed,
for 1 ≤ i ≤ m,

x2
i ≤

p∑
j=m+1

x2
j −

m∑
j=1,j 6=i

x2
j ,

while, for i > m,

x2
i ≥

p∑
j=m+1,j 6=i

x2
j −

m∑
j=1

x2
j .

Note that the upper bound on x2
i when i ≤ m cannot be negative if we

start the Markov chain under the constraint. The cur[j]=rnorm(... line
in the above R program thus needs to be modified into a truncated normal
distribution. An alternative is to use a hybrid solution (see Section 7.6.3
for the validation): we keep generating the xi’s from the same plain normal
full conditionals as before and we only change the components for which
the constraint remains valid, i.e.

for (j in 1:m){
mea=sum(cur[-j])/(p-1)
prop=rnorm(1,(p-1)*r*mea/(1+(p-2)*r),

sqrt((1+(p-2)*r-(p-1)*r^2)/(1+(p-2)*r)))
if (sum(cur[(1:m)[-j]]^2+prop^2)<sum(cur[(m+1):p]^2))
cur[j]=prop

}
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for (j in (m+1):p){
mea=sum(cur[-j])/(p-1)
prop=rnorm(1,(p-1)*r*mea/(1+(p-2)*r),

sqrt((1+(p-2)*r-(p-1)*r^2)/(1+(p-2)*r)))
if (sum(cur[(1:m)]^2)<sum(cur[((m+1):p)[-j]]^2+prop^2))
cur[j]=prop

}

Comparing the histograms with the normalN (0, 1) shows that the marginals
are no longer normal.

Exercise 7.7

Warning: There is a typo in Example 7.6, namely that the likeli-
hood function involves Φ(θ−a)n−m in front of the product of normal
densities... For coherence with Examples 5.13 and 5.14, in both Ex-
ample 7.6 and Exercise 7.7, x should be written y, z z, x̄ ȳ and xi
yi.
a. The complete data likelihood is associated with the distribution of the

uncensored data
(y1, . . . , ym, zm+1, . . . , zn) ,

which constitutes an iid sample of size n. In that case, a sufficient statistics
is {mȳ + (n−m(z̄)}/n, which is distributed as N (θ, 1/n), i.e. associated
with the likelihood

exp

{
−n
2

(
mx̄+ (n−m)z̄

n
− θ
)2
}
/
√
n .

In this sense, the likelihood is proportional to the density of θ ∼ N ({mx̄+
(n −m)z̄}/n, 1/n). (We acknowledge a certain vagueness in the wording
of this question!)

b. The full R code for the Gibbs sampler is

xdata=c(3.64,2.78,2.91,2.85,2.54,2.62,3.16,2.21,4.05,2.19,
2.97,4.32,3.56,3.39,3.59,4.13,4.21,1.68,3.88,4.33)
m=length(xdata)
n=30;a=3.5 #1/3 missing data
nsim=10^4
xbar=mean(xdata)
that=array(xbar,dim=c(nsim,1))
zbar=array(a,dim=c(nsim,1))
for (i in 2:nsim){

temp=runif(n-m,min=pnorm(a,mean=that[i-1],sd=1),max=1)
zbar[i]=mean(qnorm(temp,mean=that[i-1],sd=1))
that[i]=rnorm(1,mean=(m*xbar+(n-m)*zbar[i])/n,

sd=sqrt(1/n))
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}
par(mfrow=c(1,2),mar=c(5,5,2,1))
hist(that[500:nsim],col="grey",breaks=25,
xlab=expression(theta),main="",freq=FALSE)
curve(dnorm(x,mean(that),sd=sd(that)),add=T,lwd=2)
hist(zbar[500:nsim],col="grey",breaks=25
main="",xlab= expression(bar(Z)),freq=FALSE)
curve(dnorm(x,mean(zbar),sd=sd(zbar)),add=T,lwd=2)

(We added the normal density curves to check how close to a normal
distribution the posteriors are.)

Exercise 7.9

a. Given the information provided in Table 7.1, since we can reasonably as-
sume independence between the individuals, the distribution of the blood
groups is a multinomial distribution whose density is clearly proportional
to

(p2
A + 2pApO)nA(p2

B + 2pBpO)nB (pApB)nAB (p2
O)nO .

the proportionality coefficient being the multinomial coefficient(
n

nA nB nAB nO

)
.

b. If we break nA into ZA individuals with genotype AA and nA − ZA with
genotype AO, and similarly, nB into ZB individuals with genotype BB and
nB − ZB with genotype BO, the complete data likelihood corresponds to
the extended multinomial model with likelihood proportional to

(p2
A)ZA(2pApO)nA−ZA(p2

B)ZB (2pBpO)nB−ZB (pApB)nAB (p2
O)nO .

c. The Gibbs sampler we used to estimate this model is

nsim=5000;nA=186;nB=38;nAB=13;nO=284;
pA=array(.25,dim=c(nsim,1));pB=array(.05,dim=c(nsim,1));
for (i in 2:nsim){
pO=1-pA[i-1]-pB[i-1]
ZA=rbinom(1,nA,pA[i-1]^2/(pA[i-1]^2+2*pA[i-1]*pO));
ZB=rbinom(1,nB,pB[i-1]^2/(pB[i-1]^2+2*pB[i-1]*pO));
temp=rdirichlet(1,c(nA+nAB+ZA+1,nB+nAB+ZB+1,

nA-ZA+nB-ZB+2*nO+1));
pA[i]=temp[1];pB[i]=temp[2];
}

par(mfrow=c(1,3),mar=c(4,4,2,1))
hist(pA,main=expression(p[A]),freq=F,col="wheat2")
hist(pB,main=expression(p[B]),freq=F,col="wheat2")
hist(1-pA-pB,,main=expression(p[O]),freq=F,col="wheat2")
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It uses the Dirichlet generator rdirichlet found in the mcsm package.

Exercise 7.11

a. For the target density fX(x) = 1
2e
−
√
x, a slice sampling algorithm is based

on the full conditionals
a) U (t+1) ∼ U[0,fX(x(t))]

b) X(t+1) ∼ UA(t+1) with A(t+1) = {x, f(x) ≥ u(t+1)}
Therefore, U |x ∼ U(0, 1

2e
−
√
x) and, since A = {x, 1

2e
−
√
x ≥ u}, i.e. A =

{x, 0 ≤ x ≤ log(2u)}, owe also deduce that X|u ∼ U(0, (log(2u))2). The
corresponding R code is

T=5000
f=function(x){

1/2*exp(-sqrt(x))}
X=c(runif(1)) ;U=c(runif(1))
for (t in 1:T){
U=c(U,runif(1,0,f(X[t])))
X=c(X,runif(1,0,(log(2*U[t+1]))^2))
}

par(mfrow=c(1,2))
hist(X,prob=TRUE,col="wheat2",xlab="",main="")
acf(X)

b. If we define Y =
√
X, then

P (Y ≤ y) = P (X ≤ y2)

=
∫ y

0

1
2
e−
√
xddx

When we differentiate against y, we get the density

fY (y) = y exp(−y)

which implies that Y ∼ Ga(2, 1). Simulating X then follows from X = Y 2.
This method is obviously faster and more accurate since the sample points
are then independent.

Exercise 7.13

a. The linear combinations X + Y and X − Y also are normal with null
expectation and with variances 2(1 + ρ) and 2(1 − ρ), respectively. The
vector (X + Y,X − Y ) itself is equally normal. Moreover,

cov(X + Y,X − Y ) = E((X + Y )(X − Y )) = E(X2 − Y 2) = 1− 1 = 0

implies that X + Y and X − Y are independent.
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b. If, instead,

(X,Y ) ∼ N (0,
(

σ2
x ρσxσy

ρσxσy σ2
y

)
)

then σ2
x 6= σ2

y implies that (X + Y ) and (X − Y ) are dependent since
E((X + Y )(X − Y )) = σ2

x − σ2
y. In this case, X|Y = y ∼ N (ρσxσy y, σ

2
x(1−

ρ2)). We can simulate (X,Y ) by the following Gibbs algorithm

T=5000;r=0.8;sx=50;sy=100
X=rnorm(1);Y=rnorm(1)
for (t in 1:T){

Yn=rnorm(1,r*sqrt(sy/sx)*X[t],sqrt(sy*(1-r^2)))
Xn=rnorm(1,r*sqrt(sx/sy)*Yn,sqrt(sx*(1-r^2)))
X=c(X,Xn)
Y=c(Y,Yn)
}

par(mfrow=c(3,2),oma=c(0,0,5,0))
hist(X,prob=TRUE,main="",col="wheat2")
hist(Y,prob=TRUE,main="",col="wheat2")
acf(X);acf(Y);plot(X,Y);plot(X+Y,X-Y)

c. If σx 6= σy, let us find a ∈ R such that X+aY and Y are independent. We
have E[(X+aY )(Y )] = 0 if and only if ρσxσy+aσ2

y = 0, i.e. a = −ρσx/σy.
Therefore, X − ρσx/σyY and Y are independent.

Exercise 7.15

a. The likelihood function naturally involves the tail of the Poisson distribu-
tion for those observations larger than 4. The full conditional distributions
of the observations larger than 4 are obviously truncated Poisson distribu-
tions and the full conditional distribution of the parameter is the Gamma
distribution associated with a standard Poisson sample. Hence the Gibbs
sampler.

b. The R code we used to produce Figure 7.13 is

nsim=10^3
lam=RB=rep(313/360,nsim)
z=rep(0,13)
for (j in 2:nsim){
top=round(lam[j -1]+6*sqrt(lam[j -1]))
prob=dpois(c(4:top),lam[j -1])
cprob=cumsum(prob/sum(prob))
for(i in 1:13) z[i] = 4+sum(cprob<runif(1))
RB[j]=(313+sum(z))/360
lam[j]=rgamma(1,360*RB[j],scale=1/360);
}

par(mfrow=c(1,3),mar=c(4,4,2,1))
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hist(lam,col="grey",breaks=25,xlab="",
main="Empirical average")

plot(cumsum(lam)/1:nsim,ylim=c(1,1.05),type="l",
lwd=1.5,ylab="")

lines(cumsum(RB)/1:nsim,col="sienna",lwd=1.5)
hist(RB,col="sienna",breaks=62,xlab="",

main="Rao-Blackwell",xlim=c(1,1.05))

c. When checking the execution time of both programs with system.time,
the first one is almost ten times faster. And completely correct. A natural
way to pick prob is

> qpois(.9999,lam[j-1])
[1] 6

Exercise 7.17

a. The R program that produced Figure 7.14 is

nsim=10^3
X=Y=rep(0,nsim)
X[1]=rexp(1) #initialize the chain
Y[1]=rexp(1) #initialize the chain
for(i in 2:nsim){

X[i]=rexp(1,rate=Y[i-1])
Y[i]=rexp(1,rate=X[i])
}

st=0.1*nsim
par(mfrow=c(1,2),mar=c(4,4,2,1))
hist(X,col="grey",breaks=25,xlab="",main="")
plot(cumsum(X)[(st+1):nsim]/(1:(nsim-st)),type="l",ylab="")

b. Using the Hammersley–Clifford Theorem per se means using f(y|x)/f(x|y) =
x/y which is not integrable. If we omit this major problem, we have

f(x, y) =
x exp{−xy}

x

∫
dy
y

∝ exp{−xy}

(except that the proportionality term is infinity!).
c. If we constrain both conditionals to (0, B), the Hammersley–Clifford The-

orem gives
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f(x, y) =
exp{−xy}/(1− e−xB)∫

1− e−yB

y(1− e−xB)
dy

=
exp{−xy}∫
1− e−yB

y
dy

∝ exp{−xy} ,

since the conditional exponential distributions are truncated. This joint
distribution is then well-defined on (0, B)2. A Gibbs sampler simulating
from this joint distribution is for instance

B=10
X=Y=rep(0,nsim)
X[1]=rexp(1) #initialize the chain
Y[1]=rexp(1) #initialize the chain
for(i in 2:nsim){ #inversion method

X[i]=-log(1-runif(1)*(1-exp(-B*Y[i-1])))/Y[i-1]
Y[i]=-log(1-runif(1)*(1-exp(-B*X[i])))/X[i]
}

st=0.1*nsim
marge=function(x){ (1-exp(-B*x))/x}
nmarge=function(x){

marge(x)/integrate(marge,low=0,up=B)$val}
par(mfrow=c(1,2),mar=c(4,4,2,1))
hist(X,col="wheat2",breaks=25,xlab="",main="",prob=TRUE)
curve(nmarge,add=T,lwd=2,col="sienna")
plot(cumsum(X)[(st+1):nsim]/c(1:(nsim-st)),type="l",

lwd=1.5,ylab="")

where the simulation of the truncated exponential is done by inverting the
cdf (and where the true marginal is represented against the histogram).

Exercise 7.19

Let us define

f(x) =
baxa−1e−bx

Γ (a)
,

g(x) =
1
x

= y ,

then we have
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fY (y) = fX
(
g−1(y)

)
| d
dy
g−1(y) |

=
ba

Γ (a)
(1/y)a−1 exp (−b/y)

1
y2

=
ba

Γ (a)
(1/y)a+1 exp (−b/y) ,

which is the IG(a, b) density.

Exercise 7.21

Warning: The function rtnorm requires a predefined sigma that
should be part of the arguments, as in
rtnorm=function(n=1,mu=0,lo=-Inf,up=Inf,sigma=1).

Since the rtnorm function is exact (within the precision of the qnorm and
pnorm functions, the implementation in R is straightforward:

h1=rtnorm(10^4,lo=-1,up=1)
h2=rtnorm(10^4,up=1)
h3=rtnorm(10^4,lo=3)
par(mfrow=c(1,3),mar=c(4,4,2,1))
hist(h1,freq=FALSE,xlab="x",xlim=c(-1,1),col="wheat2")
dnormt=function(x){ dnorm(x)/(pnorm(1)-pnorm(-1))}
curve(dnormt,add=T,col="sienna")
hist(h2,freq=FALSE,xlab="x",xlim=c(-4,1),col="wheat2")
dnormt=function(x){ dnorm(x)/pnorm(1)}
curve(dnormt,add=T,col="sienna")
hist(h3,freq=FALSE,xlab="x",xlim=c(3,5),col="wheat2")
dnormt=function(x){ dnorm(x)/pnorm(-3)}
curve(dnormt,add=T,col="sienna")

Exercise 7.23

a. Since (j = 1, 2)

(1− θ1 − θ2)x5+α3−1 =
x5+α3−1∑
i=0

(
x5 + α3 − 1

i

)
(1− θj)iθx5+α3−1−i

3−j ,

when α3 is an integer, it is clearly possible to express π(θ1, θ2|x) as a
sum of terms that are products of a polynomial function of θ1 and of
a polynomial function of θ2. It is therefore straightforward to integrate
those terms in either θ1 or θ2.
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b. For the same reason as above, rewriting π(θ1, θ2|x) as a density in (θ1, ξ)
leads to a product of polynomials in θ1, all of which can be expanded and
integrated in θ1, producing in the end a sum of functions of the form

ξδ
/

(1 + ξ)x1+x2+x5+α1+α3−2 ,

namely a mixture of F densities.
c. The Gibbs sampler based on (7.9) is available in the mcsm package.

Exercise 7.25

Warning: There is a typo in Example 7.3, sigma should be defined
as sigma2 and sigma2{1} should be sigma2[1]...

a. In Example 7.2, since θ|x ∼ Be(x+ a, n− x+ b), we have clearly E[θ|x] =
(x+a)/(n+a+ b) (with a missing parenthesis). The comparison between
the empirical average and of the Rao–Blackwellization version is of the
form

plot(cumsum(T)/(1:Nsim),type="l",col="grey50",
xlab="iterations",ylab="",main="Example 7.2")

lines(cumsum((X+a))/((1:Nsim)*(n+a+b)),col="sienna")

All comparisons are gathered in Figure 7.1.
b. In Example 7.3, equation (7.4) defines two standard distributions as full

conditionals. Since π(θ|x, σ2) is a normal distribution with mean and vari-
ance provided two lines below, we obviously have

E[θ|x, σ2] =
σ2

σ2 + nτ2
θ0 +

nτ2

σ2 + nτ2
x̄

The modification in the R program follows

plot(cumsum(theta)/(1:Nsim),type="l",col="grey50",
xlab="iterations",ylab="",main="Example 7.3")

ylab="",main="Example 7.3")
lines(cumsum(B*theta0+(1-B)*xbar)/(1:Nsim)),col="sienna")

c. The full conditionals of Example 7.5 given in Equation (7.7) are more
numerous but similarly standard, therefore

E[θi|X̄i, σ
2] =

σ2

σ2 + niτ2
µ+

niτ
2

σ2 + niτ2
X̄i

follows from this decomposition, with the R lines added to the mcsm
randomeff function

plot(cumsum(theta1)/(1:nsim),type="l",col="grey50",
xlab="iterations",ylab="",main="Example 7.5")

lines(cumsum((mu*sigma2+n1*tau2*x1bar)/(sigma2+n1*tau2))/
(1:nsim)),col="sienna")
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d. In Example 7.6, the complete-data model is a standard normal model with

variance one, hence E[θ|x, z] =
mx̄+ (n−m)z̄

n
. The additional lines in

the R code are

plot(cumsum(that)/(1:Nsim),type="l",col="grey50",
xlab="iterations",ylab="",main="Example 7.6")

lines(cumsum((m/n)*xbar+(1-m/n)*zbar)/(1:Nsim)),
col="sienna")

e. In Example 7.12, the full conditional on λ, λi|β, ti, xi ∼ G(xi + α, ti + β)
and hence E[λi|β, ti, xi] = (xi + α)/(ti + β). The corresponding addition
in the R code is

plot(cumsum(lambda[,1])/(1:Nsim),type="l",col="grey50",
xlab="iterations",ylab="",main="Example 7.12")

lines(cumsum((xdata[1]+alpha)/(Time[1]+beta))/(1:Nsim)),
col="sienna")



Fig. 7.1. Comparison of the convergences of the plain average with its Rao-
Blackwellized counterpart for five different examples. The Rao-Blackwellized is plot-
ted in sienna red and is always more stable than the original version.
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Convergence Monitoring for MCMC
Algorithms

Exercise 8.1

Warning: Strictly speaking, we need to assume that the Markov
chain (x(t)) has a finite variance for the h transform, since the
assumption that Ef [h2(X)] exists is not sufficient (see Meyn and
Tweedie, 1993.
This result was established by MacEachern and Berliner (1994). We have the
proof detailed as Lemma 12.2 in Robert and Casella (2004) (with the same
additional assumption on the convergence of the Markov chain missing!).

Define δ1k, . . . , δ
k−1
k as the shifted versions of δk = δ0k; that is,

δik =
1
T

T∑
t=1

h(θ(tk−i)), i = 0, 1, . . . , k − 1 .

The estimator δ1 can then be written as δ1 = 1
k

∑k−1
i=0 δik, and hence

var(δ1) = var

(
1
k

k−1∑
i=0

δik

)
= var(δ0k)/k +

∑
i 6=j

cov(δik, δ
j
k)/k2

≤ var(δ0k)/k +
∑
i 6=j

var(δ0k)/k2

= var(δk) ,

where the inequality follows from the Cauchy–Schwarz inequality

|cov(δik, δ
j
k)| ≤ var(δ0k).
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Exercise 8.3

This is a direct application of the Ergodic Theorem (see Section 6.2). If the
chain (x(t)) is ergodic, then the empirical average above converges (almost
surely) to Ef [ϕ(X)

/
f̃(X)] = 1/C. This assumes that the support of ϕ is small

enough (see Exercise 4.13). For the variance of the estimator to be finite, a
necessary condition is that

Ef [ϕ(X)
/
f̃(X)] ∝

∫
ϕ2(x)
f(x)

dx <∞ .

As in Exercise 8.1, we need to assume that the convergence of the Markov
chain is regular enough to ensure a finite variance.

Exercise 8.5

The modified R program using bootstrap is

ranoo=matrix(0,ncol=2,nrow=25)
for (j in 1:25){
batch=matrix(sample(beta,100*Ts[j],rep=TRUE),ncol=100)
sigmoo=2*sd(apply(batch,2,mean))
ranoo[j,]=mean(beta[1:Ts[j]])+c(-sigmoo,+sigmoo)
}
polygon(c(Ts,rev(Ts)),c(ranoo[,1],rev(ranoo[,2])),col="grey")
lines(cumsum(beta)/(1:T),col="sienna",lwd=2)

and the output of the comparison is provided in Figure 8.1.

Exercise 8.7

Warning: Example 8.9 contains several typos, namely Yk ∼ N (θi, σ2)
instead of Yi ∼ N (θi, σ2), the µi’s being also iid normal instead of the θi’s
being also iid normal...

Warning: Exercise 8.7 also contains a typo in that the posterior
distribution on µ cannot be obtained in a closed form. It should
read

Show that the posterior distribution on α in Example 8.9 can be obtained in
a closed form.

Since
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Fig. 8.1. Comparison of two evaluations of the variance of the MCMC estimate of
the mean of β for the pump failure model of Example 8.6.

θ|y, µ, α ∼ π(θ|y, µ, α)

∝ α−9 exp
−1
2

{
18∑
i=1

[
σ−2(yi − θi)2 + α−1(θi − µ)2

]}

∝ exp
−1
2

(
18∑
i=1

{
(σ−2 + α−1)

[
θi − (σ−2 + α−1)−1(σ−2yi + α−1µ)

]2
+(α+ σ2)−1

18∑
i=1

(yi − µ)2
})

(which is also a direct consequence of the marginalization Yi ∼ N (µ, α+σ2)),
we have
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π(α, µ|y) ∝ α−3

(α+ σ2)9
exp

{
− 1

2(α+ σ2)

18∑
i=1

(yi − µ)2 − µ2

2
− 2
α

}

∝ α−3

(α+ σ2)9
exp

{
− 2
α

− 1 + n(α+ σ2)−1

2

[
µ− (α+ σ2)−1

18∑
i=1

yi
/

(1 + n(α+ σ2)−1)

]2

− 1
2(α+ σ2)

18∑
i=1

y2
i +

(α+ σ2)−2

2(1 + n(α+ σ2)−1)

(
18∑
i=1

yi

)2


and thus

π(α|y) ∝ α−3(1 + n(α+ σ2)−1)−1/2

(α+ σ2)9
exp

{
− 2
α

− 1
α+ σ2

18∑
i=1

y2
i +

(α+ σ2)−2

1 + n(α+ σ2)−1

(
18∑
i=1

yi

)2


Therefore the marginal posterior distribution on α has a closed (albeit com-
plex) form. (It is also obvious from π(α, µ|y) above that the marginal posterior
on µ does not have a closed form.)

The baseball dataset can be found in the amcmc package in the baseball.c
program and rewritten as

baseball=c(0.395,0.375,0.355,0.334,0.313,0.313,0.291,
0.269,0.247,0.247,0.224,0.224,0.224,0.224,0.224,0.200,
0.175,0.148)

The standard Gibbs sampler is implemented by simulating

θi|yi, µ, α ∼ N
(
α−1µ+ σ−2yi
α−1 + σ−2

, (α−1 + σ−2)−1

)
,

µ|θ, α ∼ N

(
α−1

∑18
i=1 θi

1 + nα−1
, (nα−1 + 1)−1

)
,

α|θ, µ ∼ IG

(
11, 2 +

18∑
i=1

(θi − µ)2/2

)

which means using an R loop like

Nsim=10^4
sigma2=0.00434;sigmam=1/sigma2
theta=rnorm(18)
mu=rep(rnorm(1),Nsim)
alpha=rep(rexp(1),Nsim)
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for (t in 2:Nsim){
theta=rnorm(18,mean=(mu[t-1]/alpha[t-1]+sigmam*baseball)/
(1/alpha[t-1]+sigmam),sd=1/sqrt(1/alpha[t-1]+sigmam))
mu[t]=rnorm(1,mean=sum(theta)/(1/alpha[t-1]+n),

sd=1/sqrt(1+n/alpha[t-1]))
alpha[t]=(2+0.5*sum((theta-mu[t])^2))/rgamma(1,11)

}

The result of both coda diagnostics on α is

> heidel.diag(mcmc(alpha))

Stationarity start p-value
test iteration

var1 passed 1 0.261

Halfwidth Mean Halfwidth
test

var1 passed 0.226 0.00163
> geweke.diag(mcmc(alpha))

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
-0.7505

If we reproduce the Kolmogorov–Smirnov analysis

ks=NULL
M=10
for (t in seq(Nsim/10,Nsim,le=100)){
alpha1=alpha[1:(t/2)]
alpha2=alpha[(t/2)+(1:(t/2))]
alpha1=alpha1[seq(1,t/2,by=M)]
alpha2=alpha2[seq(1,t/2,by=M)]
ks=c(ks,ks.test(alpha1,alpha2)$p)
}

Plotting the vector ks by plot(ks,pch=19) shows no visible pattern that
would indicate a lack of uniformity.

Comparing the output with the true target in α follows from the definition

marge=function(alpha){
(alpha^(-3)/(sqrt(1+18*(alpha+sigma2)^(-1))*(alpha+sigma2)^9))*
exp(-(2/alpha) - (.5/(alpha+sigma2))*sum(baseball^2) +
.5*(alpha+sigma2)^(-2)*sum(baseball)^2/(1+n*(alpha+sigma2)^(-1)))
}
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Figure 8.2 shows the fit of the simulated histogram to the above function
(when normalized by integrate).

Fig. 8.2. Histogram of the (α(t)) chain produced by the Gibbs sampler of Example
8.9 and fit of the exact marginal π(α|y), based on 104 simulations.

Exercise 8.9

a. We simply need to check that this transition kernel K satisfies the detailed
balance condition (6.3), f(x)K(y|x) = f(y)K(x|y) when f is the Be(α, 1)
density: when x 6= y,

f(x)K(x, y) = αxα−1 x (α+ 1) yα

= α(α+ 1)(xy)α

= f(y)K(y, x)

so the Be(α, 1) distribution is indeed stationary.
b. Simulating the Markov chain is straightforward:

alpha=.2
Nsim=10^4
x=rep(runif(1),Nsim)
y=rbeta(Nsim,alpha+1,1)
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for (t in 2:Nsim){
if (runif(1)<x[t-1]) x[t]=y[t]
else x[t]=x[t-1]
}

and it exhibits a nice fit to the beta Be(α, 1) target. However, running
cumuplot shows a lack of concentration of the distribution, while the two
standard stationarity diagnoses are

> heidel.diag(mcmc(x))

Stationarity start p-value
test iteration

var1 passed 1001 0.169

Halfwidth Mean Halfwidth
test

var1 failed 0.225 0.0366
> geweke.diag(mcmc(x))

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
3.277

are giving dissonant signals. The effectiveSize(mcmc(x))} is then equal
to 329. Moving to 106 simulations does not modify the picture (but may
cause your system to crash!)

c. The corresponding Metropolis–Hastings version is

alpha=.2
Nsim=10^4
x=rep(runif(1),Nsim)
y=rbeta(Nsim,alpha+1,1)
for (t in 2:Nsim){

if (runif(1)<x[t-1]/y[t]) x[t]=y[t]
else x[t]=x[t-1]
}

It also provides a good fit and also fails the test:

> heidel.diag(mcmc(x))

Stationarity start p-value
test iteration

var1 passed 1001 0.0569
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Halfwidth Mean Halfwidth
test

var1 failed 0.204 0.0268
> geweke.diag(mcmc(x))

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
1.736

Exercise 8.11

a. A possible R definition of the posterior is

postit=function(beta,sigma2){
prod(pnorm(r[d==1]*beta/sigma2))*prod(pnorm(-r[d==0]*beta/sigma2))*
dnorm(beta,sd=5)*dgamma(1/sigma2,2,1)}

and a possible R program is

r=Pima.tr$ped
d=as.numeric(Pima.tr$type)-1
mod=summary(glm(d~r-1,family="binomial"))
beta=rep(mod$coef[1],Nsim)
sigma2=rep(1/runif(1),Nsim)
for (t in 2:Nsim){
prop=beta[t-1]+rnorm(1,sd=sqrt(sigma2[t-1]*mod$cov.unscaled))
if (runif(1)<postit(prop,sigma2[t-1])/postit(beta[t-1],

sigma2[t-1])) beta[t]=prop
else beta[t]=beta[t-1]
prop=exp(log(sigma2[t-1])+rnorm(1))
if (runif(1)<sigma2[t-1]*postit(beta[t],prop)/(prop*

postit(beta[t], sigma2[t-1]))) sigma2[t]=prop
else sigma2[t]=sigma2[t-1]
}

(Note the Jacobian 1/σ2 in the acceptance probability.)
b. Running 5 chains in parallel is easily programmed with an additional loop

in the above. Running gelman.diag on those five chains then produces a
convergence assessment:

> gelman.diag(mcmc.list(mcmc(beta1),mcmc(beta2),mcmc(beta3),
+ mcmc(beta4),mcmc(beta5)))
Potential scale reduction factors:

Point est. 97.5% quantile
[1,] 1.02 1.03

Note also the good mixing behavior of the chain:
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> effectiveSize(mcmc.list(mcmc(beta1),mcmc(beta2),
+ mcmc(beta3),mcmc(beta4),mcmc(beta5)))

var1
954.0543

c. The implementation of the traditional Gibbs sampler with completion
is detailed in Marin and Robert (2007), along with the appropriate R
program. The only modification that is needed for this problem is the
introduction of the non-identifiable scale factor σ2.

Exercise 8.13

In the kscheck.R program available in mcsm, you can modify G by changing
the variable M in

subbeta=beta[seq(1,T,by=M)]
subold=oldbeta[seq(1,T,by=M)]
ks=NULL
for (t in seq((T/(10*M)),(T/M),le=100))

ks=c(ks,ks.test(subbeta[1:t],subold[1:t])$p)

(As noted by a reader, the syntax ks=c(ks,res) is very inefficient in system
time, as you can check by yourself.)

Exercise 8.15

Since the Markov chain (θ(t)) is converging to the posterior distribution (in
distribution), the density at time t, πt, is also converging (pointwise) to the
posterior density π(θ|x), therefore ωt is converging to

f(x|θ(∞))π(θ(∞))
π(θ(∞)|x)

= m(x) ,

for all values of θ(∞). (This is connected with Chib’s (1995) method, discussed
in Exercise 7.16.)

Exercise 8.17

If we get back to Example 8.1, the sequence beta can be checked in terms of
effective sample via an R program like

ess=rep(1,T/10)
for (t in 1:(T/10)) ess[t]=effectiveSize(beta[1:(10*t)])

where the subsampling is justified by the computational time required by
effectiveSize. The same principle can be applied to any chain produced by
an MCMC algorithm.

Figure 8.3 compares the results of this evaluation over the first three exam-
ples of this chapter. None of them is strongly conclusive about convergence...



Fig. 8.3. Evolution of the effective sample size across iterations for the first three
examples of Chapter 8.
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