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One can make a convincing point that the (modern) fields of
Dynamical Systems and Symplectic Geometry originate with
Poincaré.



One can make a convincing point that the (modern) fields of
Dynamical Systems and Symplectic Geometry originate with
Poincaré.

Both fields intersect nontrivially in the area of Hamiltonian
Dynamics.



Since Poincaré the developments of the fields of Dynamical
Systems and Symplectic Geometry have been quite separate.
However, it became recently very evident that there is a field best
called

Symplectic Dynamics

which is combination of two developed fields with its own set of
integrated ideas and having roots in

Dynamical Systems

Symplectic Geometry



A PRIMER IN

SYMPLECTIC GEOMETRY



Let (M , ω) be a symplectic manifold.
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Let (M , ω) be a symplectic manifold.

What does this actually mean?

How should we think about it?

Why should we care?

The basic example is R2n

R2n = R2 ⊕ ...⊕R2, z = (z1, ..., zn), zj = (qj ,pj).

ω =
n

∑
j=1

dqj ∧ dpj .



In dimension two a symplectic map preserves
area and orientation.

This can be reformulated as follows using
loops in the plane.





counter clockwise: positive area

+



counter clockwise: positive area  clockwise: negative area

+ -

n times around: count n times



-A



-A

-A+B

-A+B-C

-A+B-C +D



A = ∫
Loop

λ with dλ = ω.

Action associated to a loop in the plane.

We shall also refer to it as

AREA (the algebraic area associated to a loop).



We can associate (signed) AREA to a closed curve in the plane R2!
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We can associate (signed) AREA to a closed curve in the plane R2!

What do we in higher dimensions?

CURVE IN SIX-DIMENSIONAL SPACE

X
X

area1 area2 area3

Total area= area1 + area2 + area2



2n-dim space with the structure that we can talk about the area associated to a (small) loop

T

T maps loops to loops with the same area

SYMPLECTIC SPACE

SYMPLECTIC MAP



Ambiguity of AREA due to topology



Symplectic Geometry is the study of spaces on
which it makes sense to talk about the ‘algebraic
area’ associated to small loops and the maps
between them preserving area.

Felix Klein: Geometry is the study of invariants
under a group of transformations.



Euclidean Geometry
Riemannian Geometry Symplectic Geometry
Metric Geometry

Points and a notion of distance AREA of small loops

Transformations preserving distance Transformations preserving
AREA of loops



The importance of symplectic spaces and their transformations
comes from the fact many physical systems with some preserved
quantity can be modeled this way:

P phase space

T ∶ P → P or Tt ∶ P → P

Tt



H

(Ht)
< − − −− > (Tt)

Dynamics is equivalent to giving a possibly time-dependent energy
distribution, and the energy is preserved if not depending on time,
or otherwise

H(t1, x(t1)) = H(t0, x(t0)) + ∫
t1

t0

∂H

∂t
(t, x(t))dt



Dynamical systems of this kind: Hamiltonian Systems

Poincaré: The fact that the AREA of loops is preserved easily
introduces chaos into a system.

Poincaré: Chaos in Celestial Mechanics.

KAM-theory: Also Stability



S 1

P

Loop

The space of all loops in P is an infinite-dimensional manifold
Λ(P).
Given an Hamiltonian system, i.e. an energy H ∶ P → R we have a
natural function

ΦH ∶ Λ(P)→ R ∶ ΦH(x) = area(x) − ∫
S1

H(x(t))dt.

Perhaps an relationship between the shape of Λ(P) and the critical
points of ΦH?



What are the critical points of ΦH?

Energy H < − − − > Dynamical system (Tt) on P

Critical points of ΦH to a periodic
movements, i.e. states moving on loops.

P



Morse theory is about the relationship between the topology of a
smooth manifold and the critical points of a smooth function.

One can learn about the number
of critical points from the shape of the space and vice versa.



WAIT A MINUTE!



WAIT A MINUTE!



                           RABINOWITZ  78

EKELAND  78

CONVEX HAMILTONIAN SYSTEMS

Ekeland-Lasry on n solutions

Ekeland’s Morse theory 

--  AMANN-ZEHNDER 80
CONLEY-ZEHNDER 82--

ARNOLD CONJECTURE FOR TORI

GROMOV 85

Geometry of the Action

      NON SQUEEZING

Pseudoholomorphic curve theory
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● Connection of Symplectic Rigidity with Hamiltonian
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Ekeland-Hofer (1988-1989)
Symplectic Topology and Hamiltonian Dynamics I & II

● Connection of Symplectic Rigidity with Hamiltonian
Dynamics.
● Symplectic Capacities

R2n ⊃ Ω→ (c1(Ω), c2(Ω), ..., )
● ck(ω) ∈ [0,∞], limk ck(Ω)→∞ for Ω ≠ ∅.
● ck({(x1, y1, .., xn, yn) ∣ x2

1 + y 2
1 < 1}) <∞

● Ψ(Ω) ⊂ Ω′, then ck(Ω) ≤ ck(Ω′).
● For precompact Ω with smooth boundary of restricted contact
type ck(Ω) = A(Pk

Ω) for a periodic orbit on ∂Ω.



Ekeland-Hofer (1988-1989)
Symplectic Topology and Hamiltonian Dynamics I & II

● Given a smooth connected compact hypersurface Σ ⊂ R2n take a
smooth foliation of its neighborhood

Σt , t ∈ [−1,1]
with associated Ωt with ∂Ωt = Σt . Then there exists a subset
T ⊂ [−1,1] of measure 2 so that for every t ∈ T the EH-capacities
of Ωt are represented by periodic orbits on the boundary.
Almost existence mechanism (Hofer-Zehnder 87)



Symplectic capacities are an important tool in symplectic geometry.
There are relationships to Gromov-Witten theory, Floer Theory,
Symplectic Field Theory.

A sizable number of questions in symplectic geometry can be
phrased as a question about the existence of a symplectic capacity
with suitable properties.

Symplectic capacities measure the size of sets and relate them to
dynamics, symplectic isotopy etc.



A capacity associates to a symplectic manifold of dimension 2n a
number c(M, ω) ∈ [0,∞]. It should satisfy
● c(M, rω) = r ⋅ c(M, ω).

● (M, ω)
symp
ÐÐ→ (M ′, ω′) then c(M, ω) ≤ c(M ′, ω′).

● A capacity is said to be proper provided c(M, ω) > 0 for M ≠ ∅
and

c({(x1, y1, .., xn, yn) ∣ x2
1 + y 2

1 < 1}) <∞.

If we have a finite number number of capacities c1, .., ck and a
positively 1-homogeneous map f we can build a new one
c(U) = f (c1(U), .., ck(U)). We can also take point-wise limits of
capacities. Using these procedures a family F of capacity produces
a set of capacities G(F)



Some results in dimension 4

Introduce the following notation.
P(a,b) = {(z1, z2) ∣ π∣z1∣2 < a, π∣z2∣2 < b}
E(a,b) = {(z1, z2) ∣ π∣z1∣

2

a + π∣z2∣
2

b < 1}
B(a) = E(a, a).



Some results in dimension 4

● The EH-capacities (c1 ≤ c2 ≤, ...) distinguish ellipsoids E(a,b).

● The capacity v , v(U) = (1
2∫U ω ∧ ω)

1
2 , on the space of contact

type balls is not in G(EH).
● There exists a sequence of proper capacities ECH (d0 ≤ d1 ≤, ....)
so that

lim
k→∞

dk(U)√
k

= 2 ⋅ v(U)

for contact type balls. (Cristofaro-Gardiner/ Gripp/ Hutchings)
● Neither G(ECH) nor G(EH) contains the other
For example

P(1,1)→ E(a,2a)

ECH says a ≥ 1, EH says a ≥ 3
2 , which is known to be optimal.

● For P(1,2)→ E(c , c) ECH and EH say c ≥ 2, but the optimal
answer is c = 3 (Hind/Lisi)



What is known in higher dimensions?

● The embedding problem is not classified by EH.
● There is not even conjecture about when
E(a,b, c)→ E(a′,b′, c ′). In fact all obvious generalizations of the
four-dimensional situation are wrong.
● No increasing sequence of proper capacities is known with G(F)
containing v .



In symplectic geometry most straight forward ideas or
generalizations are wrong!

Brouwer: An area and orientation preserving homeomorphism of
the open two-disk has a fixed point.

Does a symplectic diffeomorphism of the open four-ball
symplectically isotopic to the identity have a fixed point: No!
(Morrison)

Conjecture (Hofer): A symplectic diffeomorphism f of the (open)
E(a1, .., an) symplectically isotopic to the identity has a fixed point
provided the ai are independent over the integers.



ACTION

and
PSEUDOHOLOMORPHIC CURVES



e

f

ω(e,f)             

ω −Area ∶ areaω(e, f ) ∶= ω(e, f ).
ω(e, f ) = −ω(e, f )

ω(e, λf1 + f2) = ω(e, f1) + λω(e, f2)

Metric Area: areag
met(e, f ) ∶=

√
∣e ∣2∣f ∣2 − g(e, f )2

g(e, f ) = g(f , e), g(e, e) > 0 for e ≠ 0

g(e, f1 + λf2) = g(e, f1) + λg(e, f2)
∣f ∣ =

√
g(f , f )

ω encapsulates the infinitesimal version of measuring signed area!
After a choice of an “inner product g” on R2n we can measure an
associated honest area.



Consider all ways of measuring honest area so that it exceeds the
signed area!

Σ = {g ∣ areaω(e, f ) ≤ areagmet(e, f ) for all e, f }.

We give Σ a partial order by saying g ≤ h if and only if
g(e, e) ≤ h(e, e) for all e ∈ R2n. Of interest in Σ are the minimal
elements.

g
h

k

Σ
minimal inner products



R2n skew-symmetric non-degenerate bilinear form ω, which is the
(infinitesimal) way to measure signed area.
FACT: g ∈ Σ is minimal if and only if there exists a linear map
(matrix) J satisfying

J2 = −Id

ω(e, J(f )) = g(e, f ) .

Given a minimal g there is an associated way to define the
multiplication of a vector R2n with a complex number.

(a + ib)v = a + bJ(v).

There are many choices of such g and J , respectively.
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Gromov (1985):

There is a connection between Symplectic Geometry
and particular Minimal Surfaces.

TANGENT SPACE

Fix a g for every tangent space

ω



Gromov (1985):

There is a connection between Symplectic Geometry
and particular Minimal Surfaces.

We have the notion of SIGNED AREA, which can be positive and
negative.
Gromov introduces compatible auxiliary structures to measure
some HONEST AREA (an auxiliary structure from the geometry in
which length and distance play a role, Riemannian geometry)

Study 2-dimensional surfaces for which, in the small

SIGNED AREA = HONEST AREA



Particular two-dimensional surfaces in symplectic space (depend on
the choice of the minimal g)



Significance in Dynamics



For the following we are working in a symplectic space P with and
energy H ∶ P → R and are interested to understand some specifics
about the dynamics on the energy surface H = E , let’s say

Periodic movements on H = E .

Recall that there are many different measurements of ”Honest
Area” compatible with the ”Signed Area”.

Under very general assumptions one can pick this auxiliary
structure ”Honest Area” very carefully so that one can produce a

surface with the properties highlighted in the following picture.



P H=E2n 2n-1

2

very close to an
actual periodic
orbit on H=E



Periodic orbits on the boundary of domains carry obstructions and
pseudoholomorphic curves between them relations.
There is a lot of algebraic structure which can be bundled as
Symplectic Field Theory
Eliashberg-Givental-Hofer 2000, Hofer-Wysocki-Zehnder 2003–



We conclude with some not so obvious applications of this kind of
technology due to B. Bramham.



Consider an area-preserving diffeomorphism T ∶ D → D and
normalize area so that µ(D) = 1.
For almost every point x ∈ D and L1-map f ∶ D → R the following
limit exists

f̂ (x) ∶= lim
n→∞

1

n

n−1

∑
k=0

f (T kx)

This limit depends in general on the point x . When does it not
depend?

If T (E) = E implies µ(E) = 0 or 1. (T is ergodic)

lim
n→∞

1

n

n−1

∑
k=0

f (T kx) = ∫
D

fdµ a.e.



A stronger notion is strong mixing:

lim
k→∞

µ(A ∩T k(B)) = µ(A) ⋅ µ(B).

An intermediate notion is weak mixing:

lim
n→∞

1

n

n

∑
k=0

∣µ(A ∩T k(B)) − µ(A)µ(B)∣ = 0

strong mixing Ô⇒ weak mixing Ô⇒ ergodic.



An irrational number α is a Liouville number provided for all
integers k ≥ 0 there exists (p,q) ∈ Z ×N relatively prime so that

LIOUVILLE NUMBER

∣α − p
q ∣ <

1
qk
.

Otherwise it is called a

DIOPHANTINE NUMBER

Liouville: Fast approximation by fractions
Diophantine: Slow approximation



T ∶ D → D is called irrational pseudo-rotation provided it has one
periodic point and the rotation number ρ(T ) ∈ S1 = R/(2πZ) is an
irrational multiple of 2π (mod 2π).

disk map                                                                          circle map



T ∶ D → D is called irrational pseudo-rotation provided it has one
periodic point and the rotation number ρ(T ) ∈ S1 = R/(2πZ) is an
irrational multiple of 2π (mod 2π).

Anosov-Katok (1970) and Fayad-Saprykina (2005): For every
Liouvillean rotation number there exists a pseudo rotation which is
weak mixing in particular ergodic.

The question then was since the Anosov-Katok examples: Can
there be strong mixing pseudo-rotations?

Herman Conjecture (1998): An irrational pseudo-rotation with
diophantine rotation number is smoothly conjugated to a real
rotation. He also showed in unpublished work that in the
diophantine case they can never be mixing in any sense.



Theorem (Bramham)

Pseudo rotations with ”super-Liouvillean” rotation numbers cannot
be strongly mixing.

For all k ≥ 1 there exists a relatively prime (p,q) ∈ Z ×N with

∣α − p

q
∣ < 1

ekq

Theorem (Bramham)

Every smooth, area preserving diffeomorphism of the closed 2-disk
having not more than one periodic point is the uniform limit of
periodic smooth diffeomorphisms. In particular every smooth
irrational pseudo-rotation can be C 0-approximated by integrable
systems.

This partially answers a long standing question of A. Katok
regarding zero entropy Hamiltonian systems in low dimensions.
These are special cases of Bramham’s more general theory of using
holomorphic curves to study area-preserving disk maps.



Some pictures illustrating Bramham’s results.

     in�nite half-cylinder

positive half-cylinder

negative half-cylinder







































Projected finite energy foliation and cross-section.



A variety of boundary conditions


