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The Equations

∂tu(t, q) + H(q, ∂qu(t, q)) = 0 (HJ)

unknown : u(t, q) : R× Rd −→ R
initial condition u(0, q) = u0(q).

Hamiltonian system on R2d

q̇ = ∂pH(q, p) , ṗ = −∂qH(q, p) (SH)

Hamiltonian action of the curve (Q(t),P(t)):

At
0(Q,P) :=

∫ t

0
P(s) · Q̇(s)− H(s,Q(s),P(s))ds
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No smooth solution
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No smooth solution
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Quantitative statement

We assume the existence of A > 0 such that

|H(q, p)| 6 A(1+|p|2), |dH(q, p)| 6 A(1+|p|), |d2H(q, p)| 6 A.

Theorem

If f0 is C 2 and |d2f0| 6 K , then there exists T > 0, which depends
only on A and K , such that (HJ) has a C 2 solution f on
[0,T ]× Rd with initial condition f0.
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Variational solutions

Definition (Variational solution)

A variational solution of (HJ) (with smooth initial condition u0) is
a function g(t, q) such that, for each (t, q), the real g(t, q) is a
critical value of the functional

(Q,P) 7→ u0(Q(0)) +At
0(Q,P)

on the space of curves such that Q(t) = q. In other words, for
each (t, q), there exists an orbit (Q,P) of the Hamiltonian system
such that

Q(t) = q , P(0) = du0(Q(0))

g(t, q) = u0(Q(0)) +At
0(Q,P)
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Variational solutions exist

Theorem (Chaperon, Viterbo)

If u0 is a C 2 initial condition, then there exists a Lipschitz
variational solution g(t, x) : [0,∞)× Rd −→ Rd of (HJ). This
function is also a solution almost everywhere of the equation.

More precisely, there exists a family G t , t > 0 of maps from
C 2(Rd) to Lip(Rd) such that the function (t, q) 7−→ G tu(q) is a
Lipschitz variational solution and such that

(1) u 6 v ⇒ G tu 6 G tv.

(2) G t(c + u) = c + G tu for all constant c.

(3) If u(t, q) is a C 2 solution, then G sut = ut+s .

(1) and (2) imply that ‖G tu − G tv‖C0 6 ‖u − v‖C0 .
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Nonsmooth initial condition

The maps G t extend to C 0(Rd), and take values in C 0(Rd).

We shall rather consider its restriction

G t : Lip(Rd) −→ Lip(Rd).

If u0 is Lipschitz, then g(t, q) := G tu0(q) is a variational solution
in the following sense:

Proposition

For each (t, q) there exists a trajectory (Q,P) of (HS) such that

Q(t) = q , P(0) ∈ ∂u0(Q(0))

g(t, q) = u0(Q(0)) +At
0(Q,P)

where ∂u0(Q(0)) is the Clarke differential of u0.

Patrick Bernard Ekeland 70



Nonsmooth initial condition

The maps G t extend to C 0(Rd), and take values in C 0(Rd).

We shall rather consider its restriction

G t : Lip(Rd) −→ Lip(Rd).

If u0 is Lipschitz, then g(t, q) := G tu0(q) is a variational solution
in the following sense:

Proposition

For each (t, q) there exists a trajectory (Q,P) of (HS) such that

Q(t) = q , P(0) ∈ ∂u0(Q(0))

g(t, q) = u0(Q(0)) +At
0(Q,P)

where ∂u0(Q(0)) is the Clarke differential of u0.

Patrick Bernard Ekeland 70



Clarke differential

The Clarke differential ∂u(x) of a Lipschitz function on Rd at a
point x is the compact subset of Rd generated by limits of
sequences of the form du(qn)), qn −→ q.
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Viscosity solutions

Does the semi-group property G t+s = G t ◦ G s hold?

Theorem

There exists a unique family V t , t > 0 of maps of Lip(Rd) such
that

(1) u 6 v ⇒ V tu 6 V tv.

(2) V t(c + u) = c + G tu for all constant c.

(3) If u(t, q) is a C 2 solution, then V sut = ut+s .

(4) V t+s = V t ◦ V s

For each u0, the functions (t, q) 7−→ V tu0(q) is the viscosity
solution of (HJ).
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Equality

The following properties are equivalent :

”The” variational resolution G satisfies the semi-group
property.

The viscosity solutions are variational.

G = V .

These properties are not true for all Hamiltonians. In general:

Theorem (Wei)

V t = limn−→∞(G t/n)n
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The convex case

In the case where H is convex in p (with ∂2
ppH > 0) the equality

V = G holds.

In this case, there is an underlying optimisation problem and the
Lax-Oleinik formula holds:

V tu0(q) = G tu0(q) = min
Q

(
u0(Q(0)) +At

0(Q,PQ)
)

on curves Q such that Q(t) = q. Here

PQ(s) = argmax
(
p · Q̇(s)− H(Q(s), p)

)
.

In particular, G tu0(q) is the smallest critical value of the functional
u0 +A.

Patrick Bernard Ekeland 70



The convex case

In the case where H is convex in p (with ∂2
ppH > 0) the equality

V = G holds.
In this case, there is an underlying optimisation problem and the
Lax-Oleinik formula holds:

V tu0(q) = G tu0(q) = min
Q

(
u0(Q(0)) +At

0(Q,PQ)
)

on curves Q such that Q(t) = q. Here

PQ(s) = argmax
(
p · Q̇(s)− H(Q(s), p)

)
.

In particular, G tu0(q) is the smallest critical value of the functional
u0 +A.

Patrick Bernard Ekeland 70



The convex case

In the case where H is convex in p (with ∂2
ppH > 0) the equality

V = G holds.
In this case, there is an underlying optimisation problem and the
Lax-Oleinik formula holds:

V tu0(q) = G tu0(q) = min
Q

(
u0(Q(0)) +At

0(Q,PQ)
)

on curves Q such that Q(t) = q. Here

PQ(s) = argmax
(
p · Q̇(s)− H(Q(s), p)

)
.

In particular, G tu0(q) is the smallest critical value of the functional
u0 +A.

Patrick Bernard Ekeland 70



The Hopf formula

Theorem

If H(q, p) = h(p), and u0 is convex, then

G tu0(q) = V tu0(q) = sup
p

(
p · q − u∗0(p)− th(p)

)

u0(q) = sup
p

pq − u∗0(p) = sup
p

fp(q)

and, for each p,

G t(fp) = V t(fp) = pq − u∗0(p)− th(p).

In this case, G tu0(q) is the largest critical value of u0 +A.
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Generalized Hopf setting

H(q, p) is arbitrary and u0 is semi-concave.
It means that there exists K > 0 such that q 7−→ u0(q)−K‖q‖2 is
concave.

Theorem

There exists T > 0 (which depends only on A and K) such that,
for t ∈ [0,T ],

1 G tu0(q) is the smallest critical value of the functional

(Q,P) 7−→ u0(Q(0)) +At
0(Q,P)

with endpoint Q(t) = q.

2 V tu0 6 G tu0
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Generalized Hopf setting

A function is semi-concave if and only if it can be written as a
minimum of C 2 functions.
More precisely, there exists a family F0 ⊂ C 2 such that

u0 = min
f0∈F0

f0

and ‖d2f0(q)‖ 6 K for each q ∈ Rd , f0 ∈ F0.

There exists T > 0 (which depends only on A and K ) such that
the Cauchy problem for (HJ) with initial condition f0 has a C 2

solution f on [0,T ]× Rd , for each f ∈ F0. We call
F ∈ C 2([0,T ]× Rd ,R) the set of these solutions.
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Generalized Hopf setting

Compare minf ∈F f , g , and v .

In the Hopf setting (functions f0 linear, H independant from q),
they are equal.
We will see that it’s not true in general.
For each f0 ∈ F0, we have f0 > u0 hence

ft = G t f0 > G tu0 , ft = V t f0 > G tu0

min f > g , min f > v
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The main Lemma

Lemma

Assume that the set F0 ⊂ C 2 is sufficiently large for the following
property to hold:
For each q ∈ Rd , and each p ∈ ∂u0(q), there exists f0 ∈ F0 such
that

f0(q) = u0(q) , df0(q) = p.

Then for each (t, q), t 6 T , each critical value of u0 +A under the
constraint Q(t) = q is of the form f (t, q) for some f ∈ F .

⇒ g > minf ∈F f ⇒ g = minf ∈F f .

Such a F0 exists.

g = minf ∈F f > v .

Each critical point of u0 +A is larger than minf ∈F f = g .

Theorem is proved.
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Proof of the Lemma
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Proof of the Lemma
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f (t, q) = f0(Q(0)) +At
0(Q,P)

= u0(Q(0)) +At
0(Q,P) = C
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Example
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p

u0 H(q, p) = h(p)

Valentine Roos (extrapolating on Qiaoling Wei) proved that v < g :
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