Decoupling DeGiorgi systems via multi-marginal mass transport

Nassif Ghoussoub, University of British Columbia

On the occasion of Ivar's 70th birthday

Paris, June 20, 2014 Suppose that u is an entire solution of the Allen-Cahn equation

$$\Delta u = H'(u) = u^3 - u \quad \text{on } \mathbb{R}^N$$
(1)

satisfying

$$|u(\mathbf{x})| \leq 1$$
, $\frac{\partial u}{\partial x_N}(\mathbf{x}) > 0$ for $\mathbf{x} = (\mathbf{x}', x_N) \in \mathbb{R}^N$

Then, at least for $N \le 8$ the level sets of *u* must be hyperplanes. The story is now essentially settled and here are the main milestones:

- For N = 2 by (Ghoussoub-Gui 1997)
- For N = 3 by (Ambrosio-Cabré 2000)
- For N = 4, 5, if *u* is anti-symmetric, by (Ghoussoub-Gui 2003)
- For $N \leq 8$, if *u* satisfies the additional natural assumption (Savin 2003)

$$\lim_{\mathbf{x}_N\to\pm\infty}u(\mathbf{x}',\mathbf{x}_N)\to\pm 1.$$

• Counterexample for $N \ge 9$, by (Del Pino-Kowalczyk-Wei 2008)

In low dimensions, the nonlinearity can be more general than $H'(u) = u^3 - u$.

Suppose that u is an entire solution of the Allen-Cahn equation

$$\Delta u = H'(u) = u^3 - u \quad \text{on } \mathbb{R}^N$$
(1)

satisfying

$$|u(\mathbf{x})| \leq 1$$
, $\frac{\partial u}{\partial x_N}(\mathbf{x}) > 0$ for $\mathbf{x} = (\mathbf{x}', x_N) \in \mathbb{R}^N$

Then, at least for $N \le 8$ the level sets of *u* must be hyperplanes. The story is now essentially settled and here are the main milestones:

- For N = 2 by (Ghoussoub-Gui 1997)
- For N = 3 by (Ambrosio-Cabré 2000)
- For N = 4, 5, if u is anti-symmetric, by (Ghoussoub-Gui 2003)
- For $N \leq 8$, if u satisfies the additional natural assumption (Savin 2003)

$$\lim_{\mathbf{x}_N\to\pm\infty}u(\mathbf{x}',\mathbf{x}_N)\to\pm 1.$$

• Counterexample for $N \ge 9$, by (Del Pino-Kowalczyk-Wei 2008)

In low dimensions, the nonlinearity can be more general than $H'(u) = u^3 - u$.

FIGURE 2. Don't try this in seven dimensions.

From the following article: <u>Mathematics: How to melt if you must</u> Ivar Ekeland *Nature* **392**, 654-657(16 April 1998) doi:10.1038/33541

DeGiorgi type results for systems-Motivation

Berestycki, Lin, Wei and Zhao considered a system of m = 2 equations which appears as a limiting elliptic system arising in phase separation for multiple states Bose-Einstein condensates.

$$\begin{cases} \Delta u = uv^2 \text{ in } \mathbb{R}^N, \\ \Delta v = vu^2 \text{ in } \mathbb{R}^N, \end{cases}$$
(2)

• They show that any positive solution (u, v) of the system (2) such that $\partial_N u > 0$, $\partial_N v < 0$, and which satisfies

$$\int_{B_{2R}\setminus B_R} u^2 + v^2 \leq CR^4,$$

is necessarily one-dimensional, i.e., there exists $\mathbf{a} \in \mathbb{R}^N$, $|\mathbf{a}| = 1$ such that

$$((u(x), v(x)) = (U(\mathbf{a} \cdot x), V(\mathbf{a} \cdot x)),$$

where (U, V) is a solution of the corresponding one-dimensional system.

- In particular, any such "monotone" solution (u, v) which satisfies $u(x), v(x) = O(|x|^k)$ is necessarily one-dimensional provided $N \le 4 2k$.
- Berestycki, Terracini, Wang and Wei: Same result for stable solutions. But polynomial growth not enough.

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N, \tag{3}$$

where $u : \mathbb{R}^N \to \mathbb{R}^m$, $H \in C^2(\mathbb{R}^m)$ and $\nabla H(u) = \frac{\partial H}{\partial u_i}(u_1, u_2, ..., u_m))_i$. Consider solutions whose components $(u_1, u_2, ..., u_m)$ are strictly monotone in x_N . They need not be all increasing (or decreasing).

• Say that the level set of the component u_i is a hyperplane if $u_i(x', x_N) = g_i(\mathbf{a}_i \cdot x' - x_N)$ for some $\mathbf{a}_i \in \mathbf{S}^{N-1}$.

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N, \tag{3}$$

where $u : \mathbb{R}^N \to \mathbb{R}^m$, $H \in C^2(\mathbb{R}^m)$ and $\nabla H(u) = \frac{\partial H}{\partial u_i}(u_1, u_2, ..., u_m))_i$. Consider solutions whose components $(u_1, u_2, ..., u_m)$ are strictly monotone in x_N . They need not be all increasing (or decreasing).

Say that the level set of the component u_i is a hyperplane if u_i(x', x_N) = g_i(a_i ⋅ x' - x_N) for some a_i ∈ S^{N-1}.

② Say that the components are parallel if $\nabla u_j = C_{i,j} \nabla u_i$ for constants $C_{i,j}$

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N, \tag{3}$$

- Say that the level set of the component u_i is a hyperplane if u_i(x', x_N) = g_i(a_i ⋅ x' - x_N) for some a_i ∈ S^{N-1}.
- **②** Say that the components are parallel if $\nabla u_j = C_{i,j} \nabla u_i$ for constants $C_{i,j}$
- Say that the components (u_i)^m_{i=1} have common level sets if for any i ≠ j and λ ∈ ℝ, there exists λ̄ such that {x : u_i(x) = λ} = {x : u_j(x) = λ̄}.

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N, \tag{3}$$

- Say that the level set of the component u_i is a hyperplane if u_i(x', x_N) = g_i(a_i ⋅ x' - x_N) for some a_i ∈ S^{N-1}.
- **a** Say that the components are parallel if $\nabla u_j = C_{i,j} \nabla u_i$ for constants $C_{i,j}$
- Say that the components (u_i)^m_{i=1} have common level sets if for any i ≠ j and λ ∈ ℝ, there exists λ̄ such that {x : u_i(x) = λ} = {x : u_j(x) = λ̄}. Note that if (u_i)^m_{i=1} have common level sets, which are also hyperplanes, then a_i = a_j = a and ∇u_j = C_{i,j}∇u_i for constants C_{i,j}.

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N, \tag{3}$$

- Say that the level set of the component u_i is a hyperplane if u_i(x', x_N) = g_i(**a**_i ⋅ x' - x_N) for some **a**_i ∈ **S**^{N-1}.
- **a** Say that the components are parallel if $\nabla u_j = C_{i,j} \nabla u_i$ for constants $C_{i,j}$
- Say that the components (u_i)^m_{i=1} have common level sets if for any i ≠ j and λ ∈ ℝ, there exists λ̄ such that {x : u_i(x) = λ} = {x : u_j(x) = λ̄}. Note that if (u_i)^m_{i=1} have common level sets, which are also hyperplanes, then a_i = a_j = a and ∇u_j = C_{i,j}∇u_i for constants C_{i,j}.
- Say that the system is decoupled at $u = (u_i)_{i=1}^m$, if there exist $V_i, i = 1, ..., m$ such that

$$\Delta u_i = V'_i(u_i(x))$$
 $i = 1, ..., m.$ (4)

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N, \tag{3}$$

- Say that the level set of the component u_i is a hyperplane if u_i(x', x_N) = g_i(**a**_i ⋅ x' - x_N) for some **a**_i ∈ **S**^{N-1}.
- **a** Say that the components are parallel if $\nabla u_j = C_{i,j} \nabla u_i$ for constants $C_{i,j}$
- Say that the components (u_i)^m_{i=1} have common level sets if for any i ≠ j and λ ∈ ℝ, there exists λ̄ such that {x : u_i(x) = λ} = {x : u_i(x) = λ̄}. Note that if (u_i)^m_{i=1} have common level sets, which are also hyperplanes, then a_i = a_j = a and ∇u_j = C_{i,j}∇u_i for constants C_{i,j}.
- Say that the system is decoupled at $u = (u_i)_{i=1}^m$, if there exist $V_i, i = 1, ..., m$ such that

$$\Delta u_i = V'_i(u_i(x))$$
 $i = 1, ..., m.$ (4)

- **1** The level sets of each component u_i must be a hyperplane.
- 2) The components $(u_i)_{i=1}^m$ have common level sets.

- **1** The level sets of each component u_i must be a hyperplane.
- 2 The components $(u_i)_{i=1}^m$ have common level sets.
- The components (u_i)^m_{i=1} have common level sets, which are also hyperplanes.

- **1** The level sets of each component u_i must be a hyperplane.
- **2** The components $(u_i)_{i=1}^m$ have common level sets.
- The components (u_i)^m_{i=1} have common level sets, which are also hyperplanes.
- The system is decoupled at $(u_i)_{i=1}^m$.

- **1** The level sets of each component u_i must be a hyperplane.
- **2** The components $(u_i)_{i=1}^m$ have common level sets.
- The components (u_i)^m_{i=1} have common level sets, which are also hyperplanes.
- The system is decoupled at $(u_i)_{i=1}^m$.
- The system is decoupled as ODEs at $(u_i)_{i=1}^m$.

- **1** The level sets of each component u_i must be a hyperplane.
- 2 The components $(u_i)_{i=1}^m$ have common level sets.
- The components (u_i)^m_{i=1} have common level sets, which are also hyperplanes.
- The system is decoupled at $(u_i)_{i=1}^m$.
- The system is decoupled as ODEs at $(u_i)_{i=1}^m$.

For $H\in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

Natural questions and open problems:

Suitable linear Liouville theorems for systems? YES

Suitable monotonicity of solutions? YES

For $H\in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- ③ Relation between monotonicity and stability of solutions? YES

For $H \in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- Selation between monotonicity and stability of solutions? YES
- What about systems involving more than 2 equations? YES

For $H\in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- Selation between monotonicity and stability of solutions? YES
- What about systems involving more than 2 equations? YES
- Is there a geometric Poincaré inequality on the level sets of solutions? YES

For $H \in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- Selation between monotonicity and stability of solutions? YES
- What about systems involving more than 2 equations? YES
- Is there a geometric Poincaré inequality on the level sets of solutions? YES
- Inergy estimates for stable solutions: When is E_R(u, v) ≤ CR^{N-1} for a constant C independent of R? OPEN

For $H \in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

Natural questions and open problems:

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- Selation between monotonicity and stability of solutions? YES
- What about systems involving more than 2 equations? YES
- Is there a geometric Poincaré inequality on the level sets of solutions? YES
- O Energy estimates for stable solutions: When is E_R(u, v) ≤ CR^{N-1} for a constant C independent of R? OPEN

Open Monotonicity formula: When is $\Gamma_R = \frac{E_R(u,v)}{R^{N-1}}$ increasing **OPEN**

For $H \in C^2(\mathbb{R}^2)$, consider the system

$$\left(\begin{array}{ccc} \Delta u &=& H_u(u,v) \ \text{in} \ \mathbb{R}^N, \\ \Delta v &=& H_v(u,v) \ \text{in} \ \mathbb{R}^N, \end{array} \right.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- Selation between monotonicity and stability of solutions? YES
- What about systems involving more than 2 equations? YES
- Is there a geometric Poincaré inequality on the level sets of solutions? YES
- Energy estimates for stable solutions: When is $E_R(u, v) \leq CR^{N-1}$ for a constant C independent of R? OPEN
- Monotonicity formula: When is $\Gamma_R = \frac{E_R(u,v)}{R^{N-1}}$ increasing ?OPEN
- **(a)** Modica pointwise estimate: Does it hold for systems? $|\nabla u|^2 + |\nabla v|^2 \le 2H(u, v)$. **OPEN**

For $H \in C^2(\mathbb{R}^2)$, consider the system

$$\left(egin{array}{cccc} \Delta u &=& H_u(u,v) \ \mathrm{in} \ \mathbb{R}^N, \ \Delta v &=& H_v(u,v) \ \mathrm{in} \ \mathbb{R}^N, \end{array}
ight.$$

where the energy of a solution (u, v) on a ball B_R is defined as

$$E_R(u,v) = \int_{B_R} \frac{1}{2} |\nabla u|^2 d\mathbf{x} + \int_{B_R} \frac{1}{2} |\nabla v|^2 d\mathbf{x} + \int_{B_R} H(u,v) d\mathbf{x}$$

- Suitable linear Liouville theorems for systems? YES
- Suitable monotonicity of solutions? YES
- Selation between monotonicity and stability of solutions? YES
- What about systems involving more than 2 equations? YES
- Is there a geometric Poincaré inequality on the level sets of solutions? YES
- Energy estimates for stable solutions: When is $E_R(u, v) \le CR^{N-1}$ for a constant C independent of R? OPEN
- **O** Monotonicity formula: When is $\Gamma_R = \frac{E_R(u,v)}{R^{N-1}}$ increasing **?OPEN**
- **()** Modica pointwise estimate: Does it hold for systems? $|\nabla u|^2 + |\nabla v|^2 \le 2H(u, v)$. OPEN

Consider any solution u of $\Delta u = H'(u)$ such that $\phi := \frac{\partial u}{\partial x_N} > 0$. Take any other directional derivative $\psi := \nabla u \cdot \nu$. Then $\sigma := \frac{\psi}{\phi}$ satisfies the linear

$$-\operatorname{div}(\phi^2(x)\nabla\sigma) = 0 \qquad x \in \mathbb{R}^n, \tag{5}$$

So it suffices to establish a Liouville theorem of the type:

If $\operatorname{div}(\phi^2(x)\nabla\sigma) = 0$ in \mathbb{R}^n , then σ is constant.

This has been verified under the following conditions:

- If $\phi(x) \ge \delta > 0$ and σ is bounded below. (Liouville and Moser)
- If $\phi\sigma$ bounded (Berestycki-Caffarelli-Nirenberg, Ghoussoub-Gui)
- If $\int_{B_{2R} \setminus B_R} \phi^2 \sigma^2 \leq CR^2$ (Ambrosio-Cabre).

Liouville theorems for systems

Let's use the same linearization trick on

$$\begin{pmatrix} \Delta u &= H_u(u, v) \text{ in } \mathbb{R}^N, \\ \Delta v &= H_v(u, v) \text{ in } \mathbb{R}^N. \end{cases}$$
(6)

Let $\phi := \partial_N u > 0$ and $\psi := \nabla u \cdot \eta$ for any fixed $\eta = (\eta', 0) \in \mathbb{R}^{N-1} \times \{0\}$. Let $\tilde{\phi} := \partial_N v < 0$ and $\tilde{\psi} := \nabla v \cdot \eta$ for the given $\eta = (\eta', 0) \in \mathbb{R}^{N-1} \times \{0\}$. Then $(\phi, \tilde{\phi})$ and $(\psi, \tilde{\psi})$ satisfy the following systems

$$\begin{cases} \Delta \phi = H_{uu}\phi + H_{uv}\tilde{\phi} \text{ in } \mathbb{R}^{N}, \\ \Delta \tilde{\phi} = H_{uv}\phi + H_{vv}\tilde{\phi} \text{ in } \mathbb{R}^{N}, \end{cases}$$
(7)

and

$$\begin{cases} \Delta \psi = H_{uu}\psi + H_{uv}\tilde{\psi} \text{ in } \mathbb{R}^{N}, \\ \Delta \tilde{\psi} = H_{uv}\psi + H_{vv}\tilde{\psi} \text{ in } \mathbb{R}^{N}, \end{cases}$$
(8)

$$\begin{split} \sigma &:= \frac{\psi}{\phi} \text{ and } \tau := \frac{\tilde{\psi}}{\tilde{\phi}} \text{ are then solutions of the linear system} \\ \begin{cases} \operatorname{div}(\gamma(x)\nabla\sigma) &= \lambda(x)(\sigma-\tau) \text{ in } \mathbb{R}^N, \\ \operatorname{div}(\tilde{\gamma}(x)\nabla\tau) &= -\lambda(x)(\sigma-\tau) \text{ in } \mathbb{R}^N, \end{cases} \end{split}$$

Liouville theorems for systems

Let's use the same linearization trick on

$$\begin{pmatrix} \Delta u &= H_u(u, v) \text{ in } \mathbb{R}^N, \\ \Delta v &= H_v(u, v) \text{ in } \mathbb{R}^N. \end{cases}$$
(6)

Let $\phi := \partial_N u > 0$ and $\psi := \nabla u \cdot \eta$ for any fixed $\eta = (\eta', 0) \in \mathbb{R}^{N-1} \times \{0\}$. Let $\tilde{\phi} := \partial_N v < 0$ and $\tilde{\psi} := \nabla v \cdot \eta$ for the given $\eta = (\eta', 0) \in \mathbb{R}^{N-1} \times \{0\}$. Then $(\phi, \tilde{\phi})$ and $(\psi, \tilde{\psi})$ satisfy the following systems

$$\begin{cases} \Delta \phi = H_{uu}\phi + H_{uv}\tilde{\phi} \text{ in } \mathbb{R}^{N}, \\ \Delta \tilde{\phi} = H_{uv}\phi + H_{vv}\tilde{\phi} \text{ in } \mathbb{R}^{N}, \end{cases}$$
(7)

and

$$\begin{cases} \Delta \psi = H_{uu}\psi + H_{uv}\tilde{\psi} \text{ in } \mathbb{R}^{N}, \\ \Delta \tilde{\psi} = H_{uv}\psi + H_{vv}\tilde{\psi} \text{ in } \mathbb{R}^{N}, \end{cases}$$
(8)

 $\sigma := \frac{\psi}{\phi} \text{ and } \tau := \frac{\tilde{\psi}}{\tilde{\phi}} \text{ are then solutions of the linear system}$ $\begin{cases} \operatorname{div}(\gamma(x)\nabla\sigma) &= \lambda(x)(\sigma-\tau) \text{ in } \mathbb{R}^{N}, \\ \operatorname{div}(\tilde{\gamma}(x)\nabla\tau) &= -\lambda(x)(\sigma-\tau) \text{ in } \mathbb{R}^{N}, \end{cases}$ (9) Lemma (Linear Liouville theorems for systems) Let (σ, τ) be a solution of

$$\begin{cases} \operatorname{div}(\gamma(x)\nabla\sigma) = \lambda(x)(\sigma-\tau) \text{ in } \mathbb{R}^{N},\\ \operatorname{div}(\tilde{\gamma}(x)\nabla\tau) = -\lambda(x)(\sigma-\tau) \text{ in } \mathbb{R}^{N}, \end{cases}$$
(10)

such that

 $\lambda(x) = H_{uv}(u, v)\phi(x) ilde{\phi}(x) \leq 0$

and

$$\int_{B_{2R}\setminus B_R}\gamma\sigma^2+\tilde{\gamma}\tau^2\leq CR^2.$$

Then, σ and τ are constants.

 This is a direct extension of the single equation case initiated by Berestycki-Caffarelli-Nirenberg and used by Ghoussoub-Gui in dimension 2, and by Ambrosio-Cabre in dimension 3. Say that a solution $u = (u_k)_{k=1}^m$ is *H*-monotone if the following hold:

- For every $i \in \{1, ..., m\}$, u_i is strictly monotone in the x_N -variable (i.e., $\partial_N u_i \neq 0$).
- **②** For i < j, we have

$$H_{u_i u_j} \partial_N u_i(x) \partial_N u_j(x) \le 0 \text{ for all } x \in \mathbb{R}^N.$$
(11)

The existence of an *H*-monotone solution implies that there exists $(\theta_i)_i$ that do not change sign (in this case $\theta_i = \partial_N u_i$)

$$H_{u_i u_i} \theta_i \theta_j \le 0 \text{ for all } x \in \mathbb{R}^N.$$
(12)

This will be our definition of orientability of H around u.

Stable solutions

Definition: A solution u of the system (3) on a domain Ω is said to be

 (i) stable, if the second variation of the corresponding energy functional is nonnegative, i.e., if for every ζ_k ∈ C¹_c(Ω), k = 1,..., m,

$$\sum_{i} \int_{\Omega} |\nabla \zeta_{i}|^{2} + \sum_{i,j} \int_{\Omega} H_{u_{i}u_{j}} \zeta_{i} \zeta_{j} \geq 0,$$
(13)

(ii) *pointwise stable*, if there exist $(\phi_i)_{i=1}^m$ in $C^1(\Omega)$ that do not change sign and $\lambda \geq 0$ such that

$$\Delta \phi_i = \sum_j H_{u_i, u_j} \phi_j - \lambda \phi_i \text{ in } \Omega \text{ for all } i = 1, ..., m,$$
(14)

and

$$H_{u_i, u_j} \phi_j \phi_i \le 0 \text{ for } 1 \le i < j \le m.$$
(15)

- *H*-monotone solution \implies pointwise stable solution \implies stable solution.
- The notions of variational stability and spectral (or pointwise) stability coincide for a solution, where *H* is orientable.

Stable solutions

Definition: A solution u of the system (3) on a domain Ω is said to be

(i) *stable*, if the second variation of the corresponding energy functional is nonnegative, i.e., if for every $\zeta_k \in C_c^1(\Omega), k = 1, ..., m$,

$$\sum_{i} \int_{\Omega} |\nabla \zeta_{i}|^{2} + \sum_{i,j} \int_{\Omega} H_{u_{i}u_{j}} \zeta_{i} \zeta_{j} \geq 0,$$
(13)

(ii) *pointwise stable*, if there exist $(\phi_i)_{i=1}^m$ in $C^1(\Omega)$ that do not change sign and $\lambda \geq 0$ such that

$$\Delta \phi_i = \sum_j H_{u_i, u_j} \phi_j - \lambda \phi_i \text{ in } \Omega \text{ for all } i = 1, ..., m,$$
(14)

and

$$H_{u_i, u_j} \phi_j \phi_i \le 0 \text{ for } 1 \le i < j \le m.$$
(15)

- *H*-monotone solution \implies pointwise stable solution \implies stable solution.
- The notions of variational stability and spectral (or pointwise) stability coincide for a solution, where *H* is orientable.
- If the system has an *H*-monotone solution *u*, then it is a stable solution and *H* is orientable around *u*.

Stable solutions

Definition: A solution u of the system (3) on a domain Ω is said to be

(i) *stable*, if the second variation of the corresponding energy functional is nonnegative, i.e., if for every $\zeta_k \in C_c^1(\Omega), k = 1, ..., m$,

$$\sum_{i} \int_{\Omega} |\nabla \zeta_{i}|^{2} + \sum_{i,j} \int_{\Omega} H_{u_{i}u_{j}} \zeta_{i} \zeta_{j} \geq 0,$$
(13)

(ii) *pointwise stable*, if there exist $(\phi_i)_{i=1}^m$ in $C^1(\Omega)$ that do not change sign and $\lambda \geq 0$ such that

$$\Delta \phi_i = \sum_j H_{u_i, u_j} \phi_j - \lambda \phi_i \text{ in } \Omega \text{ for all } i = 1, ..., m,$$
(14)

and

$$H_{u_i, u_j} \phi_j \phi_i \le 0 \text{ for } 1 \le i < j \le m.$$
(15)

- *H*-monotone solution \implies pointwise stable solution \implies stable solution.
- The notions of variational stability and spectral (or pointwise) stability coincide for a solution, where *H* is orientable.
- If the system has an *H*-monotone solution *u*, then it is a stable solution and *H* is orientable around *u*.

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N,$$

(or the non-linearity H) is orientable around u, if there exist constants $(\theta_k)_{k=1}^m$ such that for all i, j with $1 \le i < j \le m$, we have $H_{u_i u_j} \theta_i \theta_j \le 0$.

• The orientability condition on the system means that none of the mixed derivative $H_{u_iu_i}$ changes sign.

$$\Delta u = \nabla H(u) \text{ in } \mathbb{R}^N,$$

(or the non-linearity H) is orientable around u, if there exist constants $(\theta_k)_{k=1}^m$ such that for all i, j with $1 \le i < j \le m$, we have $H_{u_i u_j} \theta_i \theta_j \le 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_iu_i}$ changes sign.
- A system consisting of two equations (i.e., m = 2) is always orientable as long as $H_{u_1u_2}$ does not change sign.

$$\Delta u = \nabla H(u) \text{ in } \mathbb{R}^N,$$

(or the non-linearity H) is orientable around u, if there exist constants $(\theta_k)_{k=1}^m$ such that for all i, j with $1 \le i < j \le m$, we have $H_{u_i u_j} \theta_i \theta_j \le 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_iu_i}$ changes sign.
- A system consisting of two equations (i.e., m = 2) is always orientable as long as $H_{u_1u_2}$ does not change sign.
- On the other hand, if m = 3, then a system NEED NOT be always orientable, for example if all three mixed derivatives $H_{u_iu_j}$ with i < j are positive.

$$\Delta u = \nabla H(u) \quad \text{in} \quad \mathbb{R}^N,$$

(or the non-linearity H) is orientable around u, if there exist constants $(\theta_k)_{k=1}^m$ such that for all i, j with $1 \le i < j \le m$, we have $H_{u_i u_j} \theta_i \theta_j \le 0$.

- The orientability condition on the system means that none of the mixed derivative $H_{u_iu_i}$ changes sign.
- A system consisting of two equations (i.e., m = 2) is always orientable as long as $H_{u_1u_2}$ does not change sign.
- On the other hand, if m = 3, then a system NEED NOT be always orientable, for example if all three mixed derivatives $H_{u_iu_j}$ with i < j are positive.

Geometric Poincaré inequality

Assume that $m, N \ge 1$ and $\Omega \subset \mathbb{R}^N$ is an open set. Let u be a stable solution $u \in C^2(\Omega)$ of (3). Then, for any $\eta = (\eta_k)_{k=1}^m \in C_c^1(\Omega)$, the following holds:

$$\begin{split} \sum_{i} \int_{\Omega} |\nabla u_{i}|^{2} |\nabla \eta_{i}|^{2} &\geq \sum_{i} \int_{|\nabla u_{i}| \neq 0} \left(|\nabla u_{i}|^{2} \mathcal{A}_{i}^{2} + |\nabla \tau| \nabla u_{i}||^{2} \right) \eta_{i}^{2} \\ &+ \sum_{i \neq j} \int_{\Omega} \left(\nabla u_{i} \cdot \nabla u_{j} \eta_{i}^{2} - |\nabla u_{i}| |\nabla u_{j}| \eta_{i} \eta_{j} \right) \mathcal{H}_{u_{i}u_{j}}, \end{split}$$

where ∇_T stands for the tangential gradient along a given level set of u_i and A_i^2 is the sum of the squares of the principal curvatures of such a level set. The case of a single equation (m = 1) is:

$$\int_{\Omega} |\nabla u|^2 |\nabla \eta|^2 \geq \int_{|\nabla u| \neq 0} \left(|\nabla u|^2 \mathcal{A}^2 + |\nabla \tau |\nabla u|^2 \right) \eta^2$$

- Sternberg-Zumbrun to study semilinear phase transitions problems.
- Farina-Sciunzi-Valdinoci to reprove some results about the De Giorgi's conjecture.
- Cabré to prove the boundedness of extremal solutions of semilinear elliptic equations with Dirichlet boundary conditions on a convex domain up to dimension four.

De Giorgi type results

Consider the standard test function

$$\chi(x) := \begin{cases} \frac{1}{2}, & \text{if } |x| \le \sqrt{R}, \\ \frac{\log \frac{R}{|x|}}{\log R}, & \text{if } \sqrt{R} < |x| < R, \\ 0, & \text{if } |x| \ge R. \end{cases}$$

Since the system (3) is *orientable*, there exist nonzero functions $\theta_k \in C^1(\mathbb{R}^N)$, $k = 1, \dots, m$, which do not change sign such that

$$H_{u_i u_j} \theta_i \theta_j \leq 0$$
, for all $i, j \in \{1, \cdots, m\}$ and $i < j$. (16)

Consider $\eta_k := sgn(\theta_k)\chi$ for $1 \le k \le m$, where sgn(x) is the Sign function. The geometric Poincaré inequality yields

$$\int_{B_R \setminus B_{\sqrt{R}}} \sum_{i} |\nabla u_i|^2 |\nabla \chi|^2 \geq \sum_{i} \int_{|\nabla u_i| \neq 0} \left(|\nabla u_i|^2 \kappa_i^2 + |\nabla \tau| \nabla u_i||^2 \right) \chi^2$$
$$+ \sum_{i \neq j} \int_{\mathbb{R}^N} \left(\nabla u_i \cdot \nabla u_j - sgn(\theta_i) sgn(\theta_j) |\nabla u_i| |\nabla u_j| \right) H_{u_i u_j} \chi^2 = I_1 + I_2$$

 l_1 is clearly nonnegative. Moreover, $H_{u_iu_j}sgn(\theta_i)sgn(\theta_j) \leq 0$ for all i < j, and therefore, l_2 can be written as

$$I_2 = \sum_{i \neq j} \int_{\mathbf{R}^N} \left(sgn(H_{u_i u_j}) \nabla u_i \cdot \nabla u_j + |\nabla u_i| |\nabla u_j| \right) H_{u_i u_j} sgn(H_{u_i u_j}) \chi^2 \ge 0.$$

Since

$$\int_{B_R \setminus B_{\sqrt{R}}} \sum_{i} |\nabla u_i|^2 |\nabla \chi|^2 \le C \begin{cases} \frac{1}{\log R}, & \text{if } N = 2, \\ \frac{R^{N-2} + R^{(N-2)/2}}{|N-2||\log R|^2}, & \text{if } N \neq 2, \end{cases}$$

So in dimension N = 2, the left hand side of (17) goes to zero as $R \to \infty$. Since $I_1 = 0$, one concludes that all u_i for $i = 1, \dots, m$ are one-dimensional. Since $I_2 = 0$ and provided $H_{u_iu_i}$ is not identically zero, we have for all $x \in \mathbb{R}^2$,

$$-sgn(H_{u_iu_j})\nabla u_i\cdot\nabla u_j=|\nabla u_i||\nabla u_j|.$$

Hence

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.
- If the system has an *H*-monotone solution *u*, then it is orientable and the solution is stable.

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.
- If the system has an *H*-monotone solution *u*, then it is orientable and the solution is stable.
- Orientability condition appears in mass transport theory as well as in rearrangement inequalities.

- Liouville Theorem then holds for linearization.
- The notions of variational stability and spectral (or pointwise) stability coincide.
- A geometric Poincaré inequality on the level sets of solutions holds.
- If the system has an *H*-monotone solution *u*, then it is orientable and the solution is stable.
- Orientability condition appears in mass transport theory as well as in rearrangement inequalities.

The results

Theorem

(Fazly-Ghoussoub) If the dimension N = 2, then any bounded stable solution $u = (u_i)_{i=1}^m$ of a system $\Delta u = \nabla H(u)$ on \mathbb{R}^N , where H is orientable is necessarily one-dimensional. Moreover, for $i \neq j$, $\nabla u_i = C_{i,j} \nabla u_j$ for all $x \in \mathbb{R}^2$, where $C_{i,j}$ are constants whose sign is opposite to the one of $H_{u_i u_i}$.

Theorem

(Fazly-Ghoussoub) If $N \leq 3$ and $u = (u_i)_{i=1}^m$ is an H-monotone bounded solution of of a system $\Delta u = \nabla H(u)$ on \mathbb{R}^N , then all the components of u are one-dimensional.

Theorem

(Ghoussoub-Pass) If $N \leq 3$ and u is an H-monotone solution, then

- The components (u_i)^m_{i=1} have common level sets, which are also hyperplanes.
- 2 The system is decoupled at $(u_i)_{i=1}^m$ into m separate ODEs.

Given probability measures $\mu_i, i = 1, ..., m$ on $\Omega_i \subset \mathbb{R}$, the optimal transport (or Monge-Kantorovich) problem we consider consists of minimizing

$$\inf\left\{\int_{\Omega_1\times\ldots\times\Omega_m}H(p_1,p_2,\ldots,p_m)d\gamma(p_1,p_2,\ldots,p_m)\right\}$$
(17)

among probability measures γ on $\Omega_1 \times ... \times \Omega_m$ whose *i*-marginals are μ_i . In this setting, *H* is called the *cost function*.

(*) If *H* is bounded below on $\Omega_1 \times ... \times \Omega_m$, then there exists a solution $\overline{\gamma}$ to the Kantorovich problem (17)

Open problem: For which costs H, the solution is unique and is "supported on a graph", that is $\bar{\gamma}$ is of the form $\bar{\gamma} = (I, T_2, T_3, ..., T_{m-1})_{\#}\mu_1$ for a suitable family of point transformations (T_i) such that $T_{i\#}\mu_1 = \mu_i$.

Case m = 2 (Original Monge problem) is by now well understood. Case $m \ge 3$ Mostly open. If *H* is bounded below on $\Omega_1 \times ... \times \Omega_m$, then there exists an *m*-tuple of functions $(\overline{V}_1, \overline{V}_2, ..., \overline{V}_m)$, which maximizes the following dual problem

$$\sup\left\{\sum_{i=1}^{m}\int_{\Omega_{i}}V_{i}(p_{i})d\mu_{i};(V_{1},V_{2},...,V_{m})\right\}$$
(18)

among all m-tuples (V1, V2, ..., Vm) of functions $V_i \in L^1(\mu_i)$ for which

$$\sum_{i=1}^m V_i(p_i) \leq H(p_1,...,p_m) ext{ for all } (p_1,...,p_m) \in \Omega_1 imes ... imes \Omega_m.$$

They satisfy for all i = 1, ..., m,

$$ar{V}_i(p_i) = \inf_{\substack{p_j \in \mathbb{R} \ j
eq i}} \Big(H(p_1, p_2, ..., p_m) - \sum_{j
eq i} ar{V}_j(p_j) \Big),$$

$$\inf\left\{\int_{\prod_{i=1}^{m}\Omega_{i}}H(p_{1},p_{2},...,p_{m})d\gamma;\gamma\right\}=\sup\left\{\sum_{i=1}^{m}\int_{\Omega_{i}}V_{i}(p_{i})d\mu_{i};(V_{1},V_{2},...,V_{m})\right\}$$

Theorem (Carlier): If $\mu_1, ..., \mu_m$ are continuous probability measures on \mathbb{R} , and $\frac{\partial^2 H}{\partial q_i \partial q_j} < 0$ on the product of their support. Then, there is a unique solution to the optimal transportation problem (17), given by $\gamma = (I, f_2, f_3, ..., f_m)_{\#} \mu_1$, where $f_i : \mathbb{R} \to \mathbb{R}$ is the unique increasing map pushing forward μ_1 to μ_i .

 How to make the condition invariant of changes of variables p_i → q_i, that is for all i ≠ j

$$rac{\partial^2 H}{\partial q_i \partial q_j} < 0 ext{ for all } q = (q_1, q_2, ..., q_m) \in \mathbb{R}^m.$$

• Say that $H : \mathbb{R}^m \to \mathbb{R}$ is said to be compatible if for all distinct i, j, k, we have

$$\frac{\partial^2 H}{\partial p_i \partial p_j} \left(\frac{\partial^2 H}{\partial p_k \partial p_j} \right)^{-1} \frac{\partial^2 H}{\partial p_k \partial p_i} < 0 \text{ for all } p = (p_1, p_2, ..., p_m) \in \mathbb{R}^m.$$
(19)

Corollary: If *H* is compatible, then there is a unique solution to (17) of the form $\gamma = (I, g_1, g_2, ..., g_m)_{\#} \mu_1$, where $g_i : \mathbb{R} \to \mathbb{R}$ is *increasing* if $\frac{\partial^2 H}{\partial p_1 \partial p_i} < 0$ and *decreasing* if $\frac{\partial^2 H}{\partial p_1 \partial p_i} > 0$, and is the unique such map pushing μ_1 to μ_i .

The function $H : A \subset \mathbb{R}^m \to \mathbb{R}$ is submodular (or 2-increasing in Economics) if

 $H(\mathbf{x} + h\mathbf{e}_i + k\mathbf{e}_j) + H(\mathbf{x}) \le H(\mathbf{x} + h\mathbf{e}_i) + H(\mathbf{x} + k\mathbf{e}_j) \qquad (i \ne j, \quad h, k > 0),$

where $\mathbf{x} = (x_1, ..., x_m)$ and \mathbf{e}_i denotes the *i*-th standard basis vector in \mathbb{R}^m .

Theorem (Lorentz, ..., Burchard-Hajaiej): *H* is submodular on \mathbb{R}^{+}_{+} if and only if the following extended Hardy-Littlewood inequality holds: For all choices of real-valued non-negative measurable functions $(u_1, ..., u_m)$ that vanish at infinity, we have

$$\int_{\mathbb{R}^{N}} H(u_{1}^{*}(x),...,u_{m}^{*}(x))dx \leq \int_{\mathbb{R}^{N}} H(u_{1}(x),...,u_{m}(x)dx,$$
(20)

where u_i^* is the symmetric decreasing rearrangement of u_i for i = 1, ..., m.

Lemma: The following are equivalent for a function $H \in C^2(\mathbb{R}^m, \mathbb{R})$.

- It is orientable.
- It is compatible.
- Solution After a change of variables, $\frac{\partial^2 H}{\partial q_i \partial q_i} < 0$.
- After a change of variables, H is submodular.

Connection to mass transport.

Proposition: Let $u = (u_1, u_2, ..., u_m)$ be a function on \mathbb{R}^N , whose components are monotone in the last variable. Let μ be a probability measure on \mathbb{R} , absolutely continuous with respect to Lebesgue measure. For each $x' \in \mathbb{R}^{N-1}$, let $\mu_i^{x'}$ be the pushforward of μ by the map $u_i^{x'} : x_N \mapsto u_i(x', x_N)$ and set $\gamma^{x'} := (u_1^{x'}, u_2^{x'}, ..., u_m^{x'})_{\#}\mu$. Then the following are equivalent:

u is H-monotone.

⁽²⁾ For each $x' \in \mathbb{R}^{N-1}$, the measure $\gamma^{x'}$ is optimal for the Monge-Kantorovich problem (17), when the marginals are given by $\mu_i^{x'}$.

Lemma: The following are equivalent for a function $H \in C^2(\mathbb{R}^m, \mathbb{R})$.

- It is orientable.
- It is compatible.
- Solution After a change of variables, $\frac{\partial^2 H}{\partial q_i \partial q_i} < 0$.
- After a change of variables, H is submodular.

Connection to mass transport.

Proposition: Let $u = (u_1, u_2, ..., u_m)$ be a function on \mathbb{R}^N , whose components are monotone in the last variable. Let μ be a probability measure on \mathbb{R} , absolutely continuous with respect to Lebesgue measure. For each $x' \in \mathbb{R}^{N-1}$, let $\mu_i^{x'}$ be the pushforward of μ by the map $u_i^{x'} : x_N \mapsto u_i(x', x_N)$ and set $\gamma^{x'} := (u_1^{x'}, u_2^{x'}, ..., u_m^{x'})_{\#}\mu$. Then the following are equivalent:

- *u* is *H*-monotone.
- For each x' ∈ ℝ^{N-1}, the measure γ^{x'} is optimal for the Monge-Kantorovich problem (17), when the marginals are given by μ^{x'}_i.

Decoupling of systems

Theorem (Ghoussoub-Pass): Let $u = (u_1, ..., u_m)$ be a bounded solution to $\Delta u = \nabla H(u)$.

If u = (u₁,..., u_m) is monotone, then there exist functions V_i(x', p_i) such that u solves the system of decoupled equations:

$$\Delta u_i = \frac{\partial V_i}{\partial p_i}(x', u_i(x)) \quad \text{for } i = 1, ..., m.$$
(21)

Furthermore, along the solution, we have

$$\sum_{i=1}^{m} V_i(x', u_i(x)) = H(u_1(x), u_2(x), ..., u_m(x)) \text{ for } x \in \mathbb{R}^N.$$
(22)

3 If $u = (u_1, ..., u_m)$ is *H*-monotone, then for all $p = (p_1, p_2, ..., p_m) \in \mathbb{R}^m$,

$$\sum_{i=1}^{m} V_i(x', p_i) \leq H(p_1, p_2, ..., p_m).$$
(23)

If the u_i have common level sets, then the V_i can be chosen to be independent of x', that is V_i(x', p_i) = V_i(p_i).

Conjecture: Any *H*-monotone solution to the system has common level sets.

Proof

• Fix $x' \in \mathbb{R}^{N-1}$, and define $V_i(\cdot, x')$ on the range of $x_N \mapsto u_i(x', x_N)$ as follows. For p_i in this range, monotonicity ensures the existence of a unique $x_N = x_N(p_i)$ such that $p_i = u_i(x', x_N)$. We can therefore set

$$\frac{\partial V_i}{\partial p_i}(p_i, x') = \frac{\partial H}{\partial p_i}(u(x', x_N)).$$

Actually one can write an explicit expression for the V_i 's:

$$V_{i}(\tilde{p}_{i}, x') = \int_{0}^{\tilde{p}_{i}} \frac{\partial H}{\partial p_{i}}(u(x', x_{N}(p_{i})))dp_{i} + H(u(x', 0)).$$
(24)

② If *u* is *H*-monotone, then for each $x' \in \mathbb{R}^{n-1}$ the *V_i*'s play the role of Kantorovich potentials, and so we have

$$\sum_{i=1}^{m} V_i(p_i, x') \leq H(p_1, p_2, ..., p_m).$$

If the u_i have common level sets, then the image of (u₁^{x'}, u₂^{x'}, ..., u_m^{x'}) is independent of x' and the measures γ^{x'} are then all supported on the same set, and so we can choose the V_i(p_i, x') = V_i(p_i) to be independent of x'. The image of (u₁, u₂, ..., u_m) is equal to the image of (u₁^{x'}, u₂^{x'}, ..., u_m^{x'}) for any fixed x', and any measure supported on this set is optimal for its marginals.

Corollary

• If $N \le 3$ and $u = (u_1, ..., u_m)$ is H-monotone, then there exist $V_i, i = 1, ..., m$ such that

$$\Delta u_i = V'_i(u_i(x)) \text{ on } \mathbb{R}^N \text{ for } i = 1, ..., m.$$
(25)

• For some constant C independent of the solution,

$$\sum_{i=1}^{m} |
abla u_i(x)|^2 \le 2H(u_1(x), ..., u_m(x)) + C ext{ for all } x \in \mathbb{R}^N.$$
 (26)

• If N = 2, then C = 0, hence an extension of Modica's inequality.

Consider $H(u) = \sum_{i \neq j} |u_i - u_j|^2 + \sum_{i=1}^m W(u_i)$, where $W(u_i) = \frac{1}{4}(u_i^2 - 1)^2$ is the Allen-Cahn potential. Note that $\frac{\partial^2 H}{\partial u_i \partial u_j} = -2 < 0$, hence orientable. The decoupled system is

$$\Delta u_i = V'_i(u_i) = W'(u_i) = u_i(u_i^2 - 1).$$

and the one dimensional solutions are of the form $u_i(x) = \tanh(\frac{a \cdot x - b}{\sqrt{2}})$, for constants $b \in \mathbb{R}$, $a \in \mathbb{R}^n$, with |a| = 1.

These functions, with a common a, b are a one dimensional solution, with common level sets, to the original coupled system

$$\Delta u_i = H'(u_i) = 2(m-1)u_i - 2\sum_{j\neq i}^m u_j + u_i(u_i^2 - 1).$$

We do not know whether there are other *H*-monotone solutions to this equation.

Consider $H(u_1, u_2, ..., u_m) = m \log[\frac{1}{m} \sum_{i=1}^m e^{\frac{1}{4}(u_i^2 - 1)^2}]$. Assuming $|u_i| \le 1$, the decoupled system becomes

$$\Delta u_i = V'_i(u_i) = W'(u_i) = u_i(u_i^2 - 1).$$
(27)

Note that the mixed second order partial derivatives change signs, as

$$\frac{\partial^2 H}{\partial u_i \partial u_j} = \frac{-mu_i u_j (u_i^2 - 1) (u_j^2 - 1) e^{\frac{1}{4} (u_i^2 - 1)^2} e^{\frac{1}{4} (u_j^2 - 1)^2}}{[\sum_{k=1}^m e^{\frac{1}{4} (u_k^2 - 1)^2}]^2}.$$

However, *H* is orientable in any region where $u_i \neq 0$ and $|u_i| \leq 1$. Again, solutions to the decoupled problem

$$u_i(x) = \pm \tanh(\frac{a \cdot x - b}{\sqrt{2}}).$$

One can check directly that these functions solve the original system.

Coupled quadratic system

For $H(u_1, u_2) = \frac{1}{2}u_1^2u_2^2$, finding solutions with common level sets to the system can be reformulated as looking for a concave function F_1 , with conjugate F_2 , such that both F_1 and F_2 are increasing on $[0, \infty)$, as well as non-negative functions u_1, u_2 , solving the decoupled system

$$\Delta u_1 = 2F_1(u_1^2)$$
$$\Delta u_2 = 2F_2(u_2^2).$$

Any such solution (u_1, u_2) is an *H*-monotone solution to the original system, with common level sets.

For $N \leq 3$, they are one dimensional. In this case Berestycki et al. found a solution with $u_1(-\infty) = 0$, $u_1(\infty) = \infty$ and $u_2(-\infty) = \infty$, $u_2(-\infty) = 0$. We can use this solution to build decoupling potentials as follows:

$$V_1(t) = \int_0^t s u_2^2(u_1^{-1}(s)) \, ds$$
 and $V_2(t) = \int_0^t s u_1^2(u_2^{-1}(s)) \, ds$

 $F_i(q_i) = 2V_i(\sqrt{q_i})$ are then concave conjugates. while u_1 and u_2 solve the decoupled system

$$\Delta u_i = V_i'(u_i) = u_i F'(u_i^2).$$

We suspect that in low dimensions, any H-monotone solution with appropriate limits must satisfy this decoupled system.

Let $\Omega \subset \mathbb{R}^{N-1}$ be a bounded domain. For $u = (u_1, ... u_m) : \Omega imes [0, 1] o \mathbb{R}^m$, set

$$E(u) = \int_{\Omega \times [0,1]} \frac{1}{2} \sum_{i=1}^{m} |\nabla u_i|^2 + H(u) dx$$

Under certain conditions, minimizers of the energy E on bounded domains have common level sets and are 1-dimensional. Heuristically,

- The *H*-term in the energy that forces the u_i to have the same level sets, so the image of $(u_1, ..., u_m)$ is optimal for its marginals.
- The Dirichlet term then forces these level sets to be hyperplanes.
- For a single equation, one dimensional rearrangements reduce the Dirichlet energy. On the other hand, the term $\int H(u_1)dx$ is unchanged by rearrangement, as $u_1 # dx$ remains the same.
- For systems, ∫ H(u₁, u₂, ..., u_m)dx will be lowered if the appropriate rearrangements ū_i can be made so that (ū₁, ..., ū_m)#dx solves the optimal transport problem (17) with marginals u_i#dx. For an orientable H, this is possible. For a non-orientable H, the solution to the optimal transport problem may concentrate on a higher dimensional set.

Theorem

Suppose H is orientable and that the set $\{a_i, b_i\}_{i=1}^m$ of constants is consistent with the orientability condition, that is

$$H_{i,j}(u)(b_i - a_i)(b_j - a_j) < 0$$
 for all $i \neq j$. (28)

Assume u minimizes the energy E in the class of functions $v = (v_1, ..., v_m) : \Omega \times [0, 1] \rightarrow \mathbb{R}^m$ satisfying $v_i(x', 0) = a_i, v_i(x', 1) = b_i,$ v is H-monotone with respect to x_N .

Then, $u(x', x_N) = u(x_N)$ is one dimensional and the components u'_i s have common level sets.

Happy Birthday Ivar - Keep on savouring science and life

FIGURE 2. Don't try this in seven dimensions.

From the following article: <u>Mathematics: How to melt if you must</u> Ivar Ekeland Nature **392**, 654-657(16 April 1998) doi:10.1038/33541

