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1 Introduction

This talk deals with the estimation of hedonic models.

� Early papers of hedonic models:

Hedonic regression: Waugh (1928), Court (1939)

Hedonic equilibrium models: Tinbergen (1956), Rosen
(1975)

� Criticism of Rosen�s methodology: Brown and Rosen
(1982), Epple (1987), Bartik (1987)

� Identi�cation of hedonic models: Ekeland, Heckman,
Nesheim (2002, 2004), Heckman, Matzkin, Nesheim
(2003, 2010).



� Existence and qualitative properties: Ekeland (2010).
Chiappori, McCann, and Nesheim (2010) show equiv-
alence with a matching problem. Queyranne (2011)
suggested the problem is equivalent to a max-�ow
problem.

� Applications:

� Price indices: Griliches (1971), Boskin et al. (1996),
Lancaster (1966)

� Valuation of amenities: Triplett (1969), Berndt et al.
(1995), Berndt and Rappaport (2001), Pakes (2003)

� Value of Statistical Life: Thaler and Rosen (1976),
Schelling (1987), Viscusi and Aldy�s (2003) and Viscusi
(2008)

� Wine: Golan and Shalit (1993), Oczkowski (1994),
Nerlove (1995), Combris et al. (1997)



2 The hedonic equilibrium

Discrete characteristics of good: z 2 Z (e.g. quality
parameter of wine, observable�e.g. ratings by di¤erent
experts, measurable characteristics).

Producer�s type x 2 X (eg. producer�s sub-region; pro-
duction process characteristics; ownership; year of pro-
duction).

Consumer�s type y 2 Y (e.g. country; distribution chan-
nel used...)

Price of quality z 2 Z is pz. It is possible for a producer
or a consumer to stay out of the market (e.g. by consum-
ing non-rated wines or alternative bewerages) and receive
no transfer. Such option is denoted z = 0. We denote

Z0 = Z [ f0g



the full set of consumption options including alternatives.

Classical hedonic model:

- producing and selling quality z yields pro�t �xz+pz to
producer. Think of �xz = �cxz where cxz is the cost
to x of producing quality z.

- Buying and consuming quality z yields utility 
yz � pz
to consumer.

Consumer can only buy 0 or 1 (indivisible) unit.

Note that consumers�preferences do not depend on x.
Consumer only value quality z, have no preferences over
producers�identity.

A producer x has the possibility to remain out of the
market, in which case her utility is �x0 = 0 and she gets



no transfer. The same applies for a consumer y which
gets 
y0 = 0 if staying out of the market.

There are nx producers of type x and my consumers of
type y (exogenously given). The number of units pro-
duced and sold at quality z is endogenously determined.

Literature on hedonic model (Tinbergen, 1956, Ekeland
et al., 2004) classically assumes continuous characteris-
tics z and di¤erentiability. Result: There exists an equi-
librium price pz such that supply, given by the maximiza-
tion of producer pro�t

max
z
(�xz + pz)

equates demand, given by the maximization of consumer
surplus

max
z

�

yz � pz

�
:

We will focus on discrete hedonic models: z is discrete
and consumption units are indivisible, and nx and my



are integers. The �rst result is that an equilibrium exists,
despite indivisibilities.

Supply and demand. Let �xz be the number of produc-
ers of type x supplying quality z, and �yz be the number
of consumers of type y demanding quality z.

Counting equations. Counting of types of producers
and consumers imposesX

z2Z
�xz � nx for all x 2 X (1)

X
z2Z

�yz � my for all y 2 Y (2)

Balance equations. Balancing supply and demand for
each quality of good requiresX

x2X
�xz =

X
y2Y

�yz for all z 2 Z. (3)



We denote

� 2M

the set of � � 0 satisfying the type counting equations
(1), (2) and the balance equations (3). The hedonic
model with indivisibilities requires further that �xz and
�yz be integral, which we denote

� 2Mint:

An equilibrium is given by the data of
�
�xz; �yz; pz

�
where �xz � 0 is the supply of quality z arising from
producer of type x, �yz � 0 is the demand of quality
z arising from consumers of type y. Equilibrium requires
that, given prices, no individual (producer or consumer)
choosing a certain quality would get strictly more utility
with another quality, that is

�xz > 0 implies �xz + pz � �xz0 + pz0 for all z0

�yz > 0 implies 
yz � pz � 
yz0 � pz0 for all z0:



Theorem 1. There is a nonempty set of equilibria in the
hedonic model with indivisibilities.

This result is proven by an appeal to the concept of net-
work �ows.



3 Queyranne�s reformulation

The network. De�ne a set of nodes by N = X [Z[Y,
and a set of arcs A which is a subset of N �N and is
such that if ww0 2 A, then w0w =2 A. Here, the set of
arcs is A = (X � Z) [ (Y � Z).

A vector is de�ned as an element of RA. Here, we intro-
duce the following direct surplus vector

�ww0 : = �xz if w = x and w
0 = z (4a)

�ww0 : = 
yz if w = z and w
0 = y: (4b)

For two nodes w and w0, a path from w to w0 is a chain

(w0w1); (w1w2); :::; (wT�2wT�1); (wT�1wT )

such that wiwi+1 2 A for each i. T is the length of the
path. Here, the only nontrivial paths are of length 2 and
are of the form (xz) ; (zy) where x 2 X , z 2 Z and
y 2 Y.



For two nodes w and w0, we de�ne the reduced surplus, or
indirect surplus as the surplus associated to the optimal
path from w to w0. Here, for x 2 X , y 2 Y , the indirect
suplus �xy of producer x and consumer y is

�xy := max
z2Z

�
�xz + 
yz

�
: (5)

For w 2 N , we let Nw be the algebraic quantity of
mass leaving the network at w. Hence Nw is the �ow of
mass being consumed (Nw > 0) or produced (Nw < 0)
at w. The nodes such that Nw < 0 (resp. Nw = 0

and Nw > 0) are called the source nodes, whose set is
denoted S (resp. intermediate nodes I and target nodes
T ). Here, for x 2 X , y 2 Y, and z 2 Z, we set

Nx := �nx ; Ny := my ; Nz := 0 (6)

so that the set of source nodes is S := X , the set of
intermediate nodes is I := Z, and the set of target
nodes is T := Y.



Gradient, �ows. We de�ne a potential as an element
of RN . We de�ne the gradient matrix as the matrix of
general term raw, a 2 A, w 2 N such that

raw = �1 if a is out of w, raw = 1 if a is into w,
raw = 0 else,

so that, for a potential f 2 RN , rf is the vector such
that for a = ww0 2 A, one has (rf)ww0 = fw0 � fw.
Here, set the potential of surpluses U as

Ux := �ux ; Uz := �pz ; Uy := vy; (7)

and

(rU)xz = ux � pz and (rU)zy = vy + pz: (8)

We de�ne the divergence matrix r� (sometimes also
called node-edge, or incidence matrix) as the transpose
of the gradient matrix: r�xa := rax. As a result, for a
vector v,

(r�v)ww0 =
X
z
vzw0 �

X
z
vwz:



A �ow is a nonnegative vector � 2 RA+ that satis�es the
balance of mass equation, that is

(N �r��)w � 0; w 2 S (9)

(N �r��)w = 0; w 2 I (10)

(N �r��)w � 0; w 2 T (11)

Here, � :
�
�xz; �zy

�
is a �ow if and only if �xz and �zy

satisfy the people counting and market clearing equations,
that isX
z
�xz � nx ;

X
z
�zy � my and

X
x2X

�xz =
X
y2Y

�zy:

Maximum surplus �ow. We now consider the maximum
surplus �ow problem, that is

max
�2RA+

X
a2A

�a�a (12)

s:t: � satis�es (9), (10), (11),



whose value coincides with the value of its dual version,
that is

min
U2RN

X
w2N

UwNw (13)

s:t: Uw � 0; 8w 2 S
Uw � 0; 8w 2 T
rU � �;

and by complementary slackness, for w 2 S[T ; Uw 6= 0
impliesNw = (r��)w. A standard result is that ifN has
only integral entries, then (12) has an integral solution
�.

Here the solution U of (13) is related to the solution
to the hedonic model by Equations (7), that is ux =
�Ux ; pz = �Uz ; vy = Uy. Using (8) and (4),
rU � � implies ux � pz = Uz � Ux � �xz = �xz

and vy + pz = Uy � Uz � �zy = 
zy, thus, using
complementary slackness one recovers

ux = maxz
(�xz + pz)

+ and vy = maxz

�

zy � pz

�+
:



Further, if n and m have only integral entries, then there
is an integral solution � to (12). Therefore:

Theorem (Queyranne). The hedonic equilibrium prob-
lem can be reformulated as a matching �ow problem as
described above.

This reformulation has several advantages. First, it es-
tablishes the existence of a hedonic equilibrium, and its
integrality.



Theorem. Consider a market given by nx producers of
type x, my consumers of type y, and where productivity
of producer x is given by �xz, and utility of consumer y
is 
yz.Then:

(i) There exists a hedonic equilibrium
�
pz; �xz; �yz

�
;

(ii)
�
�xz; �yz

�
are solution to the primal problem of the

expression of the social welfare

max
�xz;�yz�0

X
xz
�xz�xz +

X
yz
�yz
yz (14)X

z
�xz � nx and

X
z
�yz � my and

X
x
�xz =

X
y
�yz;

while (pz) is obtained from the solution of the dual ex-
pression of the social welfare

min
ux;vy�0;pz

X
x
nxux +

X
y
myvy (15)

ux � �xz + pz and vy � 
yz � pz:

(iii) If nx andmy are integral for each x and y, then �xz
and �yz can be taken integral.



In particular, the equilibrium prices (pz) as well as the
quantities �xz; �yz supplied at equilibrium can be com-
puted e¢ ciently using one of the many maximum �ows
algorithms.



4 Introducing heterogeneities

Consider an individual producer i and an individual con-
sumer j, let xi and yj be their observed characteristics.
We assume that there are unobserved heterogeneities in
productivities and tastes, following Galichon and Salanié
(2013).

Individual producer i (of observable characteristics xi)
has pro�tability from producing z

�xiz + "iz + pz

Individual consumer j (of observable characteristics yj)
has utility from consumption of z


yjz + �jz � pz:

We make two important assumptions.



Assumption L (Large market). The number of individ-
uals on the market N =

P
x2X nx+

P
y2Ymy goes to

in�nity; and the ratios (nx=N) and (my=N) converge.

Assumption D (Distribution of Unobserved Variation
in Surplus).

a) For any producer i of observable characteristics x, the
"iz are drawn from a (jZj+ 1)-dimensional distribution
Px

b) For any consumer j of observable characteristics y, the
�jz are drawn from a (jZj+ 1)-dimensional distribution
Qy.

Example 1. The utility shocks " and � have the iid Type-I
Extreme Value (Gumbel) distribution, namely their C.D.F.
is

F (x) = exp

 
� exp

 
�x+ 


�

!!
:



While the previous example has the �avour of discrete
choice theory, the next one is very much in line with the
tradition of hedonic models.

Example 2. As in Ekeland et al. (2004), consider �(z; x; ") =
'(z)+z (g(x) + "). This is a particular case of a model
where

"iz = ��xiz:"i (16)

where the utility shock "i is iid across individuals.

Producers� choice. Assume that, at equilibrium, pro-
ducers of group x get average utility Uxz from quality z.
Then sum of the surpluses of the producers of all groups
is

G(U) =
X
x2X

nxEPx

"
max
z2Z0

(Uxz + "iz)

#
(17)

where the expectation is taken over a random vector of
utility shocks ("i0; : : : ; "ijZj) � Px. By the Envelope



theorem, the number of producers choosing quality z is
given by

�xz = nxPx (x chooses z)

=
@G(U)

@Uxz
: (18)

Note, however, that � as econometricians � one would
like to solve exacty the inverse problem, i.e. determine
whenever possible Uxz as a function of �xz. Hence one
would like to inverse Eq. (18).

To do this, introduce the generalized entropy G� as the
convex conjugate (Legendre-Fenchel transform) of G as

G�(�) = max
Uxz

0@X
x;y
�xzUxz �G(U)

1A (19)

where �xz is the number of producers choosing quality
z. By the envelope theorem, one has

Uxz =
@G�(�)
@�xz

: (20)



and note that the �rst order conditions in (17) are exactly
the envelope theorem in (19), hence equations (18) and
(20) hold simultaneously, which means that (20) is the
condition we are looking for in order to solve our inverse
problem.

Consumers�choice. Similarly, the sum of the expected
utilities of the consumers of all groups is

H(V ) =
X
y2Y

myEQy

"
max
z2Z0

(Vyz + �yz)

#

and the associated generalized entropy is denoted

H�(�):

Example 1 continued. When the utility shocks " and �
have the iid Type-I Extreme Value (Gumbel) distribution,
one has the logit structure

G(U) =
X
x2X

nx log

0@1 + X
z2Z0

eUxz

1A
G�(�) =

X
x2X

X
z2Z0

�xz log
�xz
nx
;



where �x0 is implicitely de�ned by �x0 = nx�
P
y2Y �xy.

Similar formulas hold for Hy and H�y . Hence G
� is a

usual entropy function.

Example 2 continued. Recall speci�cation (16)

"iz = ��xiz:"i:

Then one has

G(U) =
X
x2X

nxGx (U)

where

Gx (U) = EPx

"
max
z2Z0

(Uxz � �xz:")
#

thus

G�x(�:jx) = max
Uxz

0@ X
z2Z0

�zjxUxz � EP

"
max
z2Z0

(Uz � �xz:")
#1A

Letting �U" = �maxz2Z0(Uz � z:"), one has

� �U" � Uz + �xz:"



thus

��xz:" � Uz + �U"

hence

G�x(�:jx) = max
Uz+�U"���xz:"

X
z2Z0

�xz
nx
Uz + EP

h
�U"
i

= min
Z��x:nx ;"�P

E [��xZ:"]

= � max
Z��x:nx ;"�P

E [�xZ:"]

In the one-dimensional case as in Ekeland et al., the solu-
tion to the previous problem can be given explicitely, and
in the case where " � U ([0; 1]), G� is quadratic with
respect to �xz.

We can compute the social welfare in this economy.

Theorem 2. (i) The optimal social welfare in this econ-
omy is given by

W = max
pz

G (�+ p:) +H (
 � p:) (21)



alternatively, it can be expressed as

W = max
�2M

X
x2X ;z2Z

�xz�xz+
X

y2Y;z2Z
�yz
yz�E (�)

(22)
where E(�) is a generalized entropy function, de�ned by

E(�) = G� (�) +H� (�) :

(ii) Further the equilibrium
�
pz; �xz; �yz

�
is unique and

is such that (pz) is optimal for (21) and
�
�xz; �yz

�
is

optimal for (22).

(iii) Finally, at equilibrium, surplus of producer i is

�xiz + pz + "iz

and surplus of consumer j is


yjz � pz + �jz:

In other words, producers and consumers keep their sur-
plus shock at equilibrium.



5 Identi�cation

As a result of the �rst order conditions in the previous the-
orem, the model is exactly identi�ed from

�
pz; �xz; �yz

�
.

Theorem 3. The producers and consumers systematic
surpluses at equilibrium are identi�ed from �xz and �yz
and pz by

�xz =
@G�(�)
@�xz

� pz


yz =
@H�(�)
@�yz

+ pz

Let us see what this identi�cation formula becomes on
our Logit example.

Example 1 continued. When " and � are iid Gumbel,



one has

�xz = log

 
�xz
�x0

!
� pz


yz = log

 
�yz

�y0

!
+ pz:

6 Computation

Nonparametric identi�cation did not require to solve for
the equilibrium. However, parametric identi�cation does.
The primitives of the model are the functions ��xz and

�yz; and the unknowns are supply �xz, demand �yz and
the price pz.



6.1 Logit case

In the setting of Example 1, recall that one has

�xz = �x0e
�xz+pz

�yz = �0ye

yz�pz:

The balance equation isX
x2X

�x0e
�xz+pz =

X
y2Y

�y0e

yz�pz 8z 2 Z

yielding

e2pz =

P
y2Y �y0e


yzP
x2X �x0e�xz

The type counting equations become

�x0 + �x0
X
z2Z

e�xz+pz = nx 8x 2 X

�y0 + �y0
X
z2Z

e
yz�pz = my 8y 2 Y



This suggests an iterative algorithm for the computation
of �x0, �y0 and pz.

1. Initialize: �x0 =
1P
x nx

, �y0 =
1P
ymy

, pz = 0.

2. At step k, assume P k, �kxz, and �
k
yz have been com-

puted

2a. Compute new market clearing price

pk+1z =
1

2
log

0@Py2Y �ky0e
yzP
x2X �kx0e

�xz

1A
2b. Compute supply under new price

�k+1x0 =
nxP

z2Z0 e
�xz+p

k+1
z

Compute demand under new price

�k+1y0 =
myP

z2Z0 e

yz�pk+1z

Iterate until nearing a �xed point.



6.2 General case

In the general case, we solve for the prices pz using the
fact that the latter is optimal for

max
Pz

G (�+ p:) +H (
 � p:) :

This suggests a tâtonnement algorithm.

1. Guess an intial value of p0z. E.g. p
0
z = 0.

2. Assuming P kz is known, compute

�k+1xz =
@G(�+ pk: )

@Uxz

�k+1yz =
@H(
 � pk: )

@Vyz

Update (pz) in proportion to the excess demand

pk+1z = pkz � �k
0@X
x2X

�k+1xz �
X
y2Y

�k+1yz

1A :



3. Stop when
�
pk+1z

�
is close enough to

�
pkz
�
.

The algorithm converges to the equilibrium prices and
supply and demand.



7 And the Schrödinger problem?

Recall the network �ow problem (here with forced partic-
ipation)

max
�2RA+

X
a2A

�a�a

s:t: r�� = N [U ]

and its dual

min
U2RN

X
w2N

UwNw

s:t: rU � � [�] :

Consider the same problem, but with an entropic penal-
ization

max
X
a
�a�a � �E (�)

s.t. r�� = N [U ]

which expresses as

min
U
hN;Ui+max

�
h�; ��rUi � �E (�) :



By FOC with respect to �,

�a � (rU)a
�

=
@E (�)
@�a

thus
�ww0 � (Uw0 � Uw)

�
=
@E (�)
@�ww0

and in particular, when E (�) = P
a �a ln�a,

�ww0 � (Uw0 � Uw)� �
�

= ln�ww0

r�� = N

which, in the case of a bipartite network, boils down to
the two-margin Bernstein-Schrödinger problem

�xy � (Vy � Ux)� �
�

= ln�xyX
y
�xy = nx;

X
x
�xy = my

A problem studied under various forms by a number of au-
thors: Czisar; Sinkhorn; Yuille, Rüschendorf in the static
case; Schrödinger; Bernstein; Föllmer; Nelson; Léonard;
Zambrini in the dynamic case.



7.1 Challenges

� Provide a consistent estimation of the distribution of
the unobservable heterogeneity.

� Relax assumption that utility is quasi-linear with re-
spect to money; convex analytic formulation no longer
applies; no variational principles. Approach related
to matching with imperfectly transferable utility. Rich
structure regardless (lattice structure, monotonicity,
submodularity).

� Relax one-to-one assumption: one consumer chooses
a bundle of goods. Need to model complementarty
and substitutability between goods; trade-o¤ between
quality and quantity.Cf. Kelso-Crawford.



THANK YOU!



References

[1] Ashenfelter, O., Ciccarella, S., and Schatz, H. (2007).
�French Wine and the U.S. Boycott of 2003: Does
Politics Really A¤ect Commerce?�. Journal of Wine
Economics 2 (1), pp.5�74.

[2] Ashenfelter, O. (2010). �Predicting the Quality and
Prices of Bordeaux Wine�. Journal of Wine Eco-
nomics 5 (1), pp. 40�52.

[3] Bentzen, J, and Smith, V. (2008). �Do expert ratings
or economic models explain champagne prices?�. In-
ternational Journal of Wine Business Research 20 (3),
pp.230�243.

[4] Combris, P., Lecocq, S., and Visser, M. (1997). �Es-
timation of a Hedonic Price Equation for Bordeaux
Wine: Does Quality Matter?�The Economic Journal
107, No. 441, pp. 390�402.



[5] Crozet, M., Head, K. and T. Mayer (2011). �Qual-
ity sorting and trade: Firm-level evidence for French
wine�. Forthcoming in the Review of Economic Stud-
ies.

[6] de Figueiredo, J., Chen, P. Kim, D., Pogorzelski, A.,
and Sowders, T. (2010). �Who�s Afraid of Robert
Parker? A Statistical Analysis of Quality Ratings and
Prices for California wines�. Working paper.

[7] Lecocq, S., and Visser, M. (2006). �What determines
wine prices: objective vs. sensory characteristics�.
Journal of Wine Economics 1, pp. 42�56.

[8] Lecocq, S., and Visser, M. (2006). �Spatial Variations
in Weather Conditions and Wine Prices in Bordeaux�.
Journal of Wine Economics 1, pp. 114�124.


