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Doob’s Maximal Inequality

To a martingale (St)Tt=0 we associate the maximal function process

S̄t = max
0≤u≤t

|Su |, t = 0, . . . ,T .

Doob’s L2-inequality:

For every square-integrable martingale S, we have

E
[
S̄2
T

]
≤ 4E[S2

T ].

The factor 4 is sharp, but the inequality is not attained (except for S ≡ 0).

Pathwise L2-inequality [ABPST 2012]:

For every martingale S, there is a predictable strategy H such that

S̄2
T ≤

[
T∑
t=1

Ht ∆St

]
+ 4S2

T , almost surely.

We may choose Ht = −4S̄t−1.
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Of course the pathwise inequality implies the classical inequality as

E

[∫ T

0

Ht dSt

]
= E

[
T∑
t=1

Ht ∆St

]
= 0.

To show the pathwise inequality we need an easy result.

Elementary Fact:

Let s0, s1, . . . , sT be non-negative numbers and s̄t = max
0≤u≤t

su. Then

s̄2
T ≤

T∑
t=1

(−4s̄t−1)[st − st−1] + 4s2
T − 2s2

0 . (1)
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Sketch of Proof:

4

∫ T

0

s̄tdst = 4

∫ T∗

0

s̄tdst + 4

∫ T

T∗
s̄tdst

= 4

∫ T∗

0

s̄tds̄t + 4s̄T∗ [sT − s̄T ]

= 2[s̄2
T − s2

0 ] + 4s̄T sT − 4s̄2
T

= −s̄2
T − (2sT − s̄T )2 + 4s2

T − 2s2
0

≤ −s̄2
T + 4s2

T − 2s2
0

Equality holds in (1) if and only if s̄T = 2sT a.s.

Theorem (slightly sharpend) Doob inequality [ABPST 2012]:

‖S̄T‖2 ≤ ‖ST‖2 + ‖ST − S0‖2

This inequality is attained for certain continuous Azema-Yor martingales.

Compare [Burkholder, Cox, Peskir,...]

t0 t1 t2 T * T

s=s* st1

*
=st2

* s=s* sT *

*
=sT

*
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Financial Interpretation of the pathwise inequality

Interpret S = (St)0≤t≤T as a stock price process.

Exotic option: pays S̄2
T at time T .

European option: pays S2
T at time T .

For each predictable H the random variable

(H · S)T =

∫ T

0

HtdSt

can be interpreted as the (random) gains/losses when applying the
trading strategy H. These random variables must have price 0 (no
arbitrage) which corresponds to the martingale property of S .

The pathwise inequality

S̄2
T ≤

∫ T

0

HtdSt + 4S2
T

can now be interpreted as a model-free super-hedge of the exotic option

S̄2
T .
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Classical (model-based) Mathematical Finance

Given is a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) and an
adapted semi-martingale (St)0≤t≤T . Let Me(S) denote the set of
probability measures Q on F , with Q ∼ P, and such that S is a
(local) Q-martingale.
Basic assumption (no-arbitrage): Me(S) 6= ∅.

1. Complete case (Bachelier, Black-Scholes):

Suppose that Me(S) = {Q}. In this case the martingale
representation theorem [Itô,...,Yor] gives that every “contingent
claim” ST ∈ L∞(Ω,F ,P) can be replicated as

XT = EQ [XT ] +

∫ T

0
HtdSt ,

for some predictable strategy H on (Ω,F , (Ft)0≤t≤T ,P).
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Example:

The contingent claim XT = S̄2
T − 4S2

T can be replicated by

S̄2
T − 4S2

T = X0 +

∫ T

0
HtdSt

where X0 = EQ [XT ] < 0 is a negative real number, and H some predictable strategy.

2. Incomplete case:

Suppose that Me(S) 6= ∅, but not a singleton.

Super-replication Theorem:

Every contingent claim XT ∈ L∞(Ω,F ,P) can be super-replicated by

XT ≤ X0 +

∫ T

0
HtdSt ,

where
X0 = sup

Q∈Me (S)
EQ [XT ]

and H a predictable strategy.
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This theorem goes back to [El Karoui-Quenez] and, in greater generality,
to [Delbaen-S.].
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Model-free Super-replication

This is a presently active field of research initiated some 15 years ago by
D. Hobson:

D. Hobson, A. Cox, M. Davis, J. Obloj, B. Acciaio, M. Beiglböck,
B. Bouchard, P. Henry-Labordère, M. Soner, N. Touzi, J. Zhang,
Y. Dolinsky,...

We start with a simple setting: the time set of the process S = (St)
2
t=0

only ranges in t ∈ {0, 1, 2}. The real number S0, as well as the laws µ1

and µ2 of the random variables S1 and S2 are given. This corresponds to
assuming that one can trade all European options.

What is unknown, is the joint law of (S1,S2).

We also are given an exotic option XT = c(S0,S1,S2),
e.g. XT = max(S0,S1,S2).

Denote by Pmart the set of all probability measures π on R3 such that,

under π, the coordinate process S = (S0,S1,S2) is a martingale and such

that the one-dimensional marginals are given by µ0, µ1, and µ2, where

µ0 = δS0 .



Theorem [Beiglböck, Henry-Labordère, Penkner 2013]:

Consider (St)
2
t=0 as above. Let c be bounded and upper semi-continuous,

and consider the contingent claim XT = c(S1,S2). Then the largest
model independent martingale expectation price, defined by

P = sup
π∈Pmart

{Eπ [c(S1,S2)]}

equals the smallest model independent arbitrage free price, defined by

D = inf
h1,h2,H1

d : c(S1,S2) ≤ d + h1(S1) + h2(S2)︸ ︷︷ ︸
European options

+ H1(S1)[S2 − S1]︸ ︷︷ ︸
dynamic trading


where h1(·), h2(·) are bounded, measurable functions with
Eµ1 [h1] = Eµ2 [h2] = 0, and H1(·) is bounded and measurable.



Sketch of proof:

P = sup
π∈Pmart

{Eπ [c(S1,S2)]}

= sup
π∈Pmart

inf
H1(·)
{Eπ [c(S1,S2)− H1(S1)[S2 − S1]]}

= sup
π∈P

inf
H1(·)
{Eπ [c(S1,S2)− H1(S1)[S2 − S1]]} .

Here P denotes all probability measures on R3 with the given marginals
µ0 = δS0 , µ1, µ2, but which are not necessarily martingale measures for
the coordinate process.

The compactness of P now allows to interchange the sup and the inf, so
that

P = inf
H1(·)

sup
π∈P
{Eπ [c(S1,S2)− H1(S1)[S2 − S1]]}

For fixed H1 we finally may apply the duality theory of optimal transport
[Kellerer 1984] to obtain P = D.



The extension of the above theorem to finite discrete time is
straight-forward [Beiglböck, Henry-Labordère, Penkner 2013].

Remarkable progress was recently made by [Dolinsky-Soner, 2013] who
prove a version of the model-free super-replication theorem in continuous
time, provided that the cost functional c ((St)0≤t≤T ) satisfies some
continuity property with respect to the Skorohod topology.

[Beiglböck, Henry-Labordère, Huesman 2014] proved a similar result for

cost functionals which are invariant under time change.
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Towards a model-independent Fundamental Theorem of
Asset Pricing

B. Bouchard, A. Cox, M. Davis, D. Hobson, M. Nutz...

We now assume that the financial market is given by some
R+-valued discrete time process S = (St)

T
t=0, where S0 and T are

fixed. We do not specify further the model and/or a probabilistic
base for S , except that we prescribe the law of the terminal value
ST , denoted by µT , which we assume to have finite first moment
and barycenter S0.
Let (ϕn)Nn=0 be exotic options, given by continuous functions
ϕn = ϕn(s0, s1, . . . , sN) which are at most of linear growth. We
suppose that all ϕn can be traded at time 0 and assume w.l.g. that
their price equals zero.



Definition

S allows for model-independentent arbitrage if there are real scalars
a1, . . . , aN , and continuous bounded functions ∆t(s1, . . . , st−1) such that

N∑
n=1

anϕn(s1, . . . , sT ) +
T∑
t=1

∆t(s1, . . . , st−1)[st−1 − st ] > 0,

for all (s1, . . . , sT ) ∈ RT .

Definition

For given S , a market compatible martingale measure is a measure π on
RT such that the coordinate process is a π-martingale, the law of the last
coordinate ST equals µT , and such that Eπ(ϕn) = 0 for n = 1, . . . ,N.
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Theorem [Acciaio, Beiglböck, Penkner, S. 12]

Under the above assumptions the following statements are equivalent.
(i) S does not allow for model-independent arbitrage
(ii) There exists a market compatible martingale measure on RT .

[Bouchard, Nutz 2013] recently proved a remarkable result in a similar

spirit, but based on the more flexible notion of quasi-sure convergence.
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Joyeux anniversaire,
cher Ivar!


