Variational and viscosity solutions of the Hamilton-Jacobi equation

Patrick Bernard

June 19, 2014

The Equations

$$
\begin{equation*}
\partial_{t} u(t, q)+H\left(q, \partial_{q} u(t, q)\right)=0 \tag{HJ}
\end{equation*}
$$

unknown : $u(t, q): \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$ initial condition $u(0, q)=u_{0}(q)$.

The Equations

$$
\begin{equation*}
\partial_{t} u(t, q)+H\left(q, \partial_{q} u(t, q)\right)=0 \tag{HJ}
\end{equation*}
$$

unknown : $u(t, q): \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$
initial condition $u(0, q)=u_{0}(q)$.
Hamiltonian system on $\mathbb{R}^{2 d}$

$$
\begin{equation*}
\dot{q}=\partial_{p} H(q, p) \quad, \quad \dot{p}=-\partial_{q} H(q, p) \tag{SH}
\end{equation*}
$$

The Equations

$$
\begin{equation*}
\partial_{t} u(t, q)+H\left(q, \partial_{q} u(t, q)\right)=0 \tag{HJ}
\end{equation*}
$$

unknown : $u(t, q): \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$
initial condition $u(0, q)=u_{0}(q)$.
Hamiltonian system on $\mathbb{R}^{2 d}$

$$
\begin{equation*}
\dot{q}=\partial_{p} H(q, p) \quad, \quad \dot{p}=-\partial_{q} H(q, p) \tag{SH}
\end{equation*}
$$

Hamiltonian action of the curve $(Q(t), P(t))$:

$$
\mathcal{A}_{0}^{t}(Q, P):=\int_{0}^{t} P(s) \cdot \dot{Q}(s)-H(s, Q(s), P(s)) d s
$$

Geometry of the Equations

graph of $\partial_{q} u(t, q)$.

Geometry of the Equations

Geometry of the Equations

Geometry of the Equations

$$
Q(t)=q \quad, \quad P(0)=\partial_{q} u(0, Q(0))
$$

smooth solutions

graph of $q \longmapsto \partial_{q} u_{0}(q)$

smooth solutions

No smooth solution

no smooth solution

No smooth solution

shock!

Quantitative statement

We assume the existence of $A>0$ such that $|H(q, p)| \leqslant A\left(1+|p|^{2}\right), \quad|d H(q, p)| \leqslant A(1+|p|), \quad\left|d^{2} H(q, p)\right| \leqslant A$.

Theorem

If f_{0} is C^{2} and $\left|d^{2} f_{0}\right| \leqslant K$, then there exists $T>0$, which depends only on A and K, such that (HJ) has a C^{2} solution f on $[0, T] \times \mathbb{R}^{d}$ with initial condition f_{0}.

Variational solutions

Definition (Variational solution)

A variational solution of (HJ) (with smooth initial condition u_{0}) is a function $g(t, q)$ such that, for each (t, q), the real $g(t, q)$ is a critical value of the functional

$$
(Q, P) \mapsto u_{0}(Q(0))+\mathcal{A}_{0}^{t}(Q, P)
$$

on the space of curves such that $Q(t)=q$. In other words, for each (t, q), there exists an orbit (Q, P) of the Hamiltonian system such that

$$
\begin{gathered}
Q(t)=q \quad, \quad P(0)=d u_{0}(Q(0)) \\
g(t, q)=u_{0}(Q(0))+\mathcal{A}_{0}^{t}(Q, P)
\end{gathered}
$$

Variational solutions exist

Theorem (Chaperon, Viterbo)

If u_{0} is a C^{2} initial condition, then there exists a Lipschitz variational solution $g(t, x):[0, \infty) \times \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$ of $(H J)$. This function is also a solution almost everywhere of the equation.

Variational solutions exist

Theorem (Chaperon, Viterbo)

If u_{0} is a C^{2} initial condition, then there exists a Lipschitz variational solution $g(t, x):[0, \infty) \times \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$ of $(H J)$. This function is also a solution almost everywhere of the equation.

More precisely, there exists a family $G^{t}, t \geqslant 0$ of maps from $C^{2}\left(\mathbb{R}^{d}\right)$ to $\operatorname{Lip}\left(\mathbb{R}^{d}\right)$ such that the function $(t, q) \longmapsto G^{t} u(q)$ is a Lipschitz variational solution and such that
(1) $u \leqslant v \Rightarrow G^{t} u \leqslant G^{t} v$.
(2) $G^{t}(c+u)=c+G^{t} u$ for all constant c.
(3) If $u(t, q)$ is a C^{2} solution, then $G^{s} u_{t}=u_{t+s}$.
(1) and (2) imply that $\left\|G^{t} u-G^{t} v\right\|_{C^{0}} \leqslant\|u-v\|_{C^{0}}$.

Nonsmooth initial condition

The maps G^{t} extend to $C^{0}\left(\mathbb{R}^{d}\right)$, and take values in $C^{0}\left(\mathbb{R}^{d}\right)$.
We shall rather consider its restriction

$$
G^{t}: \operatorname{Lip}\left(\mathbb{R}^{d}\right) \longrightarrow \operatorname{Lip}\left(\mathbb{R}^{d}\right)
$$

If u_{0} is Lipschitz, then $g(t, q):=G^{t} u_{0}(q)$ is a variational solution in the following sense:

Nonsmooth initial condition

The maps G^{t} extend to $C^{0}\left(\mathbb{R}^{d}\right)$, and take values in $C^{0}\left(\mathbb{R}^{d}\right)$.
We shall rather consider its restriction

$$
G^{t}: \operatorname{Lip}\left(\mathbb{R}^{d}\right) \longrightarrow \operatorname{Lip}\left(\mathbb{R}^{d}\right)
$$

If u_{0} is Lipschitz, then $g(t, q):=G^{t} u_{0}(q)$ is a variational solution in the following sense:

Proposition

For each (t, q) there exists a trajectory (Q, P) of $(H S)$ such that

$$
\begin{aligned}
& Q(t)=q \quad, \quad P(0) \in \partial u_{0}(Q(0)) \\
& g(t, q)=u_{0}(Q(0))+\mathcal{A}_{0}^{t}(Q, P)
\end{aligned}
$$

where $\partial u_{0}(Q(0))$ is the Clarke differential of u_{0}.

Clarke differential

The Clarke differential $\partial u(x)$ of a Lipschitz function on \mathbb{R}^{d} at a point x is the compact subset of \mathbb{R}^{d} generated by limits of sequences of the form $\left.d u\left(q_{n}\right)\right), q_{n} \longrightarrow q$.

Clarke differential

The Clarke differential $\partial u(x)$ of a Lipschitz function on \mathbb{R}^{d} at a point x is the compact subset of \mathbb{R}^{d} generated by limits of sequences of the form $\left.d u\left(q_{n}\right)\right), q_{n} \longrightarrow q$.

Clarke differential

The Clarke differential $\partial u(x)$ of a Lipschitz function on \mathbb{R}^{d} at a point x is the compact subset of \mathbb{R}^{d} generated by limits of sequences of the form $\left.d u\left(q_{n}\right)\right), q_{n} \longrightarrow q$.

Viscosity solutions

Does the semi-group property $G^{t+s}=G^{t} \circ G^{s}$ hold?

Viscosity solutions

Does the semi-group property $G^{t+s}=G^{t} \circ G^{s}$ hold?

Theorem

There exists a unique family $V^{t}, t \geqslant 0$ of maps of $\operatorname{Lip}\left(\mathbb{R}^{d}\right)$ such that
(1) $u \leqslant v \Rightarrow V^{t} u \leqslant V^{t} v$.
(2) $V^{t}(c+u)=c+G^{t} u$ for all constant c.
(3) If $u(t, q)$ is a C^{2} solution, then $V^{s} u_{t}=u_{t+s}$.
(4) $V^{t+s}=V^{t} \circ V^{s}$

For each u_{0}, the functions $(t, q) \longmapsto V^{t} u_{0}(q)$ is the viscosity solution of (HJ).

Equality

The following properties are equivalent :
■ "The" variational resolution G satisfies the semi-group property.

- The viscosity solutions are variational.
- $G=V$.

Equality

The following properties are equivalent :
■ "The" variational resolution G satisfies the semi-group property.

- The viscosity solutions are variational.
- $G=V$.

These properties are not true for all Hamiltonians. In general:
Theorem (Wei)

$$
V^{t}=\lim _{n \longrightarrow \infty}\left(G^{t / n}\right)^{n}
$$

The convex case

In the case where H is convex in p (with $\left.\partial_{p p}^{2} H>0\right)$ the equality $V=G$ holds.

The convex case

In the case where H is convex in p (with $\left.\partial_{p p}^{2} H>0\right)$ the equality $V=G$ holds.
In this case, there is an underlying optimisation problem and the Lax-Oleinik formula holds:

$$
V^{t} u_{0}(q)=G^{t} u_{0}(q)=\min _{Q}\left(u_{0}(Q(0))+\mathcal{A}_{0}^{t}\left(Q, P_{Q}\right)\right)
$$

on curves Q such that $Q(t)=q$. Here

$$
P_{Q}(s)=\operatorname{argmax}(p \cdot \dot{Q}(s)-H(Q(s), p))
$$

The convex case

In the case where H is convex in p (with $\partial_{p p}^{2} H>0$) the equality $V=G$ holds.
In this case, there is an underlying optimisation problem and the Lax-Oleinik formula holds:

$$
V^{t} u_{0}(q)=G^{t} u_{0}(q)=\min _{Q}\left(u_{0}(Q(0))+\mathcal{A}_{0}^{t}\left(Q, P_{Q}\right)\right)
$$

on curves Q such that $Q(t)=q$. Here

$$
P_{Q}(s)=\operatorname{argmax}(p \cdot \dot{Q}(s)-H(Q(s), p))
$$

In particular, $G^{t} u_{0}(q)$ is the smallest critical value of the functional $u_{0}+\mathcal{A}$.

The Hopf formula

Theorem

If $H(q, p)=h(p)$, and u_{0} is convex, then

$$
G^{t} u_{0}(q)=V^{t} u_{0}(q)=\sup _{p}\left(p \cdot q-u_{0}^{*}(p)-t h(p)\right)
$$

The Hopf formula

Theorem

If $H(q, p)=h(p)$, and u_{0} is convex, then

$$
G^{t} u_{0}(q)=V^{t} u_{0}(q)=\sup _{p}\left(p \cdot q-u_{0}^{*}(p)-t h(p)\right)
$$

$$
u_{0}(q)=\sup _{p} p q-u_{0}^{*}(p)=\sup _{p} f_{p}(q)
$$

and, for each p,

$$
G^{t}\left(f_{p}\right)=V^{t}\left(f_{p}\right)=p q-u_{0}^{*}(p)-t h(p)
$$

The Hopf formula

Theorem

If $H(q, p)=h(p)$, and u_{0} is convex, then

$$
G^{t} u_{0}(q)=V^{t} u_{0}(q)=\sup _{p}\left(p \cdot q-u_{0}^{*}(p)-t h(p)\right)
$$

$$
u_{0}(q)=\sup _{p} p q-u_{0}^{*}(p)=\sup _{p} f_{p}(q)
$$

and, for each p,

$$
G^{t}\left(f_{p}\right)=V^{t}\left(f_{p}\right)=p q-u_{0}^{*}(p)-t h(p)
$$

In this case, $G^{t} u_{0}(q)$ is the largest critical value of $u_{0}+\mathcal{A}$.

Generalized Hopf setting

$H(q, p)$ is arbitrary and u_{0} is semi-concave.
It means that there exists $K>0$ such that $q \longmapsto u_{0}(q)-K\|q\|^{2}$ is concave.

Theorem

There exists $T>0$ (which depends only on A and K) such that, for $t \in[0, T]$,
$1 G^{t} u_{0}(q)$ is the smallest critical value of the functional

$$
(Q, P) \longmapsto u_{0}(Q(0))+\mathcal{A}_{0}^{t}(Q, P)
$$

with endpoint $Q(t)=q$.
$2 V^{t} u_{0} \leqslant G^{t} u_{0}$

Generalized Hopf setting

A function is semi-concave if and only if it can be written as a minimum of C^{2} functions.
More precisely, there exists a family $\mathcal{F}_{0} \subset C^{2}$ such that

$$
u_{0}=\min _{f_{0} \in \mathcal{F}_{0}} f_{0}
$$

and $\left\|d^{2} f_{0}(q)\right\| \leqslant K$ for each $q \in \mathbb{R}^{d}, f_{0} \in \mathcal{F}_{0}$.

Generalized Hopf setting

A function is semi-concave if and only if it can be written as a minimum of C^{2} functions.
More precisely, there exists a family $\mathcal{F}_{0} \subset C^{2}$ such that

$$
u_{0}=\min _{f_{0} \in \mathcal{F}_{0}} f_{0}
$$

and $\left\|d^{2} f_{0}(q)\right\| \leqslant K$ for each $q \in \mathbb{R}^{d}, f_{0} \in \mathcal{F}_{0}$.
There exists $T>0$ (which depends only on A and K) such that the Cauchy problem for (HJ) with initial condition f_{0} has a C^{2} solution f on $[0, T] \times \mathbb{R}^{d}$, for each $f \in \mathcal{F}_{0}$. We call $\mathcal{F} \in C^{2}\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$ the set of these solutions.

Generalized Hopf setting

Compare $\min _{f \in \mathcal{F}} f, g$, and v.

Generalized Hopf setting

Compare $\min _{f \in \mathcal{F}} f, g$, and v.
In the Hopf setting (functions f_{0} linear, H independant from q), they are equal.
We will see that it's not true in general.

Generalized Hopf setting

Compare $\min _{f \in \mathcal{F}} f, g$, and v.
In the Hopf setting (functions f_{0} linear, H independant from q), they are equal.
We will see that it's not true in general.
For each $f_{0} \in \mathcal{F}_{0}$, we have $f_{0} \geqslant u_{0}$ hence

$$
\begin{array}{cl}
f_{t}=G^{t} f_{0} \geqslant G^{t} u_{0} & , \quad f_{t}=V^{t} f_{0} \geqslant G^{t} u_{0} \\
\min f \geqslant g & , \quad \min f \geqslant v
\end{array}
$$

The main Lemma

Lemma

Assume that the set $\mathcal{F}_{0} \subset C^{2}$ is sufficiently large for the following property to hold:
For each $q \in \mathbb{R}^{d}$, and each $p \in \partial u_{0}(q)$, there exists $f_{0} \in \mathcal{F}_{0}$ such that

$$
f_{0}(q)=u_{0}(q) \quad, \quad d f_{0}(q)=p
$$

Then for each $(t, q), t \leqslant T$, each critical value of $u_{0}+\mathcal{A}$ under the constraint $Q(t)=q$ is of the form $f(t, q)$ for some $f \in \underline{\mathcal{F}}$.

The main Lemma

Lemma

Assume that the set $\mathcal{F}_{0} \subset C^{2}$ is sufficiently large for the following property to hold:
For each $q \in \mathbb{R}^{d}$, and each $p \in \partial u_{0}(q)$, there exists $f_{0} \in \mathcal{F}_{0}$ such that

$$
f_{0}(q)=u_{0}(q) \quad, \quad d f_{0}(q)=p
$$

Then for each $(t, q), t \leqslant T$, each critical value of $u_{0}+\mathcal{A}$ under the constraint $Q(t)=q$ is of the form $f(t, q)$ for some $f \in \underline{\mathcal{F}}$.

$$
■ \Rightarrow g \geqslant \min _{f \in \underline{\mathcal{F}}} f \Rightarrow g=\min _{f \in \underline{\mathcal{F}}} f
$$

The main Lemma

Lemma

Assume that the set $\mathcal{F}_{0} \subset C^{2}$ is sufficiently large for the following property to hold:
For each $q \in \mathbb{R}^{d}$, and each $p \in \partial u_{0}(q)$, there exists $f_{0} \in \mathcal{F}_{0}$ such that

$$
f_{0}(q)=u_{0}(q) \quad, \quad d f_{0}(q)=p
$$

Then for each $(t, q), t \leqslant T$, each critical value of $u_{0}+\mathcal{A}$ under the constraint $Q(t)=q$ is of the form $f(t, q)$ for some $f \in \underline{\mathcal{F}}$.
$■ \Rightarrow g \geqslant \min _{f \in \underline{\mathcal{F}}} f \Rightarrow g=\min _{f \in \underline{\mathcal{F}}} f$.
■ Such a $\underline{\mathcal{F}}_{0}$ exists.

The main Lemma

Lemma

Assume that the set $\mathcal{F}_{0} \subset C^{2}$ is sufficiently large for the following property to hold:
For each $q \in \mathbb{R}^{d}$, and each $p \in \partial u_{0}(q)$, there exists $f_{0} \in \mathcal{F}_{0}$ such that

$$
f_{0}(q)=u_{0}(q) \quad, \quad d f_{0}(q)=p
$$

Then for each $(t, q), t \leqslant T$, each critical value of $u_{0}+\mathcal{A}$ under the constraint $Q(t)=q$ is of the form $f(t, q)$ for some $f \in \underline{\mathcal{F}}$.
$■ \Rightarrow g \geqslant \min _{f \in \underline{\mathcal{F}}} f \Rightarrow g=\min _{f \in \underline{\mathcal{F}}} f$.
■ Such a $\underline{\mathcal{F}}_{0}$ exists.

- $g=\min _{f \in \underline{\mathcal{F}}} f \geqslant v$.

The main Lemma

Lemma

Assume that the set $\mathcal{F}_{0} \subset C^{2}$ is sufficiently large for the following property to hold:
For each $q \in \mathbb{R}^{d}$, and each $p \in \partial u_{0}(q)$, there exists $f_{0} \in \mathcal{F}_{0}$ such that

$$
f_{0}(q)=u_{0}(q) \quad, \quad d f_{0}(q)=p
$$

Then for each $(t, q), t \leqslant T$, each critical value of $u_{0}+\mathcal{A}$ under the constraint $Q(t)=q$ is of the form $f(t, q)$ for some $f \in \underline{\mathcal{F}}$.
$\square \Rightarrow g \geqslant \min _{f \in \underline{\mathcal{F}}} f \Rightarrow g=\min _{f \in \underline{\mathcal{F}}} f$.
■ Such a $\underline{\mathcal{F}}_{0}$ exists.

- $g=\min _{f \in \mathcal{F}} f \geqslant v$.

■ Each critical point of $u_{0}+\mathcal{A}$ is larger than $\min _{f \in \underline{\mathcal{F}}} f=g$.

The main Lemma

Lemma

Assume that the set $\mathcal{F}_{0} \subset C^{2}$ is sufficiently large for the following property to hold:
For each $q \in \mathbb{R}^{d}$, and each $p \in \partial u_{0}(q)$, there exists $f_{0} \in \mathcal{F}_{0}$ such that

$$
f_{0}(q)=u_{0}(q) \quad, \quad d f_{0}(q)=p
$$

Then for each $(t, q), t \leqslant T$, each critical value of $u_{0}+\mathcal{A}$ under the constraint $Q(t)=q$ is of the form $f(t, q)$ for some $f \in \underline{\mathcal{F}}$.
$\square \Rightarrow g \geqslant \min _{f \in \underline{\mathcal{F}}} f \Rightarrow g=\min _{f \in \underline{\mathcal{F}}} f$.

- Such a $\underline{\mathcal{F}}_{0}$ exists.
- $g=\min _{f \in \mathcal{F}} f \geqslant v$.

■ Each critical point of $u_{0}+\mathcal{A}$ is larger than $\min _{f \in \underline{\mathcal{F}}} f=g$.

- Theorem is proved.

Proof of the Lemma

Proof of the Lemma

$f_{0} \in \underline{\mathcal{F}}_{0}$ such that $f_{0}(Q(0))=u_{0}(Q(0))$ and $d f_{0}(Q(0))=P(0)$.

Proof of the Lemma

Example

u_{0}

$$
H(q, p)=h(p)
$$

Example

$$
u_{0} \quad H(q, p)=h(p)
$$

Valentine Roos (extrapolating on Qiaoling Wei) proved that $v<g$:

Example

Example

Example

