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MINIMIZING GEODESICS AND CLOSEST POINTS

Let S be a closed subset of a Hilbert space (H, || · ||).
We call constant speed minimizing geodesic along S any curve
t ∈ [t0, t1]→ Mt ∈ S, with fixed endpoints, that minimizes∫ t1

t0

||dMt

dt
||2dt ∈ [0,+∞]

A discrete version amounts to finding a sequence
M0,M1, · · ·MK ∈ S, with fixed endpoints, that minimizes

K∑
k=1

||Mk −Mk−1||2 This implies that, for each k, Mk must minimize

on S its distance to the mid-point (Mk−1 + Mk+1)/2.
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According to Ekeland’s Hopf-Rinow theorem (J. Diff. Geo. 1979), under suitable
assumptions, minimizing geodesics (that may not exist) are generically unique.
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Edelstein’s theorem: in a Hilbert space, generically a point has a unique projection
(closest point) on a given closed bounded subset.
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AN INFINITE DIMENSIONAL EXAMPLE : THE
(SEMI-) GROUP OF VOLUME-PRESERVING MAPS

Consider a bounded domain D in Rd (this could be generalized to
a Riemanniann manifold) and the Hilbert space H = L2(D,Rd). Let
VPM(D) be the semi-group of all volume-preserving maps

VPM(D) = {M ∈ H,
∫

D
q(M(x))dx =

∫
D

q(x)dx, ∀q ∈ C(Rd)}

which is a closed subset of the Hilbert space H = L2(D,Rd),
included in a sphere, not compact nor convex.

N.B. This semi-group contains, as a dense subset, the group of
orientation and volume preserving diffeomorphisms SDiff(D) of
D, provided d ≥ 2.
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POLAR FACTORIZATION OF A PERIODIC MAP

 

Three maps of the (periodized) square: guess which one is volume-preserving!
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A discontinuous volume-preserving map

namely the rigid permutation of 16 sub-cells.
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THE CLOSEST POINT PROBLEM

Given a map T ∈ H = L2(D,Rd), a closest point M ∈ VPM(D) must
solve the saddle point problem

inf
M

sup
p

∫
D
{1

2
|M(x)− T(x)|2 − p(M(x)) + p(x)}dx

This is trivially bounded from below by the corresponding sup-inf
problem which is equivalent to the concave problem

sup
p

(

∫
D

p(x)dx +

∫
D
{ inf

m∈D

1
2
|m− T(x)|2 − p(m)}dx)

= sup
p

∫
D
(pc(T(x)) + p(x))dx, pc(y) = inf

m∈D

1
2
|m− z|2 − p(m)
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A MONGE-AMPERE-KANTOROVICH SOLUTION

THEOREM Let µ and ν respectively be the Lebesgue measure on
D and its image ν by the given map T. Assume ν to be absolutely
continuous w.r.t. the Lebesgue measure.

Then, there is a unique
closest point M to T on VPM(D).
This provides a unique ("polar") decomposition of T: M = Du ◦ T
where u is a Lipschitz convex function on Rd. In addition, u solves
(in a suitable sense) the Monge-Ampère equation detD2u = ν
This result (Y.B. 1987 and 1991) was continued and popularized by L. Caffarelli
(who proved conditional regularity results). It became influential by bridging
PDEs and optimal transport (Monge-Kantorovich) theory, leading later to the
1001 (!) page book by C. Villani. It was obtained by regular convex analysis
following the Kantorovich duality method. (Quite fortunately, at that time, the
author...ignored Edelstein’s theorem :-))
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Arnold’s geometric interpretation of Euler’s theory of incompressible fluids (1755).

ANNALES DE L’ INSTITUT FOURIER

VLADIMIR ARNOLD

Sur la géométrie différentielle des groupes de
Lie de dimension infinie et ses applications à
l’hydrodynamique des fluides parfaits

Annales de l’institut Fourier, tome 16, no 1 (1966), p. 319-361.

<http://www.numdam.org/item?id=AIF_1966__16_1_319_0>

© Annales de l’institut Fourier, 1966, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/
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EULER’S EQUATIONS OF GEODESICS CURVES

THEOREM Let (Mt ∈ VPM(D)) be a solution of the Euler equations
d2Mt

dt2 + Dpt ◦Mt = 0 for some "pressure" field p = pt(x) ∈ R.

Then, for sufficiently short intervals [t0, t1] (*), among all curves
along VPM(D) that coincide with (Mt) at t = t0, t1, (Mt) minimizes

1
2

∫ t1

t0

∫
D
|dMt(x)

dt
|2 dxdt

In other words, (Mt) is nothing but a (constant speed) geodesic
along VPM(D) w.r.t. the metric induced by H = L2(D,Rd).
(*) If we assume the domain D and the (modified) pressure field x → λ |x|2

2 − pt(x)

to be both convex, for some λ ∈ R, it is sufficient that (t1 − t0)2λ < π2.
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THE MINIMIZING GEODESIC PROBLEM

The (constant speed) minimizing geodesic problem can be
written as a saddle point problem, just by using a time-dependent
Lagrange multiplier to relax the constraint for Mt to belong to
VPM(D)

inf
M

sup
p

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

This is trivially bounded from below by

sup
p

inf
M

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

which naturally leads to a dual least action principle
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INCOMPRESSIBLE OPTIMAL TRANSPORT

The dual problem is concave

sup
p

inf
M

∫ t1

t0

∫
D
{1

2
|dMt(x)

dt
|2 − pt(Mt(x)) + pt(x)}dxdt

and reads (after a short calculation)

sup
p

∫
D

Jp(Mt0(x),Mt1(x))dx +

∫ t1

t0

∫
D

pt(x)dxdt

with Jp(y, z) = inf
∫ t1

t0

(
1
2
|dξt

dt
|2 − pt(ξt)) dt where the infimum is

taken over all curves ξt ∈ D such that ξt0 = y ∈ D, ξt1 = z ∈ D.
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THIS IS A GENERALIZATION OF KANTOROVICH 1942 OPTIMAL
TRANSPORT THEORY, ALSO SIMILAR TO WEAK KAM THEORY
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Jellyfish! a more and more frequent (almost) incompressible optimal transport
problem...
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APPROXIMATE MINIMIZING GEODESICS

DEFINITION Let us assume D to be convex, fix t0 = 0, t1 = 1 and
consider two maps M0,M1 ∈ VPM(D). We say that (Mε

t) ∈ SDiff(D)
is an ε-minimizing geodesic if

∫
D

∫ t1

t0

|
dMε

t(x)

dt
|2 dtdx ≤ d(M0,M1)

2 + ε

∫
D
|Mε

1(x)−M1(x)|2dx +

∫
D
|Mε

0(x)−M0(x)|2dx ≤ ε

where 1
2d(M0,M1)

2 denotes the maximal dual action. The
existence of such approximations is in no way trivial and is a
consequence of a key density result due to A. Shnirelman (GAFA
1994) for Y.B. "generalized incompressible flows" (JAMS 1991).
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THE MAIN RESULT ON MINIMIZING GEODESICS:
EXISTENCE OF A UNIQUE ACCELERATION

MAIN THEOREM Let us assume D to be convex, with d ≥ 3, fix
t0 = 0, t1 = 1 and consider two maps M0,M1 ∈ VPM(D). Then,
there is a UNIQUE pressure-gradient Dpt such that for all (Mε

t)
ε-minimizing geodesics, we have in the sense of distributions

d2Mε
t

dt2 ◦ (Mε
t)
−1 + Dpt → 0, ε→ 0

In addition p belongs to the functional space L2
t (BVx)loc

This result essentially goes back to YB CPAM 1999, with substantial
improvements in Ambrosio-Figalli ARMA 2008. It is a combination of solving the
dual least action problem and using Shnirelman’s density result for
"generalized flows", GAFA 1994.

Yann Brenier (CNRS) EKELAND 2014 Paris-Dauphine 18-20/06/2014 19 / 25



THE MAIN RESULT ON MINIMIZING GEODESICS:
EXISTENCE OF A UNIQUE ACCELERATION

MAIN THEOREM Let us assume D to be convex, with d ≥ 3, fix
t0 = 0, t1 = 1 and consider two maps M0,M1 ∈ VPM(D). Then,
there is a UNIQUE pressure-gradient Dpt such that for all (Mε

t)
ε-minimizing geodesics, we have in the sense of distributions

d2Mε
t

dt2 ◦ (Mε
t)
−1 + Dpt → 0, ε→ 0

In addition p belongs to the functional space L2
t (BVx)loc

This result essentially goes back to YB CPAM 1999, with substantial
improvements in Ambrosio-Figalli ARMA 2008. It is a combination of solving the
dual least action problem and using Shnirelman’s density result for
"generalized flows", GAFA 1994.

Yann Brenier (CNRS) EKELAND 2014 Paris-Dauphine 18-20/06/2014 19 / 25



THE MAIN RESULT ON MINIMIZING GEODESICS:
EXISTENCE OF A UNIQUE ACCELERATION

MAIN THEOREM Let us assume D to be convex, with d ≥ 3, fix
t0 = 0, t1 = 1 and consider two maps M0,M1 ∈ VPM(D). Then,
there is a UNIQUE pressure-gradient Dpt such that for all (Mε

t)
ε-minimizing geodesics, we have in the sense of distributions

d2Mε
t

dt2 ◦ (Mε
t)
−1 + Dpt → 0, ε→ 0

In addition p belongs to the functional space L2
t (BVx)loc

This result essentially goes back to YB CPAM 1999, with substantial
improvements in Ambrosio-Figalli ARMA 2008. It is a combination of solving the
dual least action problem and using Shnirelman’s density result for
"generalized flows", GAFA 1994.

Yann Brenier (CNRS) EKELAND 2014 Paris-Dauphine 18-20/06/2014 19 / 25



THE MAIN RESULT ON MINIMIZING GEODESICS:
EXISTENCE OF A UNIQUE ACCELERATION

MAIN THEOREM Let us assume D to be convex, with d ≥ 3, fix
t0 = 0, t1 = 1 and consider two maps M0,M1 ∈ VPM(D). Then,
there is a UNIQUE pressure-gradient Dpt such that for all (Mε

t)
ε-minimizing geodesics, we have in the sense of distributions

d2Mε
t

dt2 ◦ (Mε
t)
−1 + Dpt → 0, ε→ 0

In addition p belongs to the functional space L2
t (BVx)loc

This result essentially goes back to YB CPAM 1999, with substantial
improvements in Ambrosio-Figalli ARMA 2008. It is a combination of solving the
dual least action problem and using Shnirelman’s density result for
"generalized flows", GAFA 1994.

Yann Brenier (CNRS) EKELAND 2014 Paris-Dauphine 18-20/06/2014 19 / 25



Uniqueness of the acceleration for minimizing geodesics along the (infinite
dimensional) semi-group of volume-preserving maps, in the case of incompressible

fluids.
There is no similar results for the minimizing geodesics along the (finite dimensional)

group of orthogonal transforms, in the case of rigid solids.
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Toward modern art!

Leonard, Gaspard, Leonid and ....CédrIvar?
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Ivar younger than ever! Happy birthday!
(more conventional art)

Yann Brenier (CNRS) EKELAND 2014 Paris-Dauphine 18-20/06/2014 22 / 25
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I. Ekeland, J. Diff. Geom. 1978, see Edelstein’s theorem in J. -P.
Aubin, Math. Meth. of Game and Economic Theory.
2) Euler equations
L. Euler, Opera Omnia, seria secunda 12, p. 274. Books by
Marchioro-Pulvirenti 1994, Lions 1996, Arnold-Khesin 1998
3) Density results for volume preserving maps and flows
Shnirelman Math Sb USSR 1987, GAFA 1994, Neretin, Math. Sb
1992, Brenier-Gangbo, Calc. Var. PDE 2003
4) Global theory of minimizing geodesics
Y.B. JAMS 1990, ARMA 1993, CPAM 1999 , Physica D 2008, Calc.
Var. PDEs 2013.
Ambrosio-Figalli, Arma 2008, Bernot-Figalli-Santambrogio, JMPA
2009.
5) Optimal Transport theory
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Villani 2003, 2008, Ambrosio-Gigli-Savaré 2005.
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MINIMIZING GEODESICS AND CONVEXITY

1) UNIQUENESS OF THE ACCELERATION This remarkable
feature comes from the convexity of the problem in infinite
dimension.

There is no equivalent result for finite dimensional
configuration spaces such as SO(3), on which geodesic curves
correspond to rigid body motions in classical mechanics.
2) LIMITED REGULARITY OF THE PRESSURE GRADIENT The
pressure gradient was proven first (YB CPAM 1999) to be a locally
bounded measure. Local L2 integrability in time (with measure
values in space) was shown by Ambrosio and Figalli in 2008. In
2013, I found an explicit example (that actually goes back to
Duchon and Robert in a different framework) of solutions with a
pressure field semi-concave in the space variable and not more.
What is the optimal regularity of the pressure field for general
data? We conjecture semi-concavity (w.r.t. the space variables).
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OTHER GEOMETRIC ANALYSIS ISSUES

GEODESIC COMPLETENESS This amounts to globally solving
the initial value problem for the Euler equations. This is an
outstanding problem for nonlinear evolution PDEs, which has not
been discussed in this lecture. (You are welcome to ask
questions after the talk!)

MINIMIZING GEODESICS Shnirelman has proven (Math USSR Sb
1986) that existence of minimizing geodesics along SDiff(D) may
fail when d ≥ 3. Remarkably enough, as already seen, the case
d ≥ 3 turns out to be "easy", with a crucial use of the convex
structure of the dual problem. However the Hopf-Rinow theorem
has not been proven in this framework. The case d = 2 is clearly
linked to symplectic geometry and seems extremely difficult: a
fascinating strategy has been developed by Shnirelman, by
adding braid constraints to the minimization problem, which
certainly deserves further investigations.
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