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KAM for PDEs

Two main frontiers of KAM theory for PDEs:
© PDEs in higher space dimension

(NLW) Hamiltonian nonlinear wave equation

U — Au+ V(x)u = 8,F(x,u), xeT9, ueR,

(NLS) Hamiltonian nonlinear Schrédinger equation

ivy — Au+ V(x)u = 0zF(x, u), xeTe ueC,

- KP, etc...
@ 1-d PDEs with derivatives, Quasi-linear, fully-nonlinear PDEs

(KdV) Quasi-linear Hamiltonian KdV

Up + Uy + Oy s + N (X, u, Uy, Usx, Uxxx) =0, x €T

- Elasticity, Klein Gordon, ...
- Water Waves . ..



KAM for PDEs

KAM for PDEs

e Nonlinear wave equation (NLW), d > 1, Philippe Bolle
e Nonlinear Schrodinger equation (NLS), d > 1
@ any space dimension x € T, d > 1
@ Hamiltonian PDEs, semi-linear nonlinearities f(x, u)
© existence of quasi-periodic solutions,
© no-reducibility results, no informations on Lyapunov
exponents/stability

o 1-d derivative wave eq., Luca Biasco, Michela Procesi
Quasi-linear KdV, Pietro Baldi, Riccardo Montalto
@ 1-space dimension x € T!
@ other algebraic structures: reversibililty, ...
© quasi-linear/ fully-nonlinear
© reducibility results, informations on Lyapunov
exponents/stability, ...



KAM for PDEs

Techniques:
@ NASH-MOSER IMPLICIT FUNCTION THEOREMS
o KAM (KOLMOGOROV-ARNOLD-MOSER) THEORY

o KEY: NEW PERTURBATIVE SPECTRAL ANALYSIS FOR THE
LINEARIZED PDE ON APPROXIMATE SOLUTIONS



KAM for PDEs

atu+uxxx_3axu2+/\/4(x7 u, Ux-/UXXaUxxx):O: xeT

Quasi-linear Hamiltonian perturbation

_/\/4 = —8X{(8uf)(x, u, Ux)} + axx{(auxf)(xa u, UX)}

N4 - a0(X7 u, Uy, Uxx) + al(X7 u, Uy, UXX)UXXX

Na(x, eu, ey, Elix, Eli) = O(e*), € — 0

f(x, u, ux) = O(|u)]® + |ux|®), f € CI(T x R x R, R)

Physically relevant for perturbative derivation from water-waves

e Control the effect of N = O(c%0,x) over INFINITE times. . .



KAM for PDEs

Hamiltonian PDE
ur = Xp(u), Xu(u):= 0V 2H(u)

Hamiltonian KdV

2
H = %+u3+f(x, u, uy )dx
T

HA(T) == {u(x) € HY(T,R) : [y u(x)dx =0}

A

Non-degenerate symplectic form:

Q(u,v) = [p(05tu) vdx




KAM for PDEs

Goal: look for small amplitude quasi-periodic solutions

Definition: quasi-periodic solution with n frequencies

u(t, x) = U(wt, x) where U(p,x) : T" x T — R,
w € R"(= frequency vector) is irrational w- k #0, Vk € Z" \ {0}
= the linear flow {wt}+cgr is DENSE on T”

The torus-manifold
T" 5 ¢ — U(y, x) € phase space
is invariant under the flow evolution of the PDE:

®foU=UoW!

" linear rotation” : Wt :T"3 ¢ — p+wteT"




KAM for PDEs

Linear Airy eq.

Us + Uy = 0, xeT

Solutions: (superposition principle)

u(t,x)= Y ajeij3teijx

JEZ\{0}

Eigenvalues j3 = "NORMAL FREQUENCIES"
Eigenfunctions: e¥* = "NORMAL MODES"

All solutions are 27~ periodic in time: COMPLETELY RESONANT )

= Quasi-periodic solutions are a completely nonlinear phenomenon



KAM for PDEs

KdV is completely integrable

Up + Uspe — 30502 =0

3 infinitely many prime integrals (Lax). "Action-angle" variables:

Birkhoff-coordinates, Kappeler, analytic symplectic diffeo

V:u(x) — (uj)jez Zjduj A dij

New Hamiltonian system:

(HoW)(h, k,...), I: = 1|uj|? = actions
=0, G- WD), v arsy

li(t) = prime integrals; frequencies W;(/) depends on the actions /

All solutions are periodic, quasi-periodic, almost periodic ]




KAM for PDEs

Perturbed KdV

WHAT HAPPENS ADDING A SMALL PERTURBATION 7
(Poincare’: general problem of dynamics H(I) + eP(¢p, I))

@ KAM theory: most of these quasi-periodic solutions
persists?

@ Arnold Diffusion: are there solutions whose Sobolev
norm increases as t — +00?

© Birkhoff normal forms/Nekhoroshev theory: are there
upper bounds for the growth of the Sobolev norms?



KAM for PDEs
KAM theory
Kuksin '98, Kappeler-Poschel '03: KAM for KdV

Ut + Usxx + Uty + €0xf(x,u) =0 J

@ SEMILINEAR PERTURBATION Oxf(x, u)

@ Also true for Hamiltonian perturbations
U + Uxxx + Ulyx + 50X|6X‘1/2f(xv ‘0X|1/2u) =0
of order 2

3 — % > i? +j%, i # j = KdV gains up to 2 spatial derivatives J

© for QUASI-LINEAR KdV? OPEN PROBLEM



KAM for PDEs

Literature: KAM for "unbounded" perturbations

Liu-Yuan "10 for Hamiltonian DNLS (and Benjamin-Ono)
iup — Uy + Myu+ie f(u,0)uy =0

Zhang-Gao-Yuan '11 Reversible DNLS

iU + Uy = |uX]2u

Less dispersive = more difficult
Extending the Lyapunov-Schmidt approach of Craig-Wayne:

Bourgain '96, Derivative NLW

ytt_yxx"i_my“v‘yl?:(), m7£0,




KAM for PDEs

Existence and stability of quasi-periodic solutions:

Berti-Biasco-Procesi, Ann. Sci. ENS '13, Arch. Rat. Mech. '14

ytt—yxermy:g(X’y,yx,yt)v xeT

Reversibility in time-space

g(X7y>yX7_V) = g(XayayXa V)v g(_vav —Yx V) - g(X'/y'/yXa V)

It rules out the nonlinearities y3, y3. The DNLW equations

yttf}/Xermy:y?v )/tt*}/XXWLmy:y)?a J

do not possess periodic, quasi-periodic solutions



KAM for PDEs

For quasi-linear nonlinearities? Formation of singularities?
Lax '64, Klainermann-Majda '82, for quasi-linear wave eq.
Periodic solutions:

Rabinowitz '71: periodic solutions of

Vit — Yoo + aye = eF(X, Y, Ve, Y, Yex, Yoo Yet)

The small dissipation ay; allows the existence of periodic solutions!

looss-Plotinikov-Toland: '01-'10. Periodic solutions of

Gravity Water Waves with Finite or Infinite depth

New ideas for conjugation of linearized operator



Quasi-linear KdV

Main result:

@ Existence and stability of quasi-periodic solutions of KdV eq.
under QUASI-LINEAR HAMILTONIAN perturbations

OrlU ~+ Ussse — 30 U2+N(X, u, UxaUxx:Uxxx) =0 J

General method to develop KAM theory for 1-d quasi-linear PDEs



Quasi-linear KdV

Theorem ('14, P. Baldi, M. Berti, R. Montalto)

Let f € C9 (with q := q(n) large enough), f = O(|(u, ux)|?).
Then, for “generic” choices of the "TANGENTIAL SITES"

S:: {_.7n7'"7_.717.]_17"'7.7n} CZ\{O}

the Hamiltonian KdV equation
Ot + Uxxx — 30x U2+N4(X7 u, UX7UXX7UXXX) =0, xeT,

possesses small amplitude quasi-periodic solutions with Sobolev
regularity H®, s < q, of the form

u=30 /5T O 1 o(VE), w(€) =+ O(l€])

for a "Cantor-like" set of "initial conditions" £ € R" with density 1
at £ = 0. The linearized equations at these quasi-periodic solutions
are reduced to constant coefficients and are linearly stable.




Quasi-linear KdV

Remarks: a similar result holds for

cubic perturbations: a € R

OpU + Uss + Ox U + au® + Na(x, U, Uy, Usx, Uxxx) = 0

mKdV: focusing/defocusing
atU + Usxx £ 8XU3 +N4(X-/ U, Uy, Uxx, UXXX) =0

gKdV, generalized KdV (not integrable)

8l“U S (peas axup +N(X7 U, Ux, Uxx, UXXX) =0

by Birkhoff normal form techniques of Procesi-Procesi



Quasi-linear KdV

@ The restriction of C. is not technicall Outside: "Chaos",
"homoclinc/heteroclinics solutions", "Arnold Diffusion”, ...
"Growth of Sobolev norms in 2-d cubic NLS"

iy — Au = |ufPu, xeT?

Colliander-Keel-Staffilani-Takaoka-Tao, Invent. Math. 2010

@ For Differentiable nonlinearities f € C9 the "chaotic effects"
are stronger... and KAM theory more difficult



Quasi-linear KdV
Linear stability

(L): linearized equation 0:h = 0,0,V H(u(wt, x))h

hy + az(wt, X) hyx + az(wt, x) hux + a1(wt, x)hy + ag(wt,x)h =0

There exists a quasi-periodic (Floquet) change of variable
h=owt)(¢,n,v), YeT’  neR”, veHNLE

which transforms (L) into the constant coefficients system

W = b
=0
vi =ipjvi, j¢S, i eR

= n(t) =m0, vj(t) = vj(0)e"* = |[v(t)]ls = [|[v(0)]|s : stability



Quasi-linear KdV

Forced quasi-linear perturbations of Airy

Use w = AJ € R" as 1-dim. parameter

Theorem (Baldi, Berti, Montalto, Math. Annalen 2014)

Let & € R" diophantine. For every quasi-linear Hamiltonian
nonlinearity f the perturbed Airy equation

8i.Lu + aX)(XU + {;‘f(A(,?jt?X./ U, Uy, Uxx, UXXX) =0
has a small quasi-periodic solution u with frequency w = A& for all

AeC.C1/2,3/2], limic.| =1




Proof: forced case

Bifurcation problem: Let F : [0,£q) x HS — H*3 be

I7(&, 1) 1= < Bloti 3= Craedtl A B, 5%, W) W, Wy W) J

Look for u(yp, x) zeros F(e, u) = 0.

Small amplitude solutions:

F(0,0)=0,  D,F(0,0) = w -y + Oroex

eigenvectors: e¥el*  eigenvalues: i(—w - £ + j3)

Assumption: non-resonant case: small divisors

w3 > 2 Y(l,j))EZ"XZ,j#0,T>0

1+|[|7’ 9

= D,F(0,0) is invertible, but the inverse is unbounded:

(w-Bp+ Bex) *: H — H*™", 7:="L0SS OF DERIVATIVES"



Proof: forced case

Nash-Moser Implicit Function Theorem

Newton tangent method for zeros of F(u) =0 + "smoothing":
Upt1 = Up — Sn(Du]:)_l(un)]:(un)

where S, are regularizing operators (= "mollifiers")

@ Advantage: QUADRATIC scheme

lunsr = unlls < C(n)llun — un-—1]l2

= convergent also if C(n) — +o0

e Difficulty: invert (D,F)(u) in a whole neighborhood of the
expected solution with good tame estimates of the inverse



Proof: forced case

For KdV: linearized equation on an approximate solution

h — (DyF)(u,e)[h] ==
w + Oy + Osx + €(a3(0, X) O + a2(p, X)Oxxc + a1(ip, x)Ox + ao(¢, x))

@ Linear differential operator with non-constant coefficients
@ not diagonal in Fourier basis
@ "singular" perturbation problem: L;lT is unbounded

L, :=w- 0y, — Oxx



Proof: forced case

Key: spectral analysis of quasi-periodic operator

L= W'8¢+8XXX+33((P, X)8XXX‘|’32((P’ X)aXX—{_al(SDvX)aX‘}'aO((pa X)J

ai=0(e),i=0,1,2,3
Main problem: the non constant coefficients term as(, x) 0!

@ Usual KAM iterative scheme to diagonalize £ is unbounded!



Proof: forced case
|dea to conjugate L to a diagonal operator

© "REDUCTION IN DECREASING SYMBOLS"

L= ¢—1L‘¢ =w - 8(,0 = m3axxx + mOx + Ro J

o Ro(p,x) pseudo-differential operator of order 0, Ry = O(¢),
o m3 =14 O(¢), m = O(e), m,m3 € R, constants

Use Egorov type theorem!

@ "REDUCTION OF THE SIZE of Ry"

Ln=w-0y+ m3dpex + mdy +rW + R, J

o KAM quadratic scheme: R, = O(*"), r") = diagje, ("),



Proof: forced case

Higher order term

L:=w- 0y + Opx + £33(X) O J

STEP 1: Under the symplectic change of variables

Su = (1 + Bx(x))u(x + B(x)) J

we get

Ly:=071L0 = w9, + (P71 (1 +2a3)(1+ 5x)*) o + O(Ox)
= Ww- ({)*; + m30><><x + O(OXX)
imposing
(1 —+ 633)(1 + ,Bx)3 = m3,

There exist solution 5 = O(¢g), m3 = 1,
L1 has the leading order with CONSTANT COEFFICIENTS



Egorov theorem
A general approach for quasi-linear PDEs:

The family of symplectic transformations
u(x) = (14 Bx(x))u(x +76(x)), 7€][0,1],

are the flow of the time dependent Hamiltonian "transport eq."
B(x)
T = X 5 5 5 = ]-
Oru = Ox(b(1,x)u), b(T,x) T 7A. () (1)

How a pseudo-differential operator, here

PO = (]- + 633(X))8XXX 5 pO(Xvé) = 1(1 + 533(X))€3 5

transforms under the flow ®7 : HZ — Hg of (1) ?




Egorov theorem

Egorov Theorem:

The transformed operator
P(7) := ®§Po(®g)

is a pseudo-differential operator of the same order of Py, here 3,
whose principle symbol p(7, x, £) is obtained by the principal
symbol pg(x, &) = i(1 + ea3(x))E3 of Py, following the Hamiltonian
flow W7 : T x R +— T x R of the classical Hamiltonian

A := b(7, x)¢{ (associated to Oyu = b(T, x)Oxu + ...), namely

P(r) = Op(p(,x,i0x)) + ..., p(T,x,€) = po o W' (x,£)




PDEs in higher space dimension

PDEs in dimension d > 2

Main difficulties:

@ 1) the eigenvalues of —A + V/(x) appear in clusters of
increasing size

For example —AeV™ = |j|?eU then |j|? = |jo|?, j € Z¢

@ 2) The eigenfunctions of —A + V/(x) may be "NOT localized
with respect to exponentials"! (Feldman- Knérrer-Trubowitz)

— often used pseudo-PDE with Fourier multipliers

iuy — Au+ Myu=c¢ef, M,e¥* = m,e¥™>

and m, are used as parameters



PDEs in higher space dimension

Literature: d > 2: quasi-periodic solutions

e Newton method, 1" order Melnikov
e Bourgain, Annals '98, '05,
NLS and NLW with Fourier multipliers
e Wang, '11 completely resonant NLS-NLW,
o Berti-Bolle, '10-'12, forced NLS-NLW, finite regularity, V/(x)
multiplicative potential

o KAM theory: 2 order Melnikov

o Kuksin-Eliasson, Annals '10, NLS with Fourier multipliers
e Procesi-Procesi '11, completely resonant NLS



PDEs in higher space dimension

Forced NLS and NLW

We look for quasi-periodic solutions of Hamiltonian

(NLS) iuy — Au+ V(x)u = ef (wt, x, u) J

w=Ao, A=x1 J

in a FIXED diophantine direction

G0 > 3, Ve Z¥\ {0}, |

In FINITE DIMENSION Eliasson '89 and Bourgain '94



PDEs in higher space dimension

Theorem (M.Berti, Philippe Bolle, JEMS '11)

Existence: Js := s(d,v), k := k(d,v) € N, such that:
VYV, f € CK, there exist eg > 0, such that Y0 < € < ¢, there is

u(e,) € CH([1/2,3/2; H*) with  sup [lu(e,N)[s =0,
A€[1/2,3/2]

and a Cantor like set

C-C[1/2,3/2]  with lim|c.|=1,

such that, YA € C., u(e, \) is a solution of NLS with w = \&.
Regularity: If V f € C* then u € C* in space and time.

@ A similar result holds for NLW

(w-0,)%u — Au+ V(x)u = ef (i, x, u)



PDEs in higher space dimension
About the Proof

KEY STEP: For "most" parameters A € [1/2,3/2] the linearized
operator

Lc(N) = (M- 0,)2 — A+ V(x) + e(0uf) (e, x, u(ep, x))

is invertible and TAME estimate in HIGHER Sobolev norms, i.e.

ILZENAlls < lhllsarllulls, + 1l llulls, V5o < s < &

V.

o Step 1) L%-estimates: lower bounds for the eigenvalues of the
self adjoint operator £.(\): eigenvalues are smooth in
A€ [1/2,3/2]

o Step 2) Tame-estimates in high norm
KEY OBSERVATION: many eigenvalues are NOT small !



PDEs in higher space dimension

Separation properties of singular sites

Singular sites : (¢,j) € Z¥ x Z9 such that

NLW) | — (w- 02+ i[>+ m| < p ]

NLS) |—w-l+|j2+ml<p ]

must be more and more "rare" as p — 0

o (NLW) Integer points near a "cone"

@ (NLS) Integer points near a "paraboloid"

GROUP THE SINGULAR SITES INTO LARGE CLUSTERS



PDEs in higher space dimension

Next step:

KAM for autonomous NLW with multiplicative potential:

Uy — Au+ V(x)u = a(x)u® + O(u*)

in preparation with Philippe Bolle
Further difficulties:
- bifurcation analysis

- the tangential and the normal variables are coupled



Happy Birthday lvar!!
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