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Two main frontiers of KAM theory for PDEs:
1 PDEs in higher space dimension

(NLW) Hamiltonian nonlinear wave equation

utt −∆u + V (x)u = ∂uF (x , u) , x ∈ Td , u ∈ R ,

(NLS) Hamiltonian nonlinear Schrödinger equation

iut −∆u + V (x)u = ∂ūF (x , u) , x ∈ Td , u ∈ C ,

- KP, etc. . .
2 1-d PDEs with derivatives, Quasi-linear, fully-nonlinear PDEs

(KdV) Quasi-linear Hamiltonian KdV

ut + uxxx + ∂xu2 +N (x , u, ux , uxx , uxxx ) = 0 , x ∈ T

- Elasticity, Klein Gordon, . . .
- Water Waves . . .
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KAM for PDEs

Nonlinear wave equation (NLW), d ≥ 1, Philippe Bolle

Nonlinear Schrödinger equation (NLS), d ≥ 1
1 any space dimension x ∈ Td , d ≥ 1
2 Hamiltonian PDEs, semi-linear nonlinearities f (x , u)
3 existence of quasi-periodic solutions,
4 no-reducibility results, no informations on Lyapunov

exponents/stability

1-d derivative wave eq., Luca Biasco, Michela Procesi
Quasi-linear KdV, Pietro Baldi, Riccardo Montalto

1 1-space dimension x ∈ T1

2 other algebraic structures: reversibililty, ...
3 quasi-linear/ fully-nonlinear
4 reducibility results, informations on Lyapunov

exponents/stability, ...
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Techniques:
Nash-Moser implicit function theorems
KAM (Kolmogorov-Arnold-Moser) theory

Key: new perturbative spectral analysis for the
linearized PDE on approximate solutions
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KdV
∂tu + uxxx − 3∂xu2 +N4(x , u, ux , uxx , uxxx ) = 0 , x ∈ T

Quasi-linear Hamiltonian perturbation
N4 := −∂x{(∂uf )(x , u, ux )}+ ∂xx{(∂ux f )(x , u, ux )}

N4 = a0(x , u, ux , uxx ) + a1(x , u, ux , uxx )uxxx

N4(x , εu, εux , εuxx , εuxxx ) = O(ε4) , ε→ 0

f (x , u, ux ) = O(|u|5 + |ux |5), f ∈ Cq(T× R× R,R)

Physically relevant for perturbative derivation from water-waves

Control the effect of N4 = O(ε4∂xxx ) over infinite times. . .
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Hamiltonian PDE
ut = XH(u) , XH(u) := ∂x∇L2H(u)

Hamiltonian KdV

H =

∫
T

u2
x
2 + u3 + f (x , u, ux )dx

Phase space

H1
0 (T) :=

{
u(x) ∈ H1(T,R) :

∫
T u(x)dx = 0

}
Non-degenerate symplectic form:

Ω(u, v) :=
∫
T(∂−1

x u) v dx
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Goal: look for small amplitude quasi-periodic solutions

Definition: quasi-periodic solution with n frequencies
u(t, x) = U(ωt, x) where U(ϕ, x) : Tn × T→ R,

ω ∈ Rn(= frequency vector) is irrational ω · k 6= 0 , ∀k ∈ Zn \ {0}
=⇒ the linear flow {ωt}t∈R is dense on Tn

The torus-manifold

Tn 3 ϕ 7→ U(ϕ, x) ∈ phase space

is invariant under the flow evolution of the PDE:

Φt
H ◦ U = U ◦Ψt

ω

”linear rotation” : Ψt
ω : Tn 3 ϕ→ ϕ+ ωt ∈ Tn
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Linear Airy eq.

ut + uxxx = 0, x ∈ T

Solutions: (superposition principle)

u(t, x) =
∑

j∈Z\{0}
ajeij3teijx

Eigenvalues j3 = "normal frequencies"
Eigenfunctions: eijx = "normal modes"

All solutions are 2π- periodic in time: completely resonant

⇒ Quasi-periodic solutions are a completely nonlinear phenomenon
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KdV is completely integrable
ut + uxxx − 3∂xu2 = 0

∃ infinitely many prime integrals (Lax). "Action-angle" variables:

Birkhoff-coordinates, Kappeler, analytic symplectic diffeo

Ψ : u(x) 7→ (uj)j∈Z ,
∑

j
duj ∧ dūj

New Hamiltonian system:
(H ◦Ψ)(I1, I2, . . .) , Ij := 1

2 |uj |2 = actions
İj = 0 , ϕ̇j = Wj(I) , ϕj := arguj

Ij(t) = prime integrals; frequencies Wj(I) depends on the actions I

All solutions are periodic, quasi-periodic, almost periodic
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Perturbed KdV

What happens adding a small perturbation ?(
Poincare’: general problem of dynamics H(I) + εP(ϕ, I)

)
1 KAM theory: most of these quasi-periodic solutions
persists?

2 Arnold Diffusion: are there solutions whose Sobolev
norm increases as t → +∞?

3 Birkhoff normal forms/Nekhoroshev theory: are there
upper bounds for the growth of the Sobolev norms?



KAM for PDEs Quasi-linear KdV Proof: forced case Egorov theorem PDEs in higher space dimension

KAM theory

Kuksin ’98, Kappeler-Pöschel ’03: KAM for KdV

ut + uxxx + uux + ε∂x f (x , u) = 0

1 semilinear perturbation ∂x f (x , u)

2 Also true for Hamiltonian perturbations

ut + uxxx + uux + ε∂x |∂x |1/2f (x , |∂x |1/2u) = 0

of order 2

|j3 − i3| ≥ i2 + j2, i 6= j =⇒ KdV gains up to 2 spatial derivatives

3 for quasi-linear KdV? OPEN PROBLEM
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Literature: KAM for "unbounded" perturbations

Liu-Yuan ’10 for Hamiltonian DNLS (and Benjamin-Ono)
iut − uxx + Mσu + iε f (u, ū)ux = 0

Zhang-Gao-Yuan ’11 Reversible DNLS
iut + uxx = |ux |2u

Less dispersive =⇒ more difficult
Extending the Lyapunov-Schmidt approach of Craig-Wayne:

Bourgain ’96, Derivative NLW
ytt − yxx + my + y2

t = 0 , m 6= 0,
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Existence and stability of quasi-periodic solutions:

Berti-Biasco-Procesi, Ann. Sci. ENS ’13, Arch. Rat. Mech. ’14
ytt − yxx + my = g(x , y , yx , yt), x ∈ T

Reversibility in time-space
g(x , y , yx ,−v) = g(x , y , yx , v), g(−x , y ,−yx , v) = g(x , y , yx , v)

It rules out the nonlinearities y3
t , y3

x . The DNLW equations

ytt − yxx + my = y3
t , ytt − yxx + my = y3

x ,

do not possess periodic, quasi-periodic solutions
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For quasi-linear nonlinearities? Formation of singularities?
Lax ’64, Klainermann-Majda ’82, for quasi-linear wave eq.
Periodic solutions:
Rabinowitz ’71: periodic solutions of

ytt − yxx + αyt = εF (x , t, y , yt , yx , ytx , yxx , ytt)

The small dissipation αyt allows the existence of periodic solutions!

Iooss-Plotinikov-Toland: ’01-’10. Periodic solutions of
Gravity Water Waves with Finite or Infinite depth

New ideas for conjugation of linearized operator
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Main result:

Existence and stability of quasi-periodic solutions of KdV eq.
under quasi-linear Hamiltonian perturbations

∂tu + uxxx − 3∂x u2 +N (x , u, ux , uxx , uxxx ) = 0

General method to develop KAM theory for 1-d quasi-linear PDEs
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Theorem (’14, P. Baldi, M. Berti, R. Montalto)

Let f ∈ Cq (with q := q(n) large enough), f = O(|(u, ux )|5).
Then, for “generic” choices of the "tangential sites"

S := {−̄n , . . . ,−̄1, ̄1 , . . . , ̄n} ⊂ Z \ {0} ,

the Hamiltonian KdV equation
∂tu + uxxx − 3∂x u2 +N4(x , u, ux , uxx , uxxx ) = 0 , x ∈ T ,

possesses small amplitude quasi-periodic solutions with Sobolev
regularity Hs , s ≤ q, of the form

u =
∑

j∈S

√
ξj eiω∞j (ξ) teijx + o(

√
ξ), ω∞j (ξ) = j3 + O(|ξ|)

for a "Cantor-like" set of "initial conditions" ξ ∈ Rn with density 1
at ξ = 0. The linearized equations at these quasi-periodic solutions
are reduced to constant coefficients and are linearly stable.
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Remarks: a similar result holds for
cubic perturbations: a ∈ R

∂tu + uxxx + ∂xu2 + au3 +N4(x , u, ux , uxx , uxxx ) = 0

mKdV: focusing/defocusing
∂tu + uxxx ± ∂xu3 +N4(x , u, ux , uxx , uxxx ) = 0

gKdV, generalized KdV (not integrable)
∂tu + uxxx ± ∂xup +N (x , u, ux , uxx , uxxx ) = 0

by Birkhoff normal form techniques of Procesi-Procesi
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1 The restriction of Cε is not technical! Outside: "Chaos",
"homoclinc/heteroclinics solutions", "Arnold Diffusion", ....
"Growth of Sobolev norms in 2-d cubic NLS"

iut −∆u = |u|2u , x ∈ T2

Colliander-Keel-Staffilani-Takaoka-Tao, Invent. Math. 2010
2 For Differentiable nonlinearities f ∈ Cq the "chaotic effects"

are stronger... and KAM theory more difficult
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Linear stability

(L): linearized equation ∂th = ∂x∂u∇H(u(ωt, x))h
ht + a3(ωt, x)hxxx + a2(ωt, x)hxx + a1(ωt, x)hx + a0(ωt, x)h = 0

There exists a quasi-periodic (Floquet) change of variable

h = Φ(ωt)(ψ, η, v) , ψ ∈ Tν , η ∈ Rν , v ∈ Hs
x ∩ L2

S⊥

which transforms (L) into the constant coefficients system
ψ̇ = bη
η̇ = 0
v̇j = iµjvj , j /∈ S , µj ∈ R

=⇒ η(t) = η0, vj(t) = vj(0)eiµj t =⇒ ‖v(t)‖s = ‖v(0)‖s : stability
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Forced quasi-linear perturbations of Airy

Use ω = λ~ω ∈ Rn as 1-dim. parameter

Theorem (Baldi, Berti, Montalto, Math. Annalen 2014)
Let ~ω ∈ Rn diophantine. For every quasi-linear Hamiltonian
nonlinearity f the perturbed Airy equation

∂tu + ∂xxxu + εf (λ~ωt, x , u, ux , uxx , uxxx ) = 0

has a small quasi-periodic solution u with frequency ω = λ~ω for all

λ ∈ Cε ⊂ [1/2, 3/2] , lim
ε→0
|Cε| = 1
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Bifurcation problem: Let F : [0, ε0)× Hs → Hs−3 be

F(ε, u) := ω · ∂ϕu + ∂xxxu + εf (ϕ, x , u, ux , uxx , uxxx )

Look for u(ϕ, x) zeros F(ε, u) = 0.

Small amplitude solutions:
F(0, 0) = 0, DuF(0, 0) = ω · ∂ϕ + ∂xxx

eigenvectors: ei`·ϕeijx eigenvalues: i(−ω · `+ j3)

Assumption: non-resonant case: small divisors∣∣ω · `− j3
∣∣ ≥ γ

1+|`|τ , ∀(`, j) ∈ Zn × Z, j 6= 0, τ > 0

=⇒ DuF(0, 0) is invertible, but the inverse is unbounded:

(ω · ∂ϕ + ∂xxx )−1 : Hs → Hs−τ , τ := ”LOSS OF DERIVATIVES”
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Nash-Moser Implicit Function Theorem

Newton tangent method for zeros of F(u) = 0 + "smoothing":

un+1 := un − Sn(DuF)−1(un)F(un)

where Sn are regularizing operators (= "mollifiers")

Advantage: QUADRATIC scheme

‖un+1 − un‖s ≤ C(n)‖un − un−1‖2s

=⇒ convergent also if C(n)→ +∞
Difficulty: invert (DuF)(u) in a whole neighborhood of the
expected solution with good tame estimates of the inverse
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For KdV: linearized equation on an approximate solution

h→ (DuF)(u, ε)[h] :=

ω · ∂ϕ + ∂xxx + ε
(
a3(ϕ, x)∂xxx + a2(ϕ, x)∂xx + a1(ϕ, x)∂x + a0(ϕ, x)

)

Linear differential operator with non-constant coefficients
not diagonal in Fourier basis
"singular" perturbation problem: L−1

ω T is unbounded
Lω := ω · ∂ϕ − ∂xxx

T := a3(ϕ, x)∂xxx + a2(ϕ, x)∂xx + a1(ϕ, x)∂x + a0(ϕ, x)
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Key: spectral analysis of quasi-periodic operator

L = ω ·∂ϕ+∂xxx +a3(ϕ, x)∂xxx +a2(ϕ, x)∂xx +a1(ϕ, x)∂x +a0(ϕ, x)

ai = O(ε), i = 0, 1, 2, 3

Main problem: the non constant coefficients term a3(ϕ, x)∂xxx !

Usual KAM iterative scheme to diagonalize L is unbounded!
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Idea to conjugate L to a diagonal operator

1 "REDUCTION IN DECREASING SYMBOLS"

L1 := Φ−1LΦ = ω · ∂ϕ + m3∂xxx + m1∂x + R0

R0(ϕ, x) pseudo-differential operator of order 0, R0 = O(ε),
m3 = 1 + O(ε), m1 = O(ε), m1,m3 ∈ R, constants

Use Egorov type theorem!

2 "REDUCTION OF THE SIZE of R0"

Ln = ω · ∂ϕ + m3∂xxx + m1∂x + r (n) +Rn

KAM quadratic scheme: Rn = O(ε2n
), r (n) = diagj∈Z(r (n)

j ),
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Higher order term

L := ω · ∂ϕ + ∂xxx + εa3(x)∂xxx

STEP 1: Under the symplectic change of variables

Φu := (1 + βx (x))u(x + β(x))

we get

L1 := Φ−1LΦ = ω · ∂ϕ + (Φ−1(1 + εa3)(1 + βx )3)∂xxx + O(∂xx )

= ω · ∂ϕ + m3∂xxx + O(∂xx )

imposing
(1 + εa3)(1 + βx )3 = m3 ,

There exist solution β = O(ε), m3 ≈ 1,
L1 has the leading order with constant coefficients
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A general approach for quasi-linear PDEs:

The family of symplectic transformations

u(x) 7→ (1 + βx (x))u(x + τβ(x)) , τ ∈ [0, 1] ,

are the flow of the time dependent Hamiltonian "transport eq."

∂τu = ∂x (b(τ, x)u) , b(τ, x) :=
β(x)

1 + τβx (x)
(1)

Question:
How a pseudo-differential operator, here

P0 = (1 + εa3(x))∂xxx , p0(x , ξ) = i(1 + εa3(x))ξ3 ,

transforms under the flow Φτ
τ0 : Hs

x → Hs
x of (1) ?
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Egorov Theorem:
The transformed operator

P(τ) := Φτ
0P0(Φτ

0)−1

is a pseudo-differential operator of the same order of P0, here 3,
whose principle symbol p(τ, x , ξ) is obtained by the principal
symbol p0(x , ξ) = i(1 + εa3(x))ξ3 of P0, following the Hamiltonian
flow Ψτ

A : T× R 7→ T× R of the classical Hamiltonian
A := b(τ, x)ξ (associated to ∂τu = b(τ, x)∂xu + . . .), namely

P(τ) = Op(p(τ, x , i∂x )) + . . . , p(τ, x , ξ) = p0 ◦Ψτ,0
A (x , ξ)
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PDEs in dimension d ≥ 2

Main difficulties:

1) the eigenvalues of −∆ + V (x) appear in clusters of
increasing size

For example −∆eij·x = |j |2eij·x then |j |2 = |j0|2, j ∈ Zd

2) The eigenfunctions of −∆ + V (x) may be "NOT localized
with respect to exponentials"! (Feldman- Knörrer-Trubowitz)

=⇒ often used pseudo-PDE with Fourier multipliers

iut −∆u + Mσu = εf , Mσeij·x = mσeij·x

and mσ are used as parameters
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Literature: d ≥ 2: quasi-periodic solutions

Newton method, 1th order Melnikov
Bourgain, Annals ’98, ’05,
NLS and NLW with Fourier multipliers
Wang, ’11 completely resonant NLS-NLW,
Berti-Bolle, ’10-’12, forced NLS-NLW, finite regularity, V (x)
multiplicative potential

KAM theory: 2th order Melnikov
Kuksin-Eliasson, Annals ’10, NLS with Fourier multipliers
Procesi-Procesi ’11, completely resonant NLS
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Forced NLS and NLW

We look for quasi-periodic solutions of Hamiltonian

(NLS) iut −∆u + V (x)u = εf (ωt, x , u)

ω = λω̄ , λ ≈ 1

in a fixed diophantine direction

|ω̄ · `| ≥ γ0
|`|τ0 , ∀` ∈ Zν \ {0} ,

In finite dimension Eliasson ’89 and Bourgain ’94
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Theorem (M.Berti, Philippe Bolle, JEMS ’11)

Existence: ∃s := s(d , ν), k := k(d , ν) ∈ N, such that:
∀V , f ∈ Ck , there exist ε0 > 0, such that ∀0 < ε < ε0, there is

u(ε, ·) ∈ C1([1/2, 3/2];Hs) with sup
λ∈[1/2,3/2]

‖u(ε, λ)‖s
ε→0→ 0 ,

and a Cantor like set

Cε ⊂ [1/2, 3/2] with lim
ε→0
|Cε| = 1,

such that, ∀λ ∈ Cε, u(ε, λ) is a solution of NLS with ω = λω̄.
Regularity: If V , f ∈ C∞ then u ∈ C∞ in space and time.

A similar result holds for NLW

(ω · ∂ϕ)2u −∆u + V (x)u = εf (ϕ, x , u)
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About the Proof

Key step: For "most" parameters λ ∈ [1/2, 3/2] the linearized
operator

Lε(λ) := (λω̄ · ∂ϕ)2 −∆ + V (x) + ε(∂uf )(ϕ, x , u(ϕ, x))

is invertible and TAME estimate in HIGHER Sobolev norms, i.e.

‖L−1
ε (λ)h‖s ≤ ‖h‖s+τ‖u‖s0 + ‖h‖s0‖u‖s , ∀s0 ≤ s ≤ k

Step 1) L2-estimates: lower bounds for the eigenvalues of the
self adjoint operator Lε(λ): eigenvalues are smooth in
λ ∈ [1/2, 3/2]

Step 2) Tame-estimates in high norm
Key observation: many eigenvalues are not small !
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Separation properties of singular sites

Singular sites : (`, j) ∈ Zν × Zd such that

NLW) | − (ω · `)2 + |j |2 + m| < ρ

NLS) | − ω · `+ |j |2 + m| < ρ

must be more and more "rare" as ρ→ 0

(NLW) Integer points near a "cone"
(NLS) Integer points near a "paraboloid"

group the singular sites into large clusters
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Next step:

KAM for autonomous NLW with multiplicative potential:

utt −∆u + V (x)u = a(x)u3 + O(u4)

in preparation with Philippe Bolle
Further difficulties:
- bifurcation analysis
- the tangential and the normal variables are coupled
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Happy Birthday Ivar!!


	KAM for PDEs
	Quasi-linear KdV
	Proof: forced case
	Egorov theorem
	PDEs in higher space dimension

