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The Equations

Oru(t, q) + H(q, 0qu(t, q)) = 0 (HJ)

unknown : u(t,q) : R x RY — R
initial condition u(0, q) = uo(q).
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The Equations

Oru(t, q) + H(q, 0qu(t, q)) = 0 (HJ)

unknown : u(t,q) : R x RY — R
initial condition u(0, q) = uo(q).

Hamiltonian system on R2¢

qg=0pH(q,p) , p=—0qH(q,p) (SH)

Hamiltonian action of the curve (Q(t), P(t)):

AL(Q, P) = /0 "P(s) - O(s) — H(s., Q(s). P(s))ds
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Geometry of the Equations
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graph of Oqu(t, q).
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Geometry of the Equations
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u(t, q) = u(0, Q(0)) + A5(Q, P)
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Geometry of the Equations
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smooth solutions
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smooth solutions

Y

q
u(t,q) = u(0, Q(0)) + AH(Q, P)



No smooth solution
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no smooth solution
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No smooth solution

Y

shock!
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Quantitative statement

We assume the existence of A > 0 such that

|H(q, p)| < A(1+|p[%), |dH(q,p)| < A(L+|pl). |d*H(q,p)| < A.

Theorem

If fy is C? and |d®fy| < K, then there exists T > 0, which depends
only on A and K, such that (HJ) has a C? solution f on
[0, T] x RY with initial condition fy.
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Variational solutions

Definition (Variational solution)

A variational solution of (HJ) (with smooth initial condition wup) is
a function g(t, g) such that, for each (t, q), the real g(t,q) is a
critical value of the functional

(Q, P) = uwo(Q(0)) + Ag(Q, P)

on the space of curves such that Q(t) = g. In other words, for
each (t, q), there exists an orbit (Q, P) of the Hamiltonian system
such that

Q(t)=q , P(0)=du(Q(0))

g(t, q) = uw(Q(0)) + Ag(Q, P)
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Variational solutions exist

Theorem (Chaperon, Viterbo)

If ug is a C? initial condition, then there exists a Lipschitz
variational solution g(t,x) : [0,00) x RY — R? of (HJ). This
function is also a solution almost everywhere of the equation.
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Variational solutions exist

Theorem (Chaperon, Viterbo)

If ug is a C? initial condition, then there exists a Lipschitz
variational solution g(t, x) : [0,00) x R — R? of (HJ). This
function is also a solution almost everywhere of the equation.

More precisely, there exists a family Gt,t > 0 of maps from
C%(RY) to Lip(RY) such that the function (t,q) — Gtu(q) is a
Lipschitz variational solution and such that

(1) u<v= G'u< Glv.
(2) G%(c + u) = c + Gtu for all constant c.
(3) Ifu(t,q) is a C? solution, then GSu; = ugys.

(1) and (2) imply that ||G'u — G'v||co < |Ju — V|| co.

Patrick Bernard Ekeland 70



Nonsmooth initial condition

The maps Gt extend to C°(R9), and take values in CO(RY).
We shall rather consider its restriction
Gt : Lip(RY) — Lip(RY).

If up is Lipschitz, then g(t, q) := G'up(q) is a variational solution
in the following sense:
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Nonsmooth initial condition

The maps Gt extend to C°(R9), and take values in CO(RY).
We shall rather consider its restriction
Gt : Lip(RY) — Lip(RY).

If up is Lipschitz, then g(t, q) := G'up(q) is a variational solution
in the following sense:

Proposition

For each (t, q) there exists a trajectory (Q, P) of (HS) such that
Q(t)=q , P(0) € duo(Q(0))

g(t7 q) = UO(Q(O)) + "46(07 P)
where Oug(Q(0)) is the Clarke differential of uy.
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Clarke differential

The Clarke differential u(x) of a Lipschitz function on R at a
point x is the compact subset of R generated by limits of
sequences of the form du(q,)), gn — q.

p
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Viscosity solutions

Does the semi-group property G'*S = Gt o G* hold?
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Viscosity solutions

Does the semi-group property G'*S = Gt o G* hold?

There exists a unique family V', t > 0 of maps of Lip(R?) such
that

(1) u<v= Viug Vv,
2) V(c+ u) = c+ Gtu for all constant c.

(2)
(3) Ifu(t,q) is a C? solution, then VSuy = uys.
(4) VtHs = VEo Vs

For each up, the functions (t, q) — Vup(q) is the viscosity
solution of (HJ).
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Equality

The following properties are equivalent :
m "The" variational resolution G satisfies the semi-group
property.
m The viscosity solutions are variational.
m G=V.
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Equality

The following properties are equivalent :
m "The" variational resolution G satisfies the semi-group
property.
m The viscosity solutions are variational.
m G=V.
These properties are not true for all Hamiltonians. In general:

Theorem (Wei)

VE = limp—oo(GH/™)"
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The convex case

In the case where H is convex in p (with 6ng > 0) the equality
V = G holds.
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The convex case

In the case where H is convex in p (with 6ng > 0) the equality
V = G holds.

In this case, there is an underlying optimisation problem and the
Lax-Oleinik formula holds:

Vtuo(q) = Gtuo(q) = mén (uo(Q(0)) + AH(Q, Pg))
on curves @ such that Q(t) = g. Here

Po(s) = argmax(p - Q(s) — H(Q(s), p))-
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The convex case

In the case where H is convex in p (with 8ng > 0) the equality
V = G holds.

In this case, there is an underlying optimisation problem and the
Lax-Oleinik formula holds:

Vtuo(q) = Gtuo(q) = mén (uo(Q(0)) + AH(Q, Pg))
on curves @ such that Q(t) = g. Here

Po(s) = argmax(p - Q(s) — H(Q(s), p))-

In particular, Gfug(q) is the smallest critical value of the functional
ug + A.
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The Hopf formula

If H(q, p) = h(p), and ug is convex, then

G'uo(q) = Viu(q) = sup (p-q—up(p) — th(p))
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The Hopf formula

If H(q, p) = h(p), and ug is convex, then

G'uo(q) = Viu(q) = sup (p-q—up(p) — th(p))

uo(q) = sup pq — ug(p) = sup fo(q)
P p
and, for each p,

G'(fp) = Vi (fp) = pq — u5(p) — th(p).
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The Hopf formula

If H(q, p) = h(p), and ug is convex, then

G'uo(q) = Viu(q) = sup (p-q—up(p) — th(p))

uo(q) = sup pq — ug(p) = sup f5(q)
P p
and, for each p,
G'(fp) = V(f,) = pq — ug(p) — th(p).

In this case, G'up(q) is the largest critical value of up + A.
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Generalized Hopf setting

H(q, p) is arbitrary and ug is semi-concave.
It means that there exists K > 0 such that g — up(q) — K||q||? is
concave.

Theorem

There exists T > 0 (which depends only on A and K) such that,
for t € [0, T],

G'uo(q) is the smallest critical value of the functional

(Q, P) — uo(Q(0)) + A(Q. P)

with endpoint Q(t) = q.
Viug < Gtug
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Generalized Hopf setting

A function is semi-concave if and only if it can be written as a
minimum of C? functions.

More precisely, there exists a family Fo C C? such that

Uup = min fy
fo€Fo

and ||d?fy(q)|| < K for each g € RY, f € Fo.
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Generalized Hopf setting

A function is semi-concave if and only if it can be written as a
minimum of C? functions.
More precisely, there exists a family Fo C C? such that

= min £
and ||d?fy(q)|| < K for each g € RY, f € Fo.
There exists T > 0 (which depends only on A and K) such that
the Cauchy problem for (HJ) with initial condition fo has a C?

solution f on [0, T] x RY, for each f € Fy. We call
F € C%([0, T] x RY,R) the set of these solutions.
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Generalized Hopf setting

Compare mingcr f, g, and v.
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Generalized Hopf setting

Compare mingcr f, g, and v.
In the Hopf setting (functions fy linear, H independant from q),

they are equal.
We will see that it's not true in general.
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Generalized Hopf setting

Compare mingcr f, g, and v.
In the Hopf setting (functions fy linear, H independant from q),

they are equal.
We will see that it's not true in general.
For each fy € Fg, we have fy > ug hence

fo=G'fh > Glug , fr=V'h>Gup
minf >g , minf>v
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The main Lemma

Lemma
Assume that the set F, C C? is sufficiently large for the following
property to hold:

For each q € RY, and each p € dup(q), there exists fy € Fq such
that

fo(q) = wo(q) , dfo(q) = p.

Then for each (t,q),t < T, each critical value of ug + A under the
constraint Q(t) = q is of the form f(t,q) for some f € F.
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that
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m Such a F exists.
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m Each critical point of ug + A is larger than minscr f = g.
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The main Lemma

Lemma

Assume that the set F, C C? is sufficiently large for the following
property to hold:

For each q € RY, and each p € dup(q), there exists fy € Fq such
that

fo(q) = wo(q) , dfo(q) = p.

Then for each (t,q),t < T, each critical value of ug + A under the
constraint Q(t) = q is of the form f(t,q) for some f € F.

B =g 2=minferf = g=minfepf.

m Such a F exists.

B g=minerf > v.

m Each critical point of ug + A is larger than minscr f = g.

m Theorem is proved.
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Proof of the Lemma

q -
(t.a) . C=u(Q(0))+ A (Q,P)
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Proof of the Lemma

Y

q -

fo € Fy such that 7,(Q(0)) = ug(Q(0)) and dfy(Q(0)) = P(0).
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Proof of the Lemma

P

q * .
F(t.9) = H(Q0) + A(Q, P)
= up(Q(0)) + A5(Q,P)=C
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AN

uo H(q, p) = h(p)
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AN

o H(q, p) = h(p)
Valentine Roos (extrapolating on Qiaoling Wei) proved that v < g:
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