Optimal Transportation: Economic Applications

Conference in honor of Ivar Ekeland

Pierre-André Chiappori

Columbia University
U. Paris Dauphine, June 2014

Matching models in economics

- Basic setting:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$
- Many to many: $s\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$
- Many to many: $s\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$
- Roommate $X=Y$, etc.

Matching models in economics

- Basic setting:
- Two heterogenous populations (X and Y)
- When matched, $x \in X$ and $y \in Y$ create a surplus $s(x, y)$
- Questions:
- Who matched with whom?
- How is the surplus allocated?
- Examples:
- Marriage market (X women, Y men)
- Labor contract (X workers, Y employers)
- Credit (X firms, Y banks)
- Hedonic models (X buyers, Y sellers, Z products), etc.
- Extensions:
- Many to one: $s\left(x_{1}, \ldots, x_{n}, y\right)$
- Many to many: $s\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$
- Roommate $X=Y$, etc.
- This presentation: marriage market only (although some hedonic)

A few relevant questions

1. Assortative matching and inequality

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996,
'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several questions; in particular:

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several questions; in particular:
- Why did correlation change? Did 'preferences for assortativeness' change?

A few relevant questions

1. Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several questions; in particular:
- Why did correlation change? Did 'preferences for assortativeness' change?
- How do we compare single-adult households and couples? What about intrahousehold inequality?

A few relevant questions (cont.)

2. College premium and the demand for college education Motivation: remarkable increase in female education, labor supply, incomes worldwide during the last decades.

Figure 3: Fraction of 30- to 34-Year-Olds with College Education, Countries Above
Median Per Capita GDP and Below Per Capita GDP, by Sex

Source: See Figure 1.
Source: Becker-Hubbard-Murphy 2009

College premium and the demand for college education

In the US:

Figure 13: Completed Education by Sex, Age 30-40, US 1968-2005

Source: Current Population Surveys.

College premium and the demand for college education

Questions:

Why such different responses by gender?

Answer (CIW 2009)

'Marital college premium'
\rightarrow how can we compute that?
\rightarrow how can we identify that?
\rightarrow A structural model is needed!

A few relevant questions (cont.)

3. Abortion and female empowerment

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'
- Question: what is the mechanism?

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'
- Question: what is the mechanism?
- In particular, what about women:

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'
- Question: what is the mechanism?
- In particular, what about women:
- who do want children

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'
- Question: what is the mechanism?
- In particular, what about women:
- who do want children
- who would not use abortion (e.g. for religious reasons), etc.

A few relevant questions (cont.)

3. Abortion and female empowerment

- Roe vs. Wade (1973): de facto legalization of abortion in the US
- General claim (feminist literature): important source of 'female empowerment'
- Question: what is the mechanism?
- In particular, what about women:
- who do want children
- who would not use abortion (e.g. for religious reasons), etc.
- ... and what the heck is the relationship between all this and optimal transportation?

Formal viewpoint: setting and equilibrium notion

- Setting:

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional
- some characteristics may be unobserved (by the econometrician)

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional
- some characteristics may be unobserved (by the econometrician)
- Spaces X, Y often 'completed' to allow for singles:

$$
\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}
$$

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional
- some characteristics may be unobserved (by the econometrician)
- Spaces X, Y often 'completed' to allow for singles:

$$
\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}
$$

- A matching defined by:

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional
- some characteristics may be unobserved (by the econometrician)
- Spaces X, Y often 'completed' to allow for singles:

$$
\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}
$$

- A matching defined by:
- a measure h on $X \times Y$ (or $\bar{X} \times \bar{Y}$) such that the marginals of h are F and G ('who marries whom?')

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional
- some characteristics may be unobserved (by the econometrician)
- Spaces X, Y often 'completed' to allow for singles:

$$
\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}
$$

- A matching defined by:
- a measure h on $X \times Y$ (or $\bar{X} \times \bar{Y}$) such that the marginals of h are F and G (' who marries whom?')
- two functions $u: X \rightarrow \mathbb{R}$ and $v: Y \rightarrow \mathbb{R}$ such that:

$$
u(x)+v(y)=s(x, y) \quad \forall(x, y) \in \operatorname{Supp}(h)
$$

('how is the surplus allocated?')

Formal viewpoint: setting and equilibrium notion

- Setting:
- Compact, separable metric spaces X, Y ('female and male characteristics') with finite measures F and G. Note that:
- the spaces may be multidimensional
- some characteristics may be unobserved (by the econometrician)
- Spaces X, Y often 'completed' to allow for singles:

$$
\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}
$$

- A matching defined by:
- a measure h on $X \times Y$ (or $\bar{X} \times \bar{Y}$) such that the marginals of h are F and G (' who marries whom?')
- two functions $u: X \rightarrow \mathbb{R}$ and $v: Y \rightarrow \mathbb{R}$ such that:

$$
u(x)+v(y)=s(x, y) \quad \forall(x, y) \in \operatorname{Supp}(h)
$$

('how is the surplus allocated?')

- The matching is pure if the support of the measure is included in the graph of some function ϕ

Equilibrium notion

- Equilibrium concept: Stability

Equilibrium notion

- Equilibrium concept: Stability
- Robustness vis a vis bilateral deviations

Equilibrium notion

- Equilibrium concept: Stability
- Robustness vis a vis bilateral deviations
- Interpretation: 'divorce at will'

Equilibrium notion

- Equilibrium concept: Stability
- Robustness vis a vis bilateral deviations
- Interpretation: 'divorce at will'
- Translation:

$$
\begin{equation*}
u(x)+v(y) \geq s(x, y) \quad \forall(x, y) \in X \times Y \tag{1}
\end{equation*}
$$

Links with Optimal Transportation

\rightarrow Shapley-Shubik, Becker, Gretsky et al., Ekeland, Ekeland and Carlier, CMcCN, etc.

- Consider the surplus maximization problem

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

under condition on the marginals (or push forward) of h

$$
\left(\pi_{\#}^{X} h=F, \pi_{\#}^{Y} h=G\right)
$$

Links with Optimal Transportation

\rightarrow Shapley-Shubik, Becker, Gretsky et al., Ekeland, Ekeland and Carlier, CMcCN , etc.

- Consider the surplus maximization problem

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

under condition on the marginals (or push forward) of h

$$
\left(\pi_{\#}^{X} h=F, \pi_{\#}^{Y} h=G\right)
$$

- This is an OT problem, and its dual is:

$$
\begin{gathered}
\min \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y) \quad \text { under } \\
u(x)+v(y) \geq s(x, y) \quad \forall(x, y) \in X \times Y
\end{gathered}
$$

Links with Optimal Transportation

\rightarrow Shapley-Shubik, Becker, Gretsky et al., Ekeland, Ekeland and Carlier, CMcCN , etc.

- Consider the surplus maximization problem

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

under condition on the marginals (or push forward) of h

$$
\left(\pi_{\#}^{X} h=F, \pi_{\#}^{Y} h=G\right)
$$

- This is an OT problem, and its dual is:

$$
\begin{gathered}
\min \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y) \quad \text { under } \\
u(x)+v(y) \geq s(x, y) \quad \forall(x, y) \in X \times Y
\end{gathered}
$$

- Therefore:

Links with Optimal Transportation

\rightarrow Shapley-Shubik, Becker, Gretsky et al., Ekeland, Ekeland and Carlier, CMcCN, etc.

- Consider the surplus maximization problem

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

under condition on the marginals (or push forward) of h

$$
\left(\pi_{\#}^{X} h=F, \pi_{\#}^{Y} h=G\right)
$$

- This is an OT problem, and its dual is:

$$
\begin{gathered}
\min \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y) \quad \text { under } \\
u(x)+v(y) \geq s(x, y) \quad \forall(x, y) \in X \times Y
\end{gathered}
$$

- Therefore:
- there exists a stable match if and only if the surplus max problem has a solution (and the value is the same)

Links with Optimal Transportation

\rightarrow Shapley-Shubik, Becker, Gretsky et al., Ekeland, Ekeland and Carlier, CMcCN, etc.

- Consider the surplus maximization problem

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

under condition on the marginals (or push forward) of h

$$
\left(\pi_{\#}^{X} h=F, \pi_{\#}^{Y} h=G\right)
$$

- This is an OT problem, and its dual is:

$$
\begin{gathered}
\min \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y) \quad \text { under } \\
u(x)+v(y) \geq s(x, y) \quad \forall(x, y) \in X \times Y
\end{gathered}
$$

- Therefore:
- there exists a stable match if and only if the surplus max problem has a solution (and the value is the same)
- intracouple allocation determined as the solution to a linear maximization problem!

Links with hedonic models

- Hedonic models: defined by set of buyers X, sellers Y, products Z
- Buyers: utility $u(x, z)-P(z)$ which is maximized over z
- Sellers: profit $P(z)-c(y, z)$ which is maximized over z
- Equilibrium: $P(z)$ such that markets clear $(\rightarrow$ measure over $X \times Y \times Z)$
- Canonical correspondence between QL hedonic models and matching models under TU. Specifically, consider a hedonic model and define surplus:

$$
s(x, y)=\max _{z \in Z}(U(x, z)-c(y, z))
$$

Let η be the marginal of α over $X \times Y, u(x)$ and $v(y)$ by

$$
u(x)=\max _{z \in K} U(x, z)-P(z) \text { and } v(y)=\max _{z \in K} P(z)-c(y, z)
$$

Then (η, u, v) defines a stable matching. Conversely, to each stable matching corresponds an equilibrium hedonic price schedule.

Economic applications of OT theory

Three examples
(1) Abortion and female empowerment (Chiappori, Oreffice JPE 2005)

Economic applications of OT theory

Three examples
(1) Abortion and female empowerment (Chiappori, Oreffice JPE 2005)
(2) The marital college premium (Chiappori, Salanié, Weiss 2014)

Economic applications of OT theory

Three examples
(1) Abortion and female empowerment (Chiappori, Oreffice JPE 2005)
(2) The marital college premium (Chiappori, Salanié, Weiss 2014)

3 The rise of higher education for women (Low 2014)

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45

Rates of Infertility and Miscarriage Increasing Sharply with Age

Source: Heffner 2004, "Advanced Maternal Age: How old is too old?"

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age

Spousal Income vs Age at Marriage (1955-1966 birth cohort, 2010 ACS)

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.
- Con: delayed entry \rightarrow loss of 'reproductive capital'

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.
- Con: delayed entry \rightarrow loss of 'reproductive capital'
- Impact on marital prospects?

Model

- Two commodities, private consumption and child expenditures; utility:

$$
u_{i}=c_{i}(Q+1), i=h, w
$$

and budget constraint (y_{i} denotes i 's income)

$$
c_{h}+c_{w}+Q=y_{h}+y_{w}
$$

Model

- Two commodities, private consumption and child expenditures; utility:

$$
u_{i}=c_{i}(Q+1), i=h, w
$$

and budget constraint (y_{i} denotes i 's income)

$$
c_{h}+c_{w}+Q=y_{h}+y_{w}
$$

- Transferable utility: any efficient allocation maximizes $u_{h}+u_{w}$; therefore surplus with a child

$$
s\left(y_{h}, y_{w}\right)=\frac{\left(y_{h}+y_{w}+1\right)^{2}}{4}
$$

and without a child $(Q=0)$

$$
s\left(y_{h}, y_{w}\right)=y_{h}+y_{w}
$$

therefore, if π probability of a child:

$$
s\left(y_{h}, y_{w}\right)=\pi \frac{\left(y_{h}+y_{w}+1\right)^{2}}{4}+(1-\pi)\left(y_{h}+y_{w}\right)
$$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
- how is the surplus distributed?

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
- how is the surplus distributed?
- what is the impact on (ex ante) investment

Resolution

- Two stage: invest in stage 1, match in stage 2

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)

Resolution

- Two stage: invest in stage 1, match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

Resolution

- Two stage: invest in stage 1, match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes

Resolution

- Two stage: invest in stage 1, match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1 , then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)

1. Negative assortative

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate
- Which regime? Depends on the parameters. In particular:

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate
- Which regime? Depends on the parameters. In particular:
- If λ small and P / p large, regime 3

Resolution

- Two stage: invest in stage 1 , match in stage 2
- Resolution: backwards (start with stage 2 cond. on stage 1, then stage 1)
- Assumption: there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match; generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: positive assortative matching
- Regime 3: intermediate
- Which regime? Depends on the parameters. In particular:
- If λ small and P / p large, regime 3
- If λ large and P / p not too large, regime 2

Stage 1: investment choice

\rightarrow Graph

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'

Wage income premium over women with some college

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size

Notes: "Don't know/refused" responses not shown. Respondents were asked: "What is the ideal number of children for a family to have?"

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate
- After the 80s: college + women marry 'above' college graduate

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate
- After the 80s: college + women marry 'above' college graduate
- What about data?

Spousal income by wife's education level, white women 41-50

Marriage rates by education level, white women 41-50

Currently divorced rates by education level, white women 41-50

$-\leftarrow-$	Highly Educated	\square	College Graduates ---- everyone Else
$95 \% \mathrm{Cl}$			

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous
- Therefore: $X \subset \mathbb{R}^{2}, Y \subset \mathbb{R}$

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous
- Therefore: $X \subset \mathbb{R}^{2}, Y \subset \mathbb{R}$
- Stability:

$$
u\left(x_{1}, x_{2}\right)=\max _{y} s\left(x_{1}, x_{2}, y\right)-v(y)
$$

Assume purity, then $y=f\left(x_{1}, x_{2}\right)$ and envelope theorem:

$$
\begin{aligned}
\frac{\partial u}{\partial x_{1}} & =\frac{\partial s}{\partial x_{1}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial u}{\partial x_{2}} & =\frac{\partial s}{\partial x_{2}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

Generalization: the 'true' bidimensional model

Source: Chiappori, McCann, Pass (in progress)

- Idea: same model, but both incomes and probabilities are continuous
- Therefore: $X \subset \mathbb{R}^{2}, Y \subset \mathbb{R}$
- Stability:

$$
u\left(x_{1}, x_{2}\right)=\max _{y} s\left(x_{1}, x_{2}, y\right)-v(y)
$$

Assume purity, then $y=f\left(x_{1}, x_{2}\right)$ and envelope theorem:

$$
\begin{aligned}
\frac{\partial u}{\partial x_{1}} & =\frac{\partial s}{\partial x_{1}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \\
\frac{\partial u}{\partial x_{2}} & =\frac{\partial s}{\partial x_{2}}\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

- CDR give the pdf in f

$$
\frac{\partial^{2} s}{\partial x_{1} \partial y} \frac{\partial f}{\partial x_{2}}=\frac{\partial^{2} s}{\partial x_{2} \partial y} \frac{\partial f}{\partial x_{1}}
$$

Generalization: the 'true' bidimensional model

Actually, if ϕ defined by

$$
f\left(x_{1}, x_{2}\right)=y \rightarrow x_{2}=\phi\left(x_{1}, y\right)
$$

then DE in ϕ :

$$
\frac{\partial \phi}{\partial x_{1}}=\frac{\frac{\partial^{2} s\left(x_{1}, \phi\left(x_{1}, y\right), y\right)}{\partial x_{1} \partial y}}{\frac{\partial^{2} s\left(x_{1}, \phi\left(x_{1}, y\right), y\right)}{\partial x_{2} \partial y}}
$$

In our case:

$$
\frac{\partial \phi}{\partial p}=-\frac{1}{p}(\phi(p, y)+y-1)
$$

gives

$$
\phi(p, y)=1-y+\frac{K(y)}{p}
$$

and $K(y)$ pinned down by the measure conditions

The uniform case: iso-husband curves

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:
- iid (hard to support)

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:
- iid (hard to support)
- separable (Choo-Siow, Chiappori-Salanié-Weiss)

$$
\varepsilon_{i, j}=\alpha_{i}^{J}+\beta_{j}^{\prime}
$$

A stochastic version

Finally, how can we capture traits that are unobservable (to the econometrician)?
\rightarrow Usual idea: unobserved heterogeneity represented by a random component (say, in the surplus function)
\rightarrow A simple framework:

- Men and women belong to observable classes (e.g. education)
- If $i \in I$ and $j \in J$, surplus

$$
s_{i, j}=Z^{I, J}+\varepsilon_{i, j}
$$

- Question: what distribution for the εs ? \rightarrow various ideas:
- iid (hard to support)
- separable (Choo-Siow, Chiappori-Salanié-Weiss)

$$
\varepsilon_{i, j}=\alpha_{i}^{J}+\beta_{j}^{\prime}
$$

- both:

$$
\varepsilon_{i, j}=\alpha_{i}^{J}+\beta_{j}^{\prime}+\eta_{i j}
$$

A stochastic version (cont.)

- Therefore model: stochastic OT...

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{I}, J}+\alpha_{i}^{J} \text { and } u_{i}=V^{\bar{T}, \bar{J}}+\beta_{j}^{\bar{J}}
$$

\rightarrow can compute

$$
G(I)=E\left[\max _{J} U^{\bar{I}, J}+\alpha_{i}^{J} \mid i \in I\right]
$$

and $G(I)-G\left(I^{\prime}\right)$ is the marital premium from getting I instead of I^{\prime}

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{\top}, \bar{J}}+\alpha_{i}^{\top} \text { and } u_{i}=V^{\bar{\Pi}, \bar{J}}+\beta_{j}^{\top}
$$

\rightarrow can compute

$$
G(I)=E\left[\max _{J} U^{\bar{I}, J}+\alpha_{i}^{J} \mid i \in I\right]
$$

and $G(I)-G\left(I^{\prime}\right)$ is the marital premium from getting I instead of I^{\prime}

- In general: nothing known

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{\top}, \bar{J}}+\alpha_{i}^{\top} \text { and } u_{i}=V^{\Pi, J}+\beta_{j}^{\top}
$$

\rightarrow can compute

$$
G(I)=E\left[\max _{J} U^{\bar{I}, J}+\alpha_{i}^{J} \mid i \in I\right]
$$

and $G(I)-G\left(I^{\prime}\right)$ is the marital premium from getting I instead of I^{\prime}

- In general: nothing known
- on the distributions of the us and vs

A stochastic version (cont.)

- Therefore model: stochastic OT...
- ... and main issue: distribution of dual variables?
- One result (CSW):

Theorem: In the Choo Siow specification, there exists $U^{I, J}$ and $V^{I, J}, I, J=1, \ldots, K$, with $U^{I, J}+V^{I, J}=Z^{I, J}$, such that for any matched couple $(i \in \bar{I}, j \in \bar{J})$

$$
u_{i}=U^{\bar{\Pi}, \bar{J}}+\alpha_{i}^{\top} \text { and } u_{i}=V^{\bar{\Pi}, J}+\beta_{j}^{\top}
$$

\rightarrow can compute

$$
G(I)=E\left[\max _{J} U^{\bar{I}, J}+\alpha_{i}^{J} \mid i \in I\right]
$$

and $G(I)-G\left(I^{\prime}\right)$ is the marital premium from getting I instead of I^{\prime}

- In general: nothing known
- on the distributions of the us and vs
- in particular, on the correlations

Conclusion

- In conclusion:

Conclusion

- In conclusion:

