MARKET FRICTIONS AND CORPORATE FINANCE

Santiago Moreno and Jean-Charles Rochet CONFERENCE IN HONOUR OF IVAR EKELAND

(Zürich, SFI and TSE)

June 16, 2014

<ロ> (四) (四) (三) (三) (三)

THE CONTEXT

- Market finance has been revolutionized by the use of Arbitrage Pricing Markets
- Financial mathematicians have designed and developed these methods in many directions (incomplete markets, transaction costs, incomplete information)
- Following Merton (1973), corporate finance has started using similar methods to study financing and liquidity management policies of corporations.
- Frictions have to be introduced to get out of the Modigliani and Miller paradox: without frictions, financing policy is irrelevant!

FRICTIONS IN CORPORATE FINANCE

- Bankruptcy costs and tax-deductibility of debt (Trade-Off theory)
- Internal frictions (corporate governance problems, moral hazard)
- Market frictions (issuance costs, market breakdowns,...)

I will focus here on the third type of frictions.

MODEL

Filtered probability space (Ω, F_t, ρ)

- t = 0: entrepreneur creates company Investment $I \rightarrow ...$ cash flow $\mu dt + \sigma dW_t$ $t \ge 0$ $W_t =$ standard Brownian motion (F_t -adapted) I is financed by issuing securities (typically debt + equity) on primary market.
- 0 < t < \(\tau\): company pays out dL_t ≥ 0 specified by securities' contracts.
- $t = \tau$: company defaults on its contractual obligations. Liquidation (zero value).

RESEARCH QUESTION

- Optimal financing method L_t?
- IMPORTANT RESTRICTION $dL_t \ge 0$ because securities have limited liabilities (\neq credit lines, venture capital,...)

<ロ> (四) (四) (三) (三) (三)

5/1

Examples:

- $dL_t = cdt$ $t \leq \tau$ (straight debt)
- $L_t = \text{Non predictable dividend process (equity)}$

MARKET FRICTIONS

- Issuing new securities is costly (underwriting fees, legal costs, taxes).
- In practice (Ross et al. 2003, US data) \sim 7% of gross proceeds.
- Fixed cost component K ⇒ new issues are lumpy and infrequent (for simplicity: no variable costs)
- Cumulated (net) issuance strategy (F_t adapted)

$$T_t = \sum_{i=1}^{\infty} x_i \mathbb{1}_{\{t \ge t_i\}}$$

イロト イロト イヨト イヨト 三日

 i^{th} issuance: date $t_i >$ net amount x_i (gross amount: $x_i + K$)

FIRST BENCHMARK: $K = \infty$

- No new issuance ⇒ Firm defaults when runs out of cash to cover operating losses.
- Cash reserves: $X_t = x$

$$dX_t = \mu dt + \sigma dW_t - dL_t$$
$$\tau = Inf\{t, x_t < 0\}$$

Shareholder value only depends on X_t:

$$V^{L}(x) = \mathbb{E}[\int_{0}^{\tau} e^{-rt} dL_{t} \mid X_{t} = x]$$

NB: Shareholders are risk neutral.

OPTIMAL FINANCING POLICY

Jeanblanc - Shiryaev (1995) Radner - Shepp (1996)

$$V_{\infty}(x) = \max_{dL_t \ge 0} V^L(x)$$

Proposition 1: V_∞ is the unique \mathscr{C}^2 solution of

$$max\{\frac{\sigma^2}{2}V'' + \mu V' - rV, 1 - V'\} = 0$$

such that V(0) = 0.

Intuition:

$$rV_{\infty}(x) = \max_{l \ge 0} l[1 - V'_{\infty}(x)] + \mu V'_{\infty}(x) + \frac{\sigma^2}{2} V''_{\infty}(x)$$

OPTIMAL FINANCING POLICY (2)

Proposition 2:
$$\exists ! x_{\infty}^* / r V_{\infty}(x) = \mu V_{\infty}'(x) + \frac{\sigma^2}{2} V_{\infty}''(x) \quad x < x_{\infty}^*$$

 $V_{\infty}'(x) = 1 \qquad x > x_{\infty}^*$
 $V_{\infty}'(x_{\infty}^*) = 1, V_{\infty}''(x_{\infty}^*) = 0).$

- Intuition: pay out everything above x_{∞}^* , nothing below.
- Variant of the Skorokhod problem: X_t is stopped at x_{∞}^* , but killed at 0.

FINANCIAL IMPLICATIONS

- Debt $(dL_t = cdt)$ is sub-optimal
- More generally, any security that draws upon cash reserves when $V'_{\infty}(x) > 1$ is sub-optimal

<ロ> (四) (四) (三) (三) (三) 三

- Optimal financing = 100% equity
- Note that dividends dL_t are non-predictable \Rightarrow even contingent debt $c(X_t)$ is sub-optimal

FINITE ISSUING COST K

Shareholder value:

$$\begin{split} \chi_{K}^{L,J}(x) &= \mathbb{E}[\int_{0}^{\tau} e^{-rt} (dL_{t} - dJ_{t}^{K}) \\ dX_{t} &= \mu dt + \sigma dW_{t} - dL_{t} + dJ_{t} \\ &= \inf\{f, X_{t^{+}} < 0\} \\ J_{t} &= \sum_{t_{i} < t} x_{i} \quad J_{t}^{K} = \sum_{t_{i} < t} (x_{i} + K) \\ V_{K}(x) &\equiv \max_{\substack{dL_{t} \geq 0 \\ dJ_{t} > 0}} V_{K}^{L,J}(x) \end{split}$$

(ロ) (部) (主) (主) (三) (1/1)

SECOND BENCHMARK: K = 0

• When there are no frictions the solution in trivial: immediately distribute all cash, choose arbitrarily L_t and J_t s.t. $dL_t - dJ_t = \mu dt + \sigma dW_t$ (Modigliani Miller)

$$V_0(x) = x + \mathbb{E}\left[\int_0^\infty e^{-rt} (\mu dt + \sigma dW_t)\right] = x + \frac{\mu}{r}$$

(日) (四) (三) (三) (三)

12/1

Cash is useless; Optimal financing is under intermediate
Value of the firm = cash + ENPV (future cash flows)

SOLUTION WHEN K > 0

Decamps-Mariotti-Rochet-Villeneuve (JoF 2011)

Proposition 3: $\exists !x^*(K)$ such that

$$rV_{K}(x) = \mu V'_{K}(x) + \frac{\sigma^{2}}{2}V''_{K}(x) \quad 0 < x < x^{*}(K)$$
$$V_{K}(0) = [V_{K}(x^{*}(K)) - x^{*}(K) - K]_{+}$$
$$V'_{K}(x) = 1 \quad x > x^{*}(K); \quad V_{K} \in \mathscr{C}^{2}(\mathbb{R})$$

■ NB: x*(.) increasing, x*(K) = x* for K large enough, then V_K coincides with V_∞.

(ロ) (部) (差) (差) 差 の(で 13/1

OPTIMAL FINANCING

- Still 100% equity.
- Target cash level increases in K.
- Dividends distributed more often when $K \downarrow$.
- New issuance only takes place when $X_t = 0$ (not true in practice).
- No variable issuance costs ⇒ optimal to collect (in net) the target level of cash = x*(K)

<ロ> (四) (四) (三) (三) (三) 三

STOCK PRICE IMPLICATIONS

■ Shareholder value (we drop index K)

 $V(X_t) = N_t S_t$

where $N_t = \#$ outstanding shares, $S_t = \text{stock price}$ N_t is locally constant. Only increases when $X_t = 0$

 $dN_t = (\Delta N)\mathbb{1}_{x_t=0}$

■ When new issue, *S_t* cannot jump (no arbitrage)

$$\begin{cases} V(0) = N_t S_t \\ V(x^*) = (N_t + \Delta N)S_t = V(0) + x^* + K \end{cases}$$

 $\Rightarrow \frac{\Delta N}{N_t} = \frac{V(x^*) - V(0)}{V(0)} = \frac{x^* + K}{V(0)} = \delta \text{ constant dilution factor}$

(日) (部) (目) (日) (日) (の)

STOCK PRICE IMPLICATIONS (2)

In between two issuances,
$$S_t$$
=deterministic function of x_t :
$$S_t = S(N, X_t) = \frac{V(X_t)}{N}$$
S_t varies between $S_0 = \frac{V(0)}{N}$ and $S^* \equiv \frac{V(x_t)}{N}$

$$\frac{dS_t}{S_t} = \pi dt + \sigma(t, S_t) dW_t$$
 $\frac{dS_t}{S_t} = \frac{V'(x_t)}{V(x_t)} dx_t + \frac{\sigma^2}{2} \frac{V''(x_t)}{V(x_t)} dt$
where $\sigma(t, S) = \sigma \frac{V'}{V} (N_t V^{-1}(s)) \quad \downarrow \text{ in t and S}$
local volatility model.

THE CASE WHERE K = 0

- Shareholder value is constant: $N_t S_t \equiv \frac{\mu}{r}$
- However the number of shares evolves to cover financing needs: $S_t dN_t + \mu dt + \sigma dW_t = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の ♀

17/1

$$\Rightarrow \frac{dS_t}{S_t} = \frac{N_t dS_t}{N_t S_t} = -\frac{r}{\mu} St dN_t = r dt + \frac{r\sigma}{\mu} dW_t$$

CONSTANT VOLATILITY

FINANCING SiFis

Rochet-Zargari(2014): Work in progress

SiFis are financial institutions whose liquidation would entail large social costs (large, complex banks or financial utilities like Clearing Houses or Exchanges)

 \Rightarrow Whenever shareholders want to close them, government is compelled to intervene: capital injection + reconstruction \Rightarrow generates large costs γ We use the previous model with K very large

<ロ> (四) (四) (三) (三) (三)

CONFLICTING OBJECTIVES

Shareholders $V(x) = \mathbb{E}[\int_0^\tau e^{-rt} dL_t | X_t = x]$

Regulator
$$R(x) = V(x) - [\gamma + x_R - V(x_R)]\mathbb{E}[e^{-rt}|X_t = x]$$

 $\gamma = \text{cost of public intervention.}$

SiFi is temporalily nationalized, restructured and privatized again.

<ロト < 部 > < 書 > く言 > 一 書 、 今 Q () 19/1

PRIVATELY OPTIMAL FINANCING

Same as above:

- 100% equity
- Dividends are only distributed when $X_t > x_{\infty}^*$.
- Firm is liquidated when X_t falls below 0.

Cost γ of public intervention: not internalized by shareholders \Rightarrow Frequent failures.

<ロ> (四) (四) (三) (三) (三) 三

SOCIALLY OPTIMAL FINANCING

•
$$rR(x) = \mu R'(x) + \frac{\sigma^2}{2} R''(x)$$
 $0 < x < x^R$

$$\blacksquare R'(x) = 1 \quad x > x^R$$

$$\blacksquare R \in \mathscr{C}^2(\mathbb{R}_+)$$

•
$$R(0) = V(x^R) - x^R - \gamma < 0$$

- Still 100% equity.
- Target cash level is higher: $x^R > x_{\infty}^*$.
- Implemented by capital/liquidity regulation: firm not allowed to distribute dividends if x_t ≤ x^R.

INTRODUCING DEBT

In practice, corporations issue a lot of debt (especially banks). Something is missing in our model:

<ロ> (四) (四) (三) (三) (三) 三

22/1

- Tax deductibility of coupons
- debt reduces the Free Cash Flow problem (Jensen)
- debt may provide incentives to managers (?!)

But debt financing has many drawbacks:

- Increases default probabilities
- Limits future investment (debt overhang)
- May generate systematic risk

FUTURE RESEARCH

In practice companies default either for liquidity reasons (like in our paper) or for solvency reasons.

A natural extension would be a two dimensional model with two state variables: cash reserves X_t and profitability μ_t .