# Decoupling DeGiorgi systems via multi-marginal mass transport 

Nassif Ghoussoub, University of British Columbia

On the occasion of Ivar's 70th birthday

Paris,
June 20, 2014

## De Giorgi's original conjecture

Suppose that $u$ is an entire solution of the Allen-Cahn equation

$$
\begin{equation*}
\Delta u=H^{\prime}(u)=u^{3}-u \quad \text { on } \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

satisfying

$$
|u(\mathbf{x})| \leq 1, \frac{\partial u}{\partial x_{N}}(\mathbf{x})>0 \text { for } \mathbf{x}=\left(\mathbf{x}^{\prime}, x_{N}\right) \in \mathbb{R}^{N} \text {. }
$$

Then, at least for $N \leq 8$ the level sets of $u$ must be hyperplanes.
The story is now essentially settled and here are the main milestones:

- For $N=2$ by (Ghoussoub-Gui 1997)
- For $N=3$ by (Ambrosio-Cabré 2000)
- For $N=4,5$, if $u$ is anti-symmetric, by (Ghoussoub-Gui 2003)
- For $N \leq 8$, if $u$ satisfies the additional natural assumption (Savin 2003)

$$
\lim _{x_{N} \rightarrow \pm \infty} u\left(x^{\prime}, x_{N}\right) \rightarrow \pm 1 .
$$

- Counterexample for $N \geq 9$, by (Del Pino-Kowalczyk-Wei 2008)

In low dimensions, the nonlinearity can be more general than $H^{\prime}(u)=u^{3}-u$.

## De Giorgi's original conjecture

Suppose that $u$ is an entire solution of the Allen-Cahn equation

$$
\begin{equation*}
\Delta u=H^{\prime}(u)=u^{3}-u \quad \text { on } \quad \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

satisfying

$$
|u(\mathbf{x})| \leq 1, \frac{\partial u}{\partial x_{N}}(\mathbf{x})>0 \text { for } \mathbf{x}=\left(\mathbf{x}^{\prime}, x_{N}\right) \in \mathbb{R}^{N}
$$

Then, at least for $N \leq 8$ the level sets of $u$ must be hyperplanes.
The story is now essentially settled and here are the main milestones:

- For $N=2$ by (Ghoussoub-Gui 1997)
- For $N=3$ by (Ambrosio-Cabré 2000)
- For $N=4,5$, if $u$ is anti-symmetric, by (Ghoussoub-Gui 2003)
- For $N \leq 8$, if $u$ satisfies the additional natural assumption (Savin 2003)

$$
\lim _{x_{N} \rightarrow \pm \infty} u\left(\mathbf{x}^{\prime}, x_{N}\right) \rightarrow \pm 1 .
$$

- Counterexample for $N \geq 9$, by (Del Pino-Kowalczyk-Wei 2008)

In low dimensions, the nonlinearity can be more general than $H^{\prime}(u)=u^{3}-u$.

## FIGURE 2. Don't try this in seven dimensions.

From the following article:
Mathematics: How to melt if you must
Ivar Ekeland
Nature 392, 654-657(16 April 1998)
doi:10.1038/33541


## DeGiorgi type results for systems-Motivation

Berestycki, Lin, Wei and Zhao considered a system of $m=2$ equations which appears as a limiting elliptic system arising in phase separation for multiple states Bose-Einstein condensates.

$$
\left\{\begin{array}{l}
\Delta u=u v^{2} \text { in } \mathbb{R}^{N}  \tag{2}\\
\Delta v=v u^{2} \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

- They show that any positive solution $(u, v)$ of the system (2) such that $\partial_{N} u>0, \partial_{N} v<0$, and which satisfies

$$
\int_{B_{2 R} \backslash B_{R}} u^{2}+v^{2} \leq C R^{4}
$$

is necessarily one-dimensional, i.e., there exists $\mathbf{a} \in \mathbb{R}^{N},|\mathbf{a}|=1$ such that

$$
((u(x), v(x))=(U(\mathbf{a} \cdot x), V(\mathbf{a} \cdot x))
$$

where $(U, V)$ is a solution of the corresponding one-dimensional system.

- In particular, any such "monotone" solution ( $u, v$ ) which satisfies $u(x), v(x)=O\left(|x|^{k}\right)$ is necessarily one-dimensional provided $N \leq 4-2 k$.
- Berestycki,Terracini, Wang and Wei: Same result for stable solutions. But polynomial growth not enough.


## DeGiorgi conjecture for systems

Consider the gradient system

$$
\begin{equation*}
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}, H \in C^{2}\left(\mathbb{R}^{m}\right)$ and $\left.\nabla H(u)=\frac{\partial H}{\partial u_{i}}\left(u_{1}, u_{2}, \ldots u_{m}\right)\right)_{i}$.
Consider solutions whose components $\left(u_{1}, u_{2}, \ldots u_{m}\right)$ are strictly monotone in $x_{N}$. They need not be all increasing (or decreasing).
(3) Say that the level set of the component $u_{i}$ is a hyperplane if $u_{i}\left(x^{\prime}, x_{N}\right)=g_{i}\left(\mathbf{a}_{i} \cdot x^{\prime}-x_{N}\right)$ for some $\mathbf{a}_{i} \in \mathbf{S}^{N-1}$

## DeGiorgi conjecture for systems

Consider the gradient system

$$
\begin{equation*}
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}, H \in C^{2}\left(\mathbb{R}^{m}\right)$ and $\left.\nabla H(u)=\frac{\partial H}{\partial u_{i}}\left(u_{1}, u_{2}, \ldots u_{m}\right)\right)_{i}$.
Consider solutions whose components $\left(u_{1}, u_{2}, \ldots u_{m}\right)$ are strictly monotone in $x_{N}$. They need not be all increasing (or decreasing).
(1) Say that the level set of the component $u_{i}$ is a hyperplane if $u_{i}\left(x^{\prime}, x_{N}\right)=g_{i}\left(\mathbf{a}_{i} \cdot x^{\prime}-x_{N}\right)$ for some $\mathbf{a}_{i} \in \mathbf{S}^{N-1}$.
(3) Say that the components are parallel if $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$

## DeGiorgi conjecture for systems

Consider the gradient system

$$
\begin{equation*}
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}, H \in C^{2}\left(\mathbb{R}^{m}\right)$ and $\left.\nabla H(u)=\frac{\partial H}{\partial u_{i}}\left(u_{1}, u_{2}, \ldots u_{m}\right)\right)_{i}$.
Consider solutions whose components ( $u_{1}, u_{2}, \ldots u_{m}$ ) are strictly monotone in $x_{N}$. They need not be all increasing (or decreasing).
(1) Say that the level set of the component $u_{i}$ is a hyperplane if $u_{i}\left(x^{\prime}, x_{N}\right)=g_{i}\left(\mathbf{a}_{i} \cdot x^{\prime}-x_{N}\right)$ for some $\mathbf{a}_{i} \in \mathbf{S}^{N-1}$.
(2) Say that the components are parallel if $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$
(3) Say that the components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets if for any $i \neq j$ and $\lambda \in \mathbb{R}$, there exists $\bar{\lambda}$ such that $\left\{x: u_{i}(x)=\lambda\right\}=\left\{x: u_{j}(x)=\bar{\lambda}\right\}$.

## DeGiorgi conjecture for systems

Consider the gradient system

$$
\begin{equation*}
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N}, \tag{3}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}, H \in C^{2}\left(\mathbb{R}^{m}\right)$ and $\left.\nabla H(u)=\frac{\partial H}{\partial u_{i}}\left(u_{1}, u_{2}, \ldots u_{m}\right)\right)_{\text {i }}$.
Consider solutions whose components ( $u_{1}, u_{2}, \ldots u_{m}$ ) are strictly monotone in $x_{N}$. They need not be all increasing (or decreasing).
(1) Say that the level set of the component $u_{i}$ is a hyperplane if $u_{i}\left(x^{\prime}, x_{N}\right)=g_{i}\left(\mathbf{a}_{i} \cdot x^{\prime}-x_{N}\right)$ for some $\mathbf{a}_{i} \in \mathbf{S}^{N-1}$.
(2) Say that the components are parallel if $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$
(0) Say that the components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets if for any $i \neq j$ and $\lambda \in \mathbb{R}$, there exists $\bar{\lambda}$ such that $\left\{x: u_{i}(x)=\lambda\right\}=\left\{x: u_{j}(x)=\bar{\lambda}\right\}$. Note that if $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes, then $\mathrm{a}_{i}=\mathrm{a}_{j}=\mathrm{a}$ and $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$.

## DeGiorgi conjecture for systems

Consider the gradient system

$$
\begin{equation*}
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N}, \tag{3}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}, H \in C^{2}\left(\mathbb{R}^{m}\right)$ and $\left.\nabla H(u)=\frac{\partial H}{\partial u_{i}}\left(u_{1}, u_{2}, \ldots u_{m}\right)\right)_{\text {i }}$.
Consider solutions whose components ( $u_{1}, u_{2}, \ldots u_{m}$ ) are strictly monotone in $x_{N}$. They need not be all increasing (or decreasing).
(1) Say that the level set of the component $u_{i}$ is a hyperplane if $u_{i}\left(x^{\prime}, x_{N}\right)=g_{i}\left(\mathbf{a}_{i} \cdot x^{\prime}-x_{N}\right)$ for some $\mathbf{a}_{i} \in \mathbf{S}^{N-1}$.
(2) Say that the components are parallel if $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$
(0) Say that the components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets if for any $i \neq j$ and $\lambda \in \mathbb{R}$, there exists $\bar{\lambda}$ such that $\left\{x: u_{i}(x)=\lambda\right\}=\left\{x: u_{j}(x)=\bar{\lambda}\right\}$. Note that if $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes, then $\mathbf{a}_{i}=\mathbf{a}_{j}=\mathbf{a}$ and $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$.

- Say that the system is decoupled at $u=\left(u_{i}\right)_{i=1}^{m}$, if there exist $V_{i}, i=1, \ldots, m$ such that

$$
\begin{equation*}
\Delta u_{i}=V_{i}^{\prime}\left(u_{i}(x)\right) \quad i=1, \ldots, m . \tag{4}
\end{equation*}
$$

## DeGiorgi conjecture for systems

Consider the gradient system

$$
\begin{equation*}
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}, H \in C^{2}\left(\mathbb{R}^{m}\right)$ and $\left.\nabla H(u)=\frac{\partial H}{\partial u_{i}}\left(u_{1}, u_{2}, \ldots u_{m}\right)\right)_{i}$.
Consider solutions whose components $\left(u_{1}, u_{2}, \ldots u_{m}\right)$ are strictly monotone in $x_{N}$. They need not be all increasing (or decreasing).
(1) Say that the level set of the component $u_{i}$ is a hyperplane if $u_{i}\left(x^{\prime}, x_{N}\right)=g_{i}\left(\mathbf{a}_{i} \cdot x^{\prime}-x_{N}\right)$ for some $\mathbf{a}_{i} \in \mathbf{S}^{N-1}$.
(2) Say that the components are parallel if $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$
(3) Say that the components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets if for any $i \neq j$ and $\lambda \in \mathbb{R}$, there exists $\bar{\lambda}$ such that $\left\{x: u_{i}(x)=\lambda\right\}=\left\{x: u_{j}(x)=\bar{\lambda}\right\}$. Note that if $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes, then $\mathbf{a}_{i}=\mathbf{a}_{j}=\mathbf{a}$ and $\nabla u_{j}=C_{i, j} \nabla u_{i}$ for constants $C_{i, j}$.
(9) Say that the system is decoupled at $u=\left(u_{i}\right)_{i=1}^{m}$, if there exist $V_{i}, i=1, \ldots, m$ such that

$$
\begin{equation*}
\Delta u_{i}=V_{i}^{\prime}\left(u_{i}(x)\right) \quad i=1, \ldots, m \tag{4}
\end{equation*}
$$

## DeGiorgi-type conjectures for systems

## Conjecture

Suppose $u=\left(u_{i}\right)_{i=1}^{m}$ is a monotone bounded entire solutions of the system (3). Under what conditions on $H$, one can show that at least in low dimensions
(1) The level sets of each component $u_{i}$ must be a hyperplane.
(2) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets.

## DeGiorgi-type conjectures for systems

## Conjecture

Suppose $u=\left(u_{i}\right)_{i=1}^{m}$ is a monotone bounded entire solutions of the system (3). Under what conditions on $H$, one can show that at least in low dimensions
(1) The level sets of each component $u_{i}$ must be a hyperplane.
(2) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets.
(3) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes.

## DeGiorgi-type conjectures for systems

## Conjecture

Suppose $u=\left(u_{i}\right)_{i=1}^{m}$ is a monotone bounded entire solutions of the system (3). Under what conditions on $H$, one can show that at least in low dimensions
(1) The level sets of each component $u_{i}$ must be a hyperplane.
(2) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets.
(3) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes.

- The system is decoupled at $\left(u_{i}\right)_{i=1}^{m}$.


## DeGiorgi-type conjectures for systems

## Conjecture

Suppose $u=\left(u_{i}\right)_{i=1}^{m}$ is a monotone bounded entire solutions of the system (3). Under what conditions on $H$, one can show that at least in low dimensions
(1) The level sets of each component $u_{i}$ must be a hyperplane.
(2) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets.
(3) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes.
(1) The system is decoupled at $\left(u_{i}\right)_{i=1}^{m}$.
(3) The system is decoupled as ODEs at $\left(u_{i}\right)_{i=1}^{m}$

## DeGiorgi-type conjectures for systems

## Conjecture

Suppose $u=\left(u_{i}\right)_{i=1}^{m}$ is a monotone bounded entire solutions of the system (3). Under what conditions on $H$, one can show that at least in low dimensions
(1) The level sets of each component $u_{i}$ must be a hyperplane.
(2) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets.
(3) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes.
(9) The system is decoupled at $\left(u_{i}\right)_{i=1}^{m}$.
(6) The system is decoupled as ODEs at $\left(u_{i}\right)_{i=1}^{m}$.

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N} \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution ( $u, v$ ) on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathrm{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathrm{x}+\int_{B_{R}} H(u, v) d \mathrm{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
© Relation between monotonicity and stability of solutions? YES

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
(3) Relation between monotonicity and stability of solutions? YES
(1) What about systems involving more than 2 equations? YES

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
(3) Relation between monotonicity and stability of solutions? YES
(9) What about systems involving more than 2 equations? YES
© Is there a geometric Poincaré inequality on the level sets of solutions? YES

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
(3) Relation between monotonicity and stability of solutions? YES
(9) What about systems involving more than 2 equations? YES
(5) Is there a geometric Poincaré inequality on the level sets of solutions? YES
(0) Energy estimates for stable solutions:

When is $E_{R}(u, v) \leq C R^{N-1}$ for a constant $C$ independent of $R$ ? OPEN

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
(3) Relation between monotonicity and stability of solutions? YES
(9) What about systems involving more than 2 equations? YES
(6) Is there a geometric Poincaré inequality on the level sets of solutions? YES
(0) Energy estimates for stable solutions:

When is $E_{R}(u, v) \leq C R^{N-1}$ for a constant $C$ independent of $R$ ? OPEN
(1) Monotonicity formula: When is $\Gamma_{R}=\frac{E_{R}(u, v)}{R^{N-1}}$ increasing ?OPEN

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
(3) Relation between monotonicity and stability of solutions? YES
(9) What about systems involving more than 2 equations? YES
(5) Is there a geometric Poincaré inequality on the level sets of solutions? YES
(0) Energy estimates for stable solutions:

When is $E_{R}(u, v) \leq C R^{N-1}$ for a constant $C$ independent of $R$ ? OPEN
(1) Monotonicity formula: When is $\Gamma_{R}=\frac{E_{R}(u, v)}{R^{N-1}}$ increasing ?OPEN
( ( Modica pointwise estimate: Does it hold for systems?

## Which of the main ideas extend to systems?

For $H \in C^{2}\left(\mathbb{R}^{2}\right)$, consider the system

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}, \\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where the energy of a solution $(u, v)$ on a ball $B_{R}$ is defined as

$$
E_{R}(u, v)=\int_{B_{R}} \frac{1}{2}|\nabla u|^{2} d \mathbf{x}+\int_{B_{R}} \frac{1}{2}|\nabla v|^{2} d \mathbf{x}+\int_{B_{R}} H(u, v) d \mathbf{x}
$$

Natural questions and open problems:
(1) Suitable linear Liouville theorems for systems? YES
(2) Suitable monotonicity of solutions? YES
(3) Relation between monotonicity and stability of solutions? YES
(1) What about systems involving more than 2 equations? YES
(5) Is there a geometric Poincaré inequality on the level sets of solutions? YES
(0) Energy estimates for stable solutions:

When is $E_{R}(u, v) \leq C R^{N-1}$ for a constant $C$ independent of $R$ ? OPEN
(1) Monotonicity formula: When is $\Gamma_{R}=\frac{E_{R}(u, v)}{R^{N-1}}$ increasing ?OPEN
(8) Modica pointwise estimate: Does it hold for systems?

$$
|\nabla u|^{2}+|\nabla v|^{2} \leq 2 H(u, v) . \text { OPEN }
$$

## Liouville theorems for second order equations

Consider any solution $u$ of $\Delta u=H^{\prime}(u)$ such that $\phi:=\frac{\partial u}{\partial x_{N}}>0$. Take any other directional derivative $\psi:=\nabla u \cdot \nu$. Then $\sigma:=\frac{\psi}{\phi}$ satisfies the linear

$$
\begin{equation*}
-\operatorname{div}\left(\phi^{2}(x) \nabla \sigma\right)=0 \quad x \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

So it suffices to establish a Liouville theorem of the type:

$$
\text { If } \operatorname{div}\left(\phi^{2}(x) \nabla \sigma\right)=0 \text { in } \mathbb{R}^{n} \text {, then } \sigma \text { is constant. }
$$

This has been verified under the following conditions:

- If $\phi(x) \geq \delta>0$ and $\sigma$ is bounded below. (Liouville and Moser)
- If $\phi \sigma$ bounded (Berestycki-Caffarelli-Nirenberg, Ghoussoub-Gui)
- If $\int_{B_{2 R} \backslash B_{R}} \phi^{2} \sigma^{2} \leq C R^{2}$ (Ambrosio-Cabre).


## Liouville theorems for systems

Let's use the same linearization trick on

$$
\left\{\begin{align*}
\Delta u & =H_{u}(u, v) \text { in } \mathbb{R}^{N}  \tag{6}\\
\Delta v & =H_{v}(u, v) \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

Let $\underset{\sim}{\phi}:=\partial_{N} u>0$ and $\underset{\sim}{\psi}:=\nabla u \cdot \eta$ for any fixed $\eta=\left(\eta^{\prime}, 0\right) \in \mathbb{R}^{N-1} \times\{0\}$. Let $\tilde{\phi}:=\partial_{N} v<0$ and $\tilde{\sim} \tilde{\psi}:=\nabla v \cdot \eta$ for the given $\eta=\left(\eta^{\prime}, 0\right) \in \mathbb{R}^{N-1} \times\{0\}$. Then $(\phi, \tilde{\phi})$ and $(\psi, \tilde{\psi})$ satisfy the following systems

$$
\left\{\begin{array}{l}
\Delta \phi=H_{u u} \phi+H_{u v} \tilde{\phi} \text { in } \mathbb{R}^{N}  \tag{7}\\
\Delta \tilde{\phi}=H_{u v} \phi+H_{v v} \tilde{\phi} \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta \psi=H_{u u} \psi+H_{u v} \tilde{\psi} \text { in } \mathbb{R}^{N}  \tag{8}\\
\Delta \tilde{\psi}=H_{u v} \psi+H_{v v} \tilde{\psi} \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

$\sigma:=\frac{\psi}{\phi}$ and $\tau:=\frac{\tilde{\psi}}{\bar{\phi}}$ are then solutions of the linear system

$$
\left\{\begin{align*}
\operatorname{div}(\gamma(x) \nabla \sigma) & =\lambda(x)(\sigma-\tau) \text { in } \mathbb{R}^{N}  \tag{9}\\
\operatorname{div}(\tilde{\gamma}(x) \nabla \tau) & =-\lambda(x)(\sigma-\tau) \text { in } \mathbb{R}^{N},
\end{align*}\right.
$$

## Liouville theorems for systems

Let's use the same linearization trick on

$$
\left\{\begin{array}{l}
\Delta u=H_{u}(u, v) \text { in } \mathbb{R}^{N}  \tag{6}\\
\Delta v=H_{v}(u, v) \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

Let $\underset{\sim}{\phi}:=\partial_{N} u>0$ and $\underset{\sim}{\psi}:=\nabla u \cdot \eta$ for any fixed $\eta=\left(\eta^{\prime}, 0\right) \in \mathbb{R}^{N-1} \times\{0\}$.
Let $\tilde{\phi}:=\partial_{\sim} v<0$ and $\tilde{\sim} \tilde{\psi}:=\nabla v \cdot \eta$ for the given $\eta=\left(\eta^{\prime}, 0\right) \in \mathbb{R}^{N-1} \times\{0\}$.
Then $(\phi, \tilde{\phi})$ and $(\psi, \tilde{\psi})$ satisfy the following systems

$$
\left\{\begin{array}{l}
\Delta \phi=H_{u u} \phi+H_{u v} \tilde{\phi} \text { in } \mathbb{R}^{N}  \tag{7}\\
\Delta \tilde{\phi}=H_{u v} \phi+H_{v v} \tilde{\phi} \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta \psi=H_{u u} \psi+H_{u v} \tilde{\psi} \text { in } \mathbb{R}^{N}  \tag{8}\\
\Delta \tilde{\psi}=H_{u v} \psi+H_{v v} \tilde{\psi} \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

$\sigma:=\frac{\psi}{\phi}$ and $\tau:=\frac{\tilde{\psi}}{\tilde{\phi}}$ are then solutions of the linear system

$$
\left\{\begin{align*}
\operatorname{div}(\gamma(x) \nabla \sigma) & =\lambda(x)(\sigma-\tau) \text { in } \mathbb{R}^{N},  \tag{9}\\
\operatorname{div}(\tilde{\gamma}(x) \nabla \tau) & =-\lambda(x)(\sigma-\tau) \text { in } \mathbb{R}^{N}
\end{align*}\right.
$$

## Linear Liouville theorems for systems

Lemma (Linear Liouville theorems for systems) Let $(\sigma, \tau)$ be a solution of

$$
\left\{\begin{align*}
\operatorname{div}(\gamma(x) \nabla \sigma) & =\lambda(x)(\sigma-\tau) \text { in } \mathbb{R}^{N},  \tag{10}\\
\operatorname{div}(\tilde{\gamma}(x) \nabla \tau) & =-\lambda(x)(\sigma-\tau) \text { in } \mathbb{R}^{N},
\end{align*}\right.
$$

such that

$$
\lambda(x)=H_{u v}(u, v) \phi(x) \tilde{\phi}(x) \leq 0
$$

and

$$
\int_{B_{2 R} \backslash B_{R}} \gamma \sigma^{2}+\tilde{\gamma} \tau^{2} \leq C R^{2}
$$

Then, $\sigma$ and $\tau$ are constants.

- This is a direct extension of the single equation case initiated by Berestycki-Caffarelli-Nirenberg and used by Ghoussoub-Gui in dimension 2, and by Ambrosio-Cabre in dimension 3.


## $H$-monotone solutions

Say that a solution $u=\left(u_{k}\right)_{k=1}^{m}$ is $H$-monotone if the following hold:
(1) For every $i \in\{1, \ldots, m\}, u_{i}$ is strictly monotone in the $x_{N}$-variable (i.e., $\left.\partial_{N} u_{i} \neq 0\right)$.
(2) For $i<j$, we have

$$
\begin{equation*}
H_{u_{i} u_{j}} \partial_{N} u_{i}(x) \partial_{N} u_{j}(x) \leq 0 \text { for all } x \in \mathbb{R}^{N} . \tag{11}
\end{equation*}
$$

The existence of an H -monotone solution implies that there exists $\left(\theta_{i}\right)_{i}$ that do not change sign (in this case $\theta_{i}=\partial_{N} u_{i}$ )

$$
\begin{equation*}
H_{u_{i} u_{j}} \theta_{i} \theta_{j} \leq 0 \text { for all } x \in \mathbb{R}^{N} \tag{12}
\end{equation*}
$$

This will be our definition of orientability of $H$ around $u$.

## Stable solutions

Definition: A solution $u$ of the system (3) on a domain $\Omega$ is said to be
(i) stable, if the second variation of the corresponding energy functional is nonnegative, i.e., if for every $\zeta_{k} \in C_{c}^{1}(\Omega), k=1, \ldots, m$,

$$
\begin{equation*}
\sum_{i} \int_{\Omega}\left|\nabla \zeta_{i}\right|^{2}+\sum_{i, j} \int_{\Omega} H_{u_{i} u_{j}} \zeta_{i} \zeta_{j} \geq 0 \tag{13}
\end{equation*}
$$

(ii) pointwise stable, if there exist $\left(\phi_{i}\right)_{i=1}^{m}$ in $C^{1}(\Omega)$ that do not change sign and $\lambda \geq 0$ such that

$$
\begin{equation*}
\Delta \phi_{i}=\sum_{j} H_{u_{i}, u_{j}} \phi_{j}-\lambda \phi_{i} \text { in } \Omega \text { for all } i=1, \ldots, m \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{u_{i}, u_{j}} \phi_{j} \phi_{i} \leq 0 \text { for } 1 \leq i<j \leq m . \tag{15}
\end{equation*}
$$

- H -monotone solution $\Longrightarrow$ pointwise stable solution $\Longrightarrow$ stable solution.
- The notions of variational stability and spectral (or pointwise) stability coincide for a solution, where $H$ is orientable.


## Stable solutions

Definition: A solution $u$ of the system (3) on a domain $\Omega$ is said to be
(i) stable, if the second variation of the corresponding energy functional is nonnegative, i.e., if for every $\zeta_{k} \in C_{c}^{1}(\Omega), k=1, \ldots, m$,

$$
\begin{equation*}
\sum_{i} \int_{\Omega}\left|\nabla \zeta_{i}\right|^{2}+\sum_{i, j} \int_{\Omega} H_{u_{i} u_{j}} \zeta_{i} \zeta_{j} \geq 0 \tag{13}
\end{equation*}
$$

(ii) pointwise stable, if there exist $\left(\phi_{i}\right)_{i=1}^{m}$ in $C^{1}(\Omega)$ that do not change sign and $\lambda \geq 0$ such that

$$
\begin{equation*}
\Delta \phi_{i}=\sum_{j} H_{u_{i}, u_{j}} \phi_{j}-\lambda \phi_{i} \text { in } \Omega \text { for all } i=1, \ldots, m \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{u_{i}, u_{j}} \phi_{j} \phi_{i} \leq 0 \text { for } 1 \leq i<j \leq m . \tag{15}
\end{equation*}
$$

- $H$-monotone solution $\Longrightarrow$ pointwise stable solution $\Longrightarrow$ stable solution.
- The notions of variational stability and spectral (or pointwise) stability coincide for a solution, where $H$ is orientable.
- If the system has an $H$-monotone solution $u$, then it is a stable solution and $H$ is orientable around $u$.


## Stable solutions

Definition: A solution $u$ of the system (3) on a domain $\Omega$ is said to be
(i) stable, if the second variation of the corresponding energy functional is nonnegative, i.e., if for every $\zeta_{k} \in C_{c}^{1}(\Omega), k=1, \ldots, m$,

$$
\begin{equation*}
\sum_{i} \int_{\Omega}\left|\nabla \zeta_{i}\right|^{2}+\sum_{i, j} \int_{\Omega} H_{u_{i} u_{j}} \zeta_{i} \zeta_{j} \geq 0 \tag{13}
\end{equation*}
$$

(ii) pointwise stable, if there exist $\left(\phi_{i}\right)_{i=1}^{m}$ in $C^{1}(\Omega)$ that do not change sign and $\lambda \geq 0$ such that

$$
\begin{equation*}
\Delta \phi_{i}=\sum_{j} H_{u_{i}, u_{j}} \phi_{j}-\lambda \phi_{i} \text { in } \Omega \text { for all } i=1, \ldots, m \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{u_{i}, u_{j}} \phi_{j} \phi_{i} \leq 0 \text { for } 1 \leq i<j \leq m . \tag{15}
\end{equation*}
$$

- $H$-monotone solution $\Longrightarrow$ pointwise stable solution $\Longrightarrow$ stable solution.
- The notions of variational stability and spectral (or pointwise) stability coincide for a solution, where $H$ is orientable.
- If the system has an H -monotone solution $u$, then it is a stable solution and $H$ is orientable around $u$.


## Orientable systems

We say that the system

$$
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N}
$$

(or the non-linearity $H$ ) is orientable around $u$, if there exist constants $\left(\theta_{k}\right)_{k=1}^{m}$ such that for all $i, j$ with $1 \leq i<j \leq m$, we have $H_{u_{i} u_{j}} \theta_{i} \theta_{j} \leq 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_{i} u_{j}}$ changes sign.


## Orientable systems

We say that the system

$$
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N}
$$

(or the non-linearity $H$ ) is orientable around $u$, if there exist constants $\left(\theta_{k}\right)_{k=1}^{m}$ such that for all $i, j$ with $1 \leq i<j \leq m$, we have $H_{u_{i} u_{j}} \theta_{i} \theta_{j} \leq 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_{i} u_{j}}$ changes sign.
- A system consisting of two equations (i.e., $m=2$ ) is always orientable as long as $H_{u_{1} u_{2}}$ does not change sign.


## Orientable systems

We say that the system

$$
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N}
$$

(or the non-linearity $H$ ) is orientable around $u$, if there exist constants $\left(\theta_{k}\right)_{k=1}^{m}$ such that for all $i, j$ with $1 \leq i<j \leq m$, we have $H_{u_{i} u_{j}} \theta_{i} \theta_{j} \leq 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_{i} u_{j}}$ changes sign.
- A system consisting of two equations (i.e., $m=2$ ) is always orientable as long as $H_{u_{1} u_{2}}$ does not change sign.
- On the other hand, if $m=3$, then a system NEED NOT be always orientable, for example if all three mixed derivatives $H_{u_{i} u_{j}}$ with $i<j$ are positive.


## Orientable systems

We say that the system

$$
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{N}
$$

(or the non-linearity $H$ ) is orientable around $u$, if there exist constants $\left(\theta_{k}\right)_{k=1}^{m}$ such that for all $i, j$ with $1 \leq i<j \leq m$, we have $H_{u_{i} u_{j}} \theta_{i} \theta_{j} \leq 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_{i} u_{j}}$ changes sign.
- A system consisting of two equations (i.e., $m=2$ ) is always orientable as long as $H_{u_{1} u_{2}}$ does not change sign.
- On the other hand, if $m=3$, then a system NEED NOT be always orientable, for example if all three mixed derivatives $H_{u_{i} u_{j}}$ with $i<j$ are positive.


## Geometric Poincaré inequality

Assume that $m, N \geq 1$ and $\Omega \subset \mathbb{R}^{N}$ is an open set. Let $u$ be a stable solution $u \in C^{2}(\Omega)$ of (3). Then, for any $\eta=\left(\eta_{k}\right)_{k=1}^{m} \in C_{c}^{1}(\Omega)$, the following holds:

$$
\begin{aligned}
\sum_{i} \int_{\Omega}\left|\nabla u_{i}\right|^{2}\left|\nabla \eta_{i}\right|^{2} \geq & \sum_{i} \int_{\left|\nabla u_{i}\right| \neq 0}\left(\left|\nabla u_{i}\right|^{2} \mathcal{A}_{i}^{2}+\left|\nabla \nabla_{T}\right| \nabla u_{i}| |^{2}\right) \eta_{i}^{2} \\
& +\sum_{i \neq j} \int_{\Omega}\left(\nabla u_{i} \cdot \nabla u_{j} \eta_{i}^{2}-\left|\nabla u_{i}\right|\left|\nabla u_{j}\right| \eta_{i} \eta_{j}\right) H_{u_{i} u_{j}}
\end{aligned}
$$

where $\nabla_{T}$ stands for the tangential gradient along a given level set of $u_{i}$ and $\mathcal{A}_{i}^{2}$ is the sum of the squares of the principal curvatures of such a level set.
The case of a single equation $(m=1)$ is:

$$
\int_{\Omega}|\nabla u|^{2}|\nabla \eta|^{2} \geq \int_{|\nabla u| \neq 0}\left(|\nabla u|^{2} \mathcal{A}^{2}+\left.\left|\nabla_{T}\right| \nabla u\right|^{2}\right) \eta^{2}
$$

- Sternberg-Zumbrun to study semilinear phase transitions problems.
- Farina-Sciunzi-Valdinoci to reprove some results about the De Giorgi's conjecture.
- Cabré to prove the boundedness of extremal solutions of semilinear elliptic equations with Dirichlet boundary conditions on a convex domain up to dimension four.


## De Giorgi type results

Consider the standard test function

$$
\chi(x):= \begin{cases}\frac{1}{2}, & \text { if }|x| \leq \sqrt{R} \\ \frac{\log \frac{R}{|x|}}{\log R}, & \text { if } \sqrt{R}<|x|<R, \\ 0, & \text { if }|x| \geq R\end{cases}
$$

Since the system (3) is orientable, there exist nonzero functions $\theta_{k} \in C^{1}\left(\mathbf{R}^{N}\right)$, $k=1, \cdots, m$, which do not change sign such that

$$
\begin{equation*}
H_{u_{i} u_{j}} \theta_{i} \theta_{j} \leq 0, \quad \text { for all } i, j \in\{1, \cdots, m\} \text { and } i<j . \tag{16}
\end{equation*}
$$

Consider $\eta_{k}:=\operatorname{sgn}\left(\theta_{k}\right) \chi$ for $1 \leq k \leq m$, where $\operatorname{sgn}(x)$ is the Sign function. The geometric Poincaré inequality yields

$$
\begin{aligned}
& \int_{B_{R} \backslash B_{\sqrt{R}}} \sum_{i}\left|\nabla u_{i}\right|^{2}|\nabla \chi|^{2} \geq \sum_{i} \int_{\left|\nabla u_{i}\right| \neq 0}\left(\left|\nabla u_{i}\right|^{2} \kappa_{i}^{2}+\left|\nabla_{T}\right| \nabla u_{i} \|^{2}\right) \chi^{2} \\
& \quad+\sum_{i \neq j} \int_{\mathrm{R}^{N}}\left(\nabla u_{i} \cdot \nabla u_{j}-\operatorname{sgn}\left(\theta_{i}\right) \operatorname{sgn}\left(\theta_{j}\right)\left|\nabla u_{i}\right|\left|\nabla u_{j}\right|\right) H_{u_{i} u_{j}} \chi^{2}=I_{1}+I_{2}
\end{aligned}
$$

$I_{1}$ is clearly nonnegative. Moreover, $H_{u_{i} u_{j}} \operatorname{sgn}\left(\theta_{i}\right) \operatorname{sgn}\left(\theta_{j}\right) \leq 0$ for all $i<j$, and therefore, $I_{2}$ can be written as

$$
I_{2}=\sum_{i \neq j} \int_{\mathbf{R}^{N}}\left(\operatorname{sgn}\left(H_{u_{i} u_{j}}\right) \nabla u_{i} \cdot \nabla u_{j}+\left|\nabla u_{i}\right|\left|\nabla u_{j}\right|\right) H_{u_{i} u_{j}} \operatorname{sgn}\left(H_{u_{i} u_{j}}\right) \chi^{2} \geq 0
$$

## De Giorgi type results

Since

$$
\int_{B_{R} \backslash B_{\sqrt{R}}} \sum_{i}\left|\nabla u_{i}\right|^{2}|\nabla \chi|^{2} \leq C \begin{cases}\frac{1}{\log N}, & \text { if } N=2, \\ \frac{R^{N}-2}{|N-2| \mid(N-2) / 2}, & \text { if } N \neq 2,\end{cases}
$$

So in dimension $N=2$, the left hand side of (17) goes to zero as $R \rightarrow \infty$. Since $I_{1}=0$, one concludes that all $u_{i}$ for $i=1, \cdots, m$ are one-dimensional. Since $I_{2}=0$ and provided $H_{u_{i} u_{j}}$ is not identically zero, we have for all $x \in \mathbb{R}^{2}$,

$$
-\operatorname{sgn}\left(H_{u_{i} u_{j}}\right) \nabla u_{i} \cdot \nabla u_{j}=\left|\nabla u_{i}\right|\left|\nabla u_{j}\right| .
$$

Hence

## Right framework

The concept of " orientable system" seems to be the right framework for dealing with systems of three or more equations. For an orientable system

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.


## Right framework

The concept of "orientable system" seems to be the right framework for dealing with systems of three or more equations. For an orientable system

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.


## Right framework

The concept of "orientable system" seems to be the right framework for dealing with systems of three or more equations. For an orientable system

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.
- If the system has an H -monotone solution $u$, then it is orientable and the solution is stable.


## Right framework

The concept of "orientable system" seems to be the right framework for dealing with systems of three or more equations. For an orientable system

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.
- If the system has an H -monotone solution $u$, then it is orientable and the solution is stable.
- Orientability condition appears in mass transport theory as well as in rearrangement inequalities.


## Right framework

The concept of " orientable system" seems to be the right framework for dealing with systems of three or more equations. For an orientable system

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.
- If the system has an H -monotone solution $u$, then it is orientable and the solution is stable.
- Orientability condition appears in mass transport theory as well as in rearrangement inequalities.


## The results

## Theorem

(Fazly-Ghoussoub) If the dimension $N=2$, then any bounded stable solution $u=\left(u_{i}\right)_{i=1}^{m}$ of a system $\Delta u=\nabla H(u)$ on $\mathbb{R}^{N}$, where $H$ is orientable is necessarily one-dimensional.
Moreover, for $i \neq j, \quad \nabla u_{i}=C_{i, j} \nabla u_{j}$ for all $x \in \mathbb{R}^{2}$, where $C_{i, j}$ are constants whose sign is opposite to the one of $H_{u_{i} u_{j}}$.

## Theorem

(Fazly-Ghoussoub) If $N \leq 3$ and $u=\left(u_{i}\right)_{i=1}^{m}$ is an $H$-monotone bounded solution of of a system $\Delta u=\nabla H(u)$ on $\mathbb{R}^{N}$, then all the compoents of $u$ are one-dimensional.

## Theorem

(Ghoussoub-Pass) If $N \leq 3$ and $u$ is an $H$-monotone solution, then
(1) The components $\left(u_{i}\right)_{i=1}^{m}$ have common level sets, which are also hyperplanes.
(2) The system is decoupled at $\left(u_{i}\right)_{i=1}^{m}$ into $m$ separate ODEs.

## Monge-Kantorovich problems

Given probability measures $\mu_{i}, i=1, \ldots, m$ on $\Omega_{i} \subset \mathbb{R}$, the optimal transport (or Monge-Kantorovich) problem we consider consists of minimizing

$$
\begin{equation*}
\inf \left\{\int_{\Omega_{1} \times \ldots \times \Omega_{m}} H\left(p_{1}, p_{2}, \ldots, p_{m}\right) d \gamma\left(p_{1}, p_{2}, \ldots, p_{m}\right)\right\} \tag{17}
\end{equation*}
$$

among probability measures $\gamma$ on $\Omega_{1} \times \ldots \times \Omega_{m}$ whose $i$-marginals are $\mu_{i}$. In this setting, $H$ is called the cost function.
$\left(^{*}\right)$ If $H$ is bounded below on $\Omega_{1} \times \ldots \times \Omega_{m}$, then there exists a solution $\bar{\gamma}$ to the Kantorovich problem (17)

Open problem: For which costs $H$, the solution is unique and is "supported on a graph", that is $\bar{\gamma}$ is of the form $\bar{\gamma}=\left(I, T_{2}, T_{3}, \ldots, T_{m-1}\right)_{\#} \mu_{1}$ for a suitable family of point transformations ( $T_{i}$ ) such that $T_{i \#} \mu_{1}=\mu_{i}$.
Case $m=2$ (Original Monge problem) is by now well understood. Case $m \geq 3$ Mostly open.

## Duality

If $H$ is bounded below on $\Omega_{1} \times \ldots \times \Omega_{m}$, then there exists an $m$-tuple of functions $\left(\bar{V}_{1}, \bar{V}_{2}, \ldots, \bar{V}_{m}\right)$, which maximizes the following dual problem

$$
\begin{equation*}
\sup \left\{\sum_{i=1}^{m} \int_{\Omega_{i}} V_{i}\left(p_{i}\right) d \mu_{i} ;\left(V_{1}, V_{2}, \ldots, V_{m}\right)\right\} \tag{18}
\end{equation*}
$$

among all $m$-tuples $\left(V_{1}, V_{2}, \ldots, V_{m}\right)$ of functions $V_{i} \in L^{1}\left(\mu_{i}\right)$ for which

$$
\sum_{i=1}^{m} V_{i}\left(p_{i}\right) \leq H\left(p_{1}, \ldots, p_{m}\right) \text { for all }\left(p_{1}, \ldots, p_{m}\right) \in \Omega_{1} \times \ldots \times \Omega_{m}
$$

They satisfy for all $i=1, \ldots, m$,

$$
\bar{V}_{i}\left(p_{i}\right)=\inf _{\substack{p_{j} \in \mathbb{R} \\ j \neq i}}\left(H\left(p_{1}, p_{2}, \ldots, p_{m}\right)-\sum_{j \neq i} \bar{V}_{j}\left(p_{j}\right)\right)
$$

$\inf \left\{\int_{\Pi_{i=1}^{m} \Omega_{i}} H\left(p_{1}, p_{2}, \ldots, p_{m}\right) d \gamma ; \gamma\right\}=\sup \left\{\sum_{i=1}^{m} \int_{\Omega_{i}} V_{i}\left(p_{i}\right) d \mu_{i} ;\left(V_{1}, V_{2}, \ldots, V_{m}\right)\right\}$

## Monge-Kantorovich problems $m \geq 3$ when $\Omega_{i}=\mathbb{R}$

Theorem (Carlier): If $\mu_{1}, \ldots, \mu_{m}$ are continuous probability measures on $\mathbb{R}$, and $\frac{\partial^{2} H}{\partial q_{i} \partial q_{j}}<0$ on the product of their support. Then, there is a unique solution to the optimal transportation problem (17), given by $\gamma=\left(I, f_{2}, f_{3}, \ldots f_{m}\right)_{\#} \mu_{1}$, where $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is the unique increasing map pushing forward $\mu_{1}$ to $\mu_{i}$.

- How to make the condition invariant of changes of variables $p_{i} \mapsto q_{i}$, that is for all $i \neq j$

$$
\frac{\partial^{2} H}{\partial q_{i} \partial q_{j}}<0 \text { for all } q=\left(q_{1}, q_{2}, \ldots, q_{m}\right) \in \mathbb{R}^{m}
$$

- Say that $H: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is said to be compatible if for all distinct $i, j, k$, we have

$$
\begin{equation*}
\frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}\left(\frac{\partial^{2} H}{\partial p_{k} \partial p_{j}}\right)^{-1} \frac{\partial^{2} H}{\partial p_{k} \partial p_{i}}<0 \text { for all } p=\left(p_{1}, p_{2}, \ldots, p_{m}\right) \in \mathbb{R}^{m} \tag{19}
\end{equation*}
$$

Corollary: If $H$ is compatible, then there is a unique solution to (17) of the form $\gamma=\left(I, g_{1}, g_{2}, \ldots, g_{m}\right)_{\#} \mu_{1}$, where $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is increasing if $\frac{\partial^{2} H}{\partial p_{1} \partial p_{i}}<0$ and decreasing if $\frac{\partial^{2} H}{\partial p_{1} \partial p_{i}}>0$, and is the unique such map pushing $\mu_{1}$ to $\mu_{i}$.

## Classical notion of submodular functions

The function $H: A \subset \mathbb{R}^{m} \rightarrow \mathbb{R}$ is submodular (or 2-increasing in Economics) if

$$
H\left(\mathbf{x}+h \mathbf{e}_{i}+k \mathbf{e}_{j}\right)+H(\mathbf{x}) \leq H\left(\mathbf{x}+h \mathbf{e}_{i}\right)+H\left(\mathbf{x}+k \mathbf{e}_{j}\right) \quad(i \neq j, \quad h, k>0)
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ and $\mathbf{e}_{i}$ denotes the $i$-th standard basis vector in $\mathbb{R}^{m}$.

Theorem (Lorentz, ..., Burchard-Hajaiej): $H$ is submodular on $\mathbb{R}_{+}^{m}$ if and only if the following extended Hardy-Littlewood inequality holds:
For all choices of real-valued non-negative measurable functions $\left(u_{1}, \ldots, u_{m}\right)$ that vanish at infinity, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} H\left(u_{1}^{*}(x), \ldots, u_{m}^{*}(x)\right) d x \leq \int_{\mathbb{R}^{N}} H\left(u_{1}(x), \ldots, u_{m}(x) d x\right. \tag{20}
\end{equation*}
$$

where $u_{i}^{*}$ is the symmetric decreasing rearrangement of $u_{i}$ for $i=1, \ldots, m$.

## Link to mass transport

Lemma: The following are equivalent for a function $H \in C^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$.
(0) $H$ is orientable.
(2) $H$ is compatible.

- After a change of variables, $\frac{\partial^{2} H}{\partial q_{i} \partial q_{j}}<0$.
- After a change of variables, $H$ is submodular.

Connection to mass transport.
Proposition: Let $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ be a function on $\mathbb{R}^{N}$, whose components are monotone in the last variable. Let $\mu$ be a probability measure on $\mathbb{R}$, absolutely continuous with respect to Lebesgue measure. For each $x^{\prime} \in \mathbb{R}^{N-1}$, let $\mu_{i}^{x^{\prime}}$ be the pushforward of $\mu$ by the map $u_{i}^{x^{\prime}}: x_{N} \mapsto u_{i}\left(x^{\prime}, x_{N}\right)$ and set $\gamma^{x^{\prime}}:=\left(u_{1}^{x^{\prime}}, u_{2}^{x^{\prime}}, \ldots, u_{m}^{x^{\prime}}\right) \not \# \mu$. Then the following are equivalent:
(1) $u$ is H -monotone.
(0) For each $x^{\prime} \in \mathbb{R}^{N-1}$, the measure $\gamma^{x^{\prime}}$ is optimal for the Monge-Kantorovich problem (17), when the marginals are given by $\mu_{i}^{\alpha^{\prime}}$.

## Link to mass transport

Lemma: The following are equivalent for a function $H \in C^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$.
(1) $H$ is orientable.
(2) $H$ is compatible.
(3) After a change of variables, $\frac{\partial^{2} H}{\partial q_{i} \partial q_{j}}<0$.
(9) After a change of variables, $H$ is submodular.

## Connection to mass transport.

Proposition: Let $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ be a function on $\mathbb{R}^{N}$, whose components are monotone in the last variable. Let $\mu$ be a probability measure on $\mathbb{R}$, absolutely continuous with respect to Lebesgue measure. For each $x^{\prime} \in \mathbb{R}^{N-1}$, let $\mu_{i}^{x^{\prime}}$ be the pushforward of $\mu$ by the map $u_{i}^{x^{\prime}}: x_{N} \mapsto u_{i}\left(x^{\prime}, x_{N}\right)$ and set $\gamma^{x^{\prime}}:=\left(u_{1}^{x^{\prime}}, u_{2}^{x^{\prime}}, \ldots, u_{m}^{x^{\prime}}\right) \# \mu$. Then the following are equivalent:
(1) $u$ is $H$-monotone.
(2) For each $x^{\prime} \in \mathbb{R}^{N-1}$, the measure $\gamma^{x^{\prime}}$ is optimal for the Monge-Kantorovich problem (17), when the marginals are given by $\mu_{i}^{x^{\prime}}$.

## Decoupling of systems

Theorem (Ghoussoub-Pass): Let $u=\left(u_{1}, \ldots, u_{m}\right)$ be a bounded solution to $\Delta u=\nabla H(u)$.
(1) If $u=\left(u_{1}, \ldots, u_{m}\right)$ is monotone, then there exist functions $V_{i}\left(x^{\prime}, p_{i}\right)$ such that $u$ solves the system of decoupled equations:

$$
\begin{equation*}
\Delta u_{i}=\frac{\partial v_{i}}{\partial p_{i}}\left(x^{\prime}, u_{i}(x)\right) \text { for } i=1, \ldots, m \tag{21}
\end{equation*}
$$

Furthermore, along the solution, we have

$$
\begin{equation*}
\sum_{i=1}^{m} V_{i}\left(x^{\prime}, u_{i}(x)\right)=H\left(u_{1}(x), u_{2}(x), \ldots, u_{m}(x)\right) \text { for } x \in \mathbb{R}^{N} \tag{22}
\end{equation*}
$$

(2) If $u=\left(u_{1}, \ldots, u_{m}\right)$ is $H$-monotone, then for all $p=\left(p_{1}, p_{2}, \ldots, p_{m}\right) \in \mathbb{R}^{m}$,

$$
\begin{equation*}
\sum_{i=1}^{m} V_{i}\left(x^{\prime}, p_{i}\right) \leq H\left(p_{1}, p_{2}, \ldots, p_{m}\right) \tag{23}
\end{equation*}
$$

(3) If the $u_{i}$ have common level sets, then the $V_{i}$ can be chosen to be independent of $x^{\prime}$, that is $V_{i}\left(x^{\prime}, p_{i}\right)=V_{i}\left(p_{i}\right)$.
Conjecture: Any $H$-monotone solution to the system has common level sets.

## Proof

(1) Fix $x^{\prime} \in \mathbb{R}^{N-1}$, and define $V_{i}\left(\cdot, x^{\prime}\right)$ on the range of $x_{N} \mapsto u_{i}\left(x^{\prime}, x_{N}\right)$ as follows. For $p_{i}$ in this range, monotonicity ensures the existence of a unique $x_{N}=x_{N}\left(p_{i}\right)$ such that $p_{i}=u_{i}\left(x^{\prime}, x_{N}\right)$. We can therefore set

$$
\frac{\partial V_{i}}{\partial p_{i}}\left(p_{i}, x^{\prime}\right)=\frac{\partial H}{\partial p_{i}}\left(u\left(x^{\prime}, x_{N}\right)\right) .
$$

Actually one can write an explicit expression for the $V_{i}$ 's:

$$
\begin{equation*}
V_{i}\left(\tilde{p}_{i}, x^{\prime}\right)=\int_{0}^{\tilde{p}_{i}} \frac{\partial H}{\partial p_{i}}\left(u\left(x^{\prime}, x_{N}\left(p_{i}\right)\right)\right) d p_{i}+H\left(u\left(x^{\prime}, 0\right)\right) . \tag{24}
\end{equation*}
$$

(2) If $u$ is $H$-monotone, then for each $x^{\prime} \in \mathbb{R}^{n-1}$ the $V_{i}$ 's play the role of Kantorovich potentials, and so we have

$$
\sum_{i=1}^{m} V_{i}\left(p_{i}, x^{\prime}\right) \leq H\left(p_{1}, p_{2}, \ldots, p_{m}\right)
$$

(3) If the $u_{i}$ have common level sets, then the image of $\left(u_{1}^{x^{\prime}}, u_{2}^{x^{\prime}}, \ldots, u_{m}^{x^{\prime}}\right)$ is independent of $x^{\prime}$ and the measures $\gamma^{x^{\prime}}$ are then all supported on the same set, and so we can choose the $V_{i}\left(p_{i}, x^{\prime}\right)=V_{i}\left(p_{i}\right)$ to be independent of $x^{\prime}$. The image of $\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ is equal to the image of $\left(u_{1}^{x^{\prime}}, u_{2}^{x^{\prime}}, \ldots, u_{m}^{x^{\prime}}\right)$ for any fixed $x^{\prime}$, and any measure supported on this set is optimal for its marginals.

## Decoupling

## Corollary

- If $N \leq 3$ and $u=\left(u_{1}, \ldots, u_{m}\right)$ is $H$-monotone, then there exist $V_{i}, i=1, \ldots, m$ such that

$$
\begin{equation*}
\Delta u_{i}=V_{i}^{\prime}\left(u_{i}(x)\right) \text { on } \mathbb{R}^{N} \text { for } i=1, \ldots, m \tag{25}
\end{equation*}
$$

- For some constant $C$ independent of the solution,

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\nabla u_{i}(x)\right|^{2} \leq 2 H\left(u_{1}(x), \ldots, u_{m}(x)\right)+C \text { for all } x \in \mathbb{R}^{N} \tag{26}
\end{equation*}
$$

- If $N=2$, then $C=0$, hence an extension of Modica's inequality.


## Allen-Cahn potentials with quadratic interaction

Consider $H(u)=\sum_{i \neq j}\left|u_{i}-u_{j}\right|^{2}+\sum_{i=1}^{m} W\left(u_{i}\right)$, where $W\left(u_{i}\right)=\frac{1}{4}\left(u_{i}^{2}-1\right)^{2}$ is the Allen-Cahn potential. Note that $\frac{\partial^{2} H}{\partial u_{i} \partial u_{j}}=-2<0$, hence orientable. The decoupled system is

$$
\Delta u_{i}=V_{i}^{\prime}\left(u_{i}\right)=W^{\prime}\left(u_{i}\right)=u_{i}\left(u_{i}^{2}-1\right)
$$

and the one dimensional solutions are of the form $u_{i}(x)=\tanh \left(\frac{a \cdot x-b}{\sqrt{2}}\right)$, for constants $b \in \mathbb{R}, a \in \mathbb{R}^{n}$, with $|a|=1$.
These functions, with a common $a, b$ are a one dimensional solution, with common level sets, to the original coupled system

$$
\Delta u_{i}=H^{\prime}\left(u_{i}\right)=2(m-1) u_{i}-2 \sum_{j \neq i}^{m} u_{j}+u_{i}\left(u_{i}^{2}-1\right)
$$

We do not know whether there are other $H$-monotone solutions to this equation.

## Products of Allen-Cahn potentials

Consider $H\left(u_{1}, u_{2}, \ldots u_{m}\right)=m \log \left[\frac{1}{m} \sum_{i=1}^{m} e^{\frac{1}{4}\left(u_{i}^{2}-1\right)^{2}}\right]$. Assuming $\left|u_{i}\right| \leq 1$, the decoupled system becomes

$$
\begin{equation*}
\Delta u_{i}=V_{i}^{\prime}\left(u_{i}\right)=W^{\prime}\left(u_{i}\right)=u_{i}\left(u_{i}^{2}-1\right) \tag{27}
\end{equation*}
$$

Note that the mixed second order partial derivatives change signs, as

$$
\frac{\partial^{2} H}{\partial u_{i} \partial u_{j}}=\frac{-m u_{i} u_{j}\left(u_{i}^{2}-1\right)\left(u_{j}^{2}-1\right) e^{\frac{1}{4}\left(u_{i}^{2}-1\right)^{2}} e^{\frac{1}{4}\left(u_{j}^{2}-1\right)^{2}}}{\left[\sum_{k=1}^{m} e^{\frac{1}{4}\left(u_{k}^{2}-1\right)^{2}}\right]^{2}}
$$

However, $H$ is orientable in any region where $u_{i} \neq 0$ and $\left|u_{i}\right| \leq 1$. Again, solutions to the decoupled problem

$$
u_{i}(x)= \pm \tanh \left(\frac{a \cdot x-b}{\sqrt{2}}\right)
$$

One can check directly that these functions solve the original system.

## Coupled quadratic system

For $H\left(u_{1}, u_{2}\right)=\frac{1}{2} u_{1}^{2} u_{2}^{2}$, finding solutions with common level sets to the system can be reformulated as looking for a concave function $F_{1}$, with conjugate $F_{2}$, such that both $F_{1}$ and $F_{2}$ are increasing on $[0, \infty)$, as well as non-negative functions $u_{1}, u_{2}$, solving the decoupled system

$$
\begin{gathered}
\Delta u_{1}=2 F_{1}\left(u_{1}^{2}\right) \\
\Delta u_{2}=2 F_{2}\left(u_{2}^{2}\right)
\end{gathered}
$$

Any such solution $\left(u_{1}, u_{2}\right)$ is an $H$-monotone solution to the original system, with common level sets.
For $N \leq 3$, they are one dimensional. In this case Berestycki et al. found a solution with $u_{1}(-\infty)=0, u_{1}(\infty)=\infty$ and $u_{2}(-\infty)=\infty, u_{2}(-\infty)=0$. We can use this solution to build decoupling potentials as follows:

$$
V_{1}(t)=\int_{0}^{t} s u_{2}^{2}\left(u_{1}^{-1}(s)\right) d s \text { and } V_{2}(t)=\int_{0}^{t} s u_{1}^{2}\left(u_{2}^{-1}(s)\right) d s
$$

$F_{i}\left(q_{i}\right)=2 V_{i}\left(\sqrt{q_{i}}\right)$ are then concave conjugates. while $u_{1}$ and $u_{2}$ solve the decoupled system

$$
\Delta u_{i}=V_{i}^{\prime}\left(u_{i}\right)=u_{i} F^{\prime}\left(u_{i}^{2}\right)
$$

We suspect that in low dimensions, any $H$-monotone solution with appropriate limits must satisfy this decoupled system.

## Energy minimizing solutions on Finite domains

Let $\Omega \subset \mathbb{R}^{N-1}$ be a bounded domain. For $u=\left(u_{1}, \ldots u_{m}\right): \Omega \times[0,1] \rightarrow \mathbb{R}^{m}$, set

$$
E(u)=\int_{\Omega \times[0,1]} \frac{1}{2} \sum_{i=1}^{m}\left|\nabla u_{i}\right|^{2}+H(u) d x
$$

Under certain conditions, minimizers of the energy $E$ on bounded domains have common level sets and are 1-dimensional. Heuristically,

- The $H$-term in the energy that forces the $u_{i}$ to have the same level sets, so the image of $\left(u_{1}, \ldots . u_{m}\right)$ is optimal for its marginals.
- The Dirichlet term then forces these level sets to be hyperplanes.
- For a single equation, one dimensional rearrangements reduce the Dirichlet energy. On the other hand, the term $\int H\left(u_{1}\right) d x$ is unchanged by rearrangement, as $u_{1} \# d x$ remains the same.
- For systems, $\int H\left(u_{1}, u_{2}, \ldots, u_{m}\right) d x$ will be lowered if the appropriate rearrangements $\bar{u}_{i}$ can be made so that ( $\bar{u}_{1}, \ldots, \bar{u}_{m}$ ) \#dx solves the optimal transport problem (17) with marginals $u_{i} \# d x$. For an orientable $H$, this is possible. For a non-orientable $H$, the solution to the optimal transport problem may concentrate on a higher dimensional set.


## Gibbons type results

## Theorem

Suppose $H$ is orientable and that the set $\left\{a_{i}, b_{i}\right\}_{i=1}^{m}$ of constants is consistent with the orientability condition, that is

$$
\begin{equation*}
H_{i, j}(u)\left(b_{i}-a_{i}\right)\left(b_{j}-a_{j}\right)<0 \text { for all } i \neq j \tag{28}
\end{equation*}
$$

Assume $u$ minimizes the energy $E$ in the class of functions $v=\left(v_{1}, \ldots v_{m}\right): \Omega \times[0,1] \rightarrow \mathbb{R}^{m}$ satisfying
(1) $v_{i}\left(x^{\prime}, 0\right)=a_{i}, v_{i}\left(x^{\prime}, 1\right)=b_{i}$,
(2) $v$ is $H$-monotone with respect to $x_{N}$.

Then, $u\left(x^{\prime}, x_{N}\right)=u\left(x_{N}\right)$ is one dimensional and the components $u_{i}^{\prime} s$ have common level sets.

## Happy Birthday Ivar - Keep on savouring science and life

## FIGURE 2. Don't try this in seven dimensions.

## From the following article:

Mathematics: How to melt if you must
Ivar Ekeland
Nature 392, 654-657(16 April 1998) doi:10.1038/33541


