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Paths space and non-anticipative process

• Ω =
{
ω ∈ C 0([0,T ],Rd), ω0 = 0

}
, ‖ω‖ = supt≤T |ωt |

• B canonical process, i.e. Bt(ω) = ω(t)

• F = {Ft} the corresponding filtration, i.e. Ft = σ(Bs , s ≤ t)

• Λ = [0,T ]× Ω, d
[
(t, ω), (t ′, ω′)

]
= |t − t ′|+ ‖ω.∧t − ω′.∧t′‖

• u : Λ −→ R non-anticipative if u(t, ω) = u
(
t, (ωs)s≤t

)
In particular, u ∈ C 0(Λ) =⇒ u non-anticipative
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Probability measures on the paths space

• P0 : Wiener measure on Ω, so that B is a P0−Brownian motion

• PL : collection of all P = Pα,β such that

Bt =

∫ s

0
αP
s ds +

∫ s

0
βPs dW

P
t , P− a.s. for some

adapted processes αP, βP, with
∣∣αP∣∣ ≤ L and 1

2

∣∣βP∣∣2 ≤ L

and P−Brownian motion W P

In particular,
P0 = {P0}
Quandratic variation : 〈B〉t =

∫ t
0

(
βPs
)2
ds, Pα,β−a.s.
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Our objective : nonlinear path-dependent PDEs

Find non-anticipative process u(t, ω) satisfying :

−∂tu − G (., u, ∂ωu, ∂
2
ωωu) = 0, on [0,T )× Ω,

u(T , ω) = ξ(ω)

where ξ(ω) = ξ
(
(ωs)s≤T

)
and G (t, ω, y , z , γ) is non-anticipative

G : [0,T ]× Ω× R× Rd × Sd −→ R

G (t, ω, y , z , γ) = G
(
t, (ωs)s≤t , y , z , γ

)
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Differentiability of processes

• For ϕ ∈ C 0(Λ), the right time-derivative is defined by Dupire :

∂tϕ(t, ω) := lim
h→0+

1
h

[
ϕ
(
t + h, ω·∧t

)
− ϕ

(
t, ω
)]
, if exists

Definition ϕ ∈ C 1,2(Λ) if
ϕ, ∂tϕ ∈ C 0(Λ),
and there exist Z ∈ C 0(Λ,Rd), Γ ∈ C 0(Λ,Sd) s.t.

dϕt = ∂tϕtdt + ZtdBt + 1
2Γtd 〈B 〉t , P-a.s. for all P ∈ ∪L>0PL

Denote ∂ωϕ := Z and ∂2
ωωϕ := Γ
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Relationship with pathwise derivatives

Dupire 2006 introduced
Time derivative :

∂tϕ(t, ω) := lim
h→0+

1
h

[
ϕ
(
t + h, ω·∧t

)
− ϕ

(
t, ω
)]
, if exists

Space derivative :

∂ωϕ(t, ω) := lim
h→0

1
h

[
ϕ
(
t, ω + hδ{t}

)
− ϕ

(
t, ω
)]
, if exists

and proved : if ϕ is C 1,2 in this sense,

dϕt = ∂tϕtdt + ∂ωϕtdBt +
1
2
∂2
ωωϕtd〈B〉t , P− a.s.

for all semimartingale measure P
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Path-dependent heat equation : the smooth case

• By using the r.c.p.d. define for ξ ∈ L1(P0) :

u(t, ω) := EPt,ω
0
[
ξ
]

for all t ≤ T , ω ∈ Ω

• Assume that u ∈ C 1,2, then (only P0 needed) :

dut =
(
∂tut +

1
2
∂2
ωωut

)
dt + ∂ωutdBt , P0 − a.s.

Since u is a P0−martingale, we obtain the heat equation :

∂tu +
1
2
∂2
ωωu = 0 and uT = ξ

• Note ut(ω) := EPt,ω
0
[
BT

2

]
is not C 1,2
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Example 2 : Backward SDEs

• Backward SDE (Pardoux & Peng ’91...) :

dYt = −Ft(ω,Yt ,Zt)dt + ZtdBt , YT = ξ, P0 − a.s.

if u(t, ω) := Yt(ω) is C 1,2, i.e.

dut =
(
∂tut +

1
2
∂2
ωωut

)
dt + ∂ωutdBt , P0 − a.s.

Then, u solves the semilinear P-PDE

−∂tu −
1
2
∂2
ωωu − F (., u, ∂ωu) = 0, uT = ξ

Note : Existing literature establishes wellposedness of the
backward SDE in the space

EP0
[ ∫ T

0

(
|Yt |2 + |Zt |2

)
dt
]
<∞

i.e. Sobolev solutions of P-PDE (Barles & Lesigne ’94)
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Example 3 : Stochastic control of path-dependent diffusions

• Stochastic control of non-Markov systems :

dXα
t = b

(
t,Xα, αt

)
dt + σ

(
t,Xα, αt

)
dBt , P0 − a.s.

for some b : Λ× A −→ Rd , σ : Λ× A −→ Sd , and

u(t, x.) := inf
α∈A

EP0
[ ∫ T

t
L
(
s,Xα, αs

)
ds + ξ

(
(Xα

s)s≤T
)]

=⇒ Path-dependent HJB equation

−∂tu − inf
a∈A

{
b(., a)∂ωu +

1
2
σ2(., a)∂2

ωωu + L(., a)
}

= 0, uT = ξ

• Alternative approach to control of hereditary systems...
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OBJECTIVE

Inspired by fully nonlinear PDEs in finite dimensional spaces,

we want to develop a theory of viscosity solutions for
path-dependent parabolic fully nonlinear equations

• Existence
• Uniqueness implied by a comparison result (maximum principle)
• Powerful stability result

• Numerical implications : branching diffusion representation =⇒
Monte Carlo approximation (Henry-Labordère, Tan & NT)
• Extension of Barles-Souganidis Monotone schemes (Zhang &
Zhuo)
• Regular and singular perturbation (Ma, Ren, Zhang & NT)
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Standard viscosity solutions [M. Crandall & P.-L. Lions ’83]

g(x , y , z , γ) nondecreasing in γ. Consider the PDE :

(E) − g(., v ,Dv ,D2v)(x) = 0, x ∈ O (open subset of Rd)

• v subsolution if −g(., v ,Dv ,D2v) ≤ 0 on O

• v supersolution if −g(., v ,Dv ,D2v) ≥ 0 on O
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Standard definition of viscosity solutions

Let

Av(x) :=
{
ϕ ∈ C 2(O) : (ϕ− v)(x) = min

O
(ϕ− v)

}
Av(x) :=

{
ϕ ∈ C 2(O) : (ϕ− v)(x) = max

O
(ϕ− v)

}
Definition v ∈ LSC(O) (resp. USC(O)) is a viscosity subsolution
(resp. supersolution) of (E) if :

−g
(
x , v(x),Dϕ(x),D2ϕ(x)

)
≤ 0 (resp. ≥0)

for all x ∈ O and ϕ ∈ Av(x) (resp. Av(x))

v ∈ C 0(O) viscosity solution if viscosity subsol. and supersol.
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Intuition from the heat equation

v(t, x) := EP0
[
g(BT )

∣∣Bt = x
]
solution of −∂tv − 1

2vxx = 0.

• Tower property :

v(t, x) = EP0
[
EP0 [g(BT )|Bt+h]

∣∣Bt = x
]

= EP0
[
v(t + h,Bt+h)

∣∣Bt = x
]

• Viscosity subsol : for ϕ ∈ Av(t, x), v(t, x) = ϕ(t, x) and v ≤ ϕ

====⇒ ϕ(t, x) ≤ EP0
[
ϕ(t + h,Bt+h)

∣∣Bt = x
]

= =⇒
(
− ∂tϕ−

1
2
ϕxx

)
(t, x) ≤ 0

Main observation : only need EP0 [v(., .)] ≤ EP0 [ϕ(., .)]
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Smooth test processes

Nonlinear expectation EL := supP∈PL
EP and EL := infP∈PL

EP

T : collection of all stopping times τ (i.e. {τ ≤ t} ∈ Ft)

Test processes for subsolution and supersolution

ALut(ω) :=
{
ϕ ∈ C 1,2(Λ) : (ϕ−ut,ω)0 = min

τ∈T
EL
[
(ϕ−ut,ω).∧H

]
for some H ∈ H

}
ALut(ω) :=

{
ϕ ∈ C 1,2(Λ) : (ϕ−ut,ω)0 = max

τ∈T
EL
[
(ϕ−ut,ω).∧H

]
for some H ∈ H

}
TEST FUNCTIONS TANGENT IN MEAN
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Definition (Ekren, NT & Zhang 2012)

u ∈ C 0(Λ) is a viscosity...

• subsolution of PPDE if there exists L :

−∂tϕ0 − G
(
t, ω, ut(ω), ∂ωϕ0, ∂

2
ωωϕ0

)
≤ 0

for all (t, ω) ∈ [0,T )× Ω and ϕ ∈ ALu(t, ω)

• supersolution of PPDE if there exists L :

−∂tϕ0 − G
(
t, ω, ut(ω), ∂ωϕ0, ∂

2
ωωϕ0

)
≥ 0

for all (t, ω) ∈ [0,T )× Ω and ϕ ∈ AL
u(t, ω)

• solution of PPDE if it is viscosity subsolution and supersolution
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Comparison with Crandall-P.-L. Lions Definition

The parabolic PDE for v(t, x)

−∂tv − g(t, x , v ,Dv ,D2v) = 0, (t, x) ∈ [0,T )× Rd

can be viewed as the path-dependent PDE for u(t, ω) := v(t, ωt) :

−∂tu − G
(
t, ω, u, ∂ωu, ∂

2
ωωu

)
= 0, (t, ω) ∈ [0,T )× Ω

where G (t, ω, .) = g(t, ωt , .).Notice that :

ϕ ∈ Av(t∗, x∗)
φ(t,ω):=ϕ(t,ωt)
======⇒ φ ∈ Au(t∗, ω∗) whenever ω∗t = x∗

Hence, Our definition involves a larger class of test functions

=⇒ Helps for uniqueness, existence is more restricted
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On local compactness

• In Crandall-PL.Lions definition, finds point of pointwise tangency

(ϕ− u)(x∗) = min
closed ball

(ϕ− u)

ϕ− u is LSC, the minimizer exists, need to ensure interior min

• In the context of our definition, find a point of tangency in mean

min
τ :stop.time

E
[
(ϕ− u)τ∧H

]
Optimal stopping theory : τ∗ := inf

{
t ≥ 0 : Yt = (ϕ− u)t

}
is an

optimal stopping time, where

Yt := min
τ :stop.time≥t

Et

[
(ϕ− u)τ∧H

]
and we still need to ensure that τ∗(ω∗) < H(ω∗) at some point ω∗
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Equivalent semijets definition

For α ∈ R, β ∈ Rd , γ ∈ Sd , denote the paraboloid :

Qα,β,γ(t, ω) := αt + β · ωt +
1
2
γωt · ωt

• subjet : J Lut(ω) :=
{

(α, β, γ) : Qα,β,γ ∈ ALut(ω)
}
,

• superjet : J L
ut(ω) :=

{
(α, β, γ) : Qα,β,γ ∈ AL

ut(ω)
}

Theorem
Viscosity subsolution and supersolution can be reduced to
paraboloids
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Consistency with classical solutions

Assumption G1 G (t, ω, y , z , γ) nondecreasing in γ and satisfies :
(i) G is uniformly continuous in (t, ω), and ‖G (·, 0, 0, 0)‖∞ <∞.
(ii) G is uniformly Lipschitz in (y , z , γ)

Theorem (Ekren, NT & Zhang 2012a)

Let Assumption G1 hold and u ∈ C 1,2
b (Λ). Then the following

assertions are equivalent :
u classical solution (resp. subsolution, supersolution) of PPDE
u viscosity solution (resp. subsolution, supersolution) of PPDE
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Stability

Consider the perturbed PPDEs

PPDEε : G ε
(
., u, ∂ωu, ∂

2
ωωu

)
= 0 on Λ

Theorem (Ekren, NT & Zhang 2012a)

Let uε viscosity L−subsolution (resp. L−supersolution) of
PPDE(G ε), for some fixed L > 0. Assume

(G ε, uε) −→ (G , u) as ε→ 0, loc. unif. in Λ.

Then u is a viscosity L−subsolution (resp. supersolution) of PPDE
with coefficient G .

Proofs are easy application of optimal stopping theory
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Additional assumptions

Assumption G2 Either one of the following conditions :
(i) G convex in γ and uniformly elliptic,
(ii) or, G is convex in (y , z , γ)
(iii) or, d ≤ 2

Allows to apply standard PDE theory to a conveniently defined
path-frozen equation...

[In next section : avoid relying on PDE results...]
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Existence and uniqueness results

Theorem (Ekren, NT & Zhang 2012b)

Under Assumptions G1-G2, let u1, u2 ∈ UCB(Λ), ξ ∈ UCB(Ω) s.t.
u1 is a bounded viscosity subsolution of PPDE
u2 is a bounded viscosity supersolution of PPDE
u1(T , ·) ≤ ξ ≤ u2(T , ·)

Then u1 ≤ u2 on Λ.

Theorem (Ekren, NT & Zhang 2012b)

Under Assumptions G1, G2, for any ξ ∈ UCB(Ω), the PPDE with
terminal condition ξ has a unique bounded viscosity solution
u ∈ UCB(Λ).
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Comparison for

Semilinear Path-dependent PDEs
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Semilinear path-dependent PDEs

(PPDE) −∂tu −
1
2
Tr
[
∂2
ωωu

]
− F (t, ω, u, ∂ωu) = 0, t < T

uT = ξ

In this case, we only need a subset of probability measures on Ω :

P0
L :=

{
P ∈ PL : 〈B〉 = tId

}
Rk We may also add a diffusion σt(ω) (positive, Lipschitz in ω)...
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Main result

Assumption F (t, ω, y , z) Lipschitz in (y , z), uniformly in (t, ω),
and F (t, ω, 0, 0) bounded

Denote :

C 0
2,P0

L
:=

{
u ∈ C 0(Λ) : sup

P∈P0
L

EP
[

sup
t∈[0,T ]

|ut |2
]
<∞

}

Theorem (Ren, NT & Zhang 2014)

Let u, v ∈ C 0
2,P0

L
be viscosity subsolution and super solution,

respectively, of PPDE. Then

uT ≤ vT =⇒ u ≤ v on [0,T ]× Ω

Purely probabilistic proof adapting ideas from Caffarelli and Cabre...
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The Linear Case

Theorem (Ren, NT & Zhang 2014)

For u ∈ C 0
2,P0

, the following are equivalent :
• u is a viscosity subsolution of −∂tu − 1

2∂
2
ωωu ≤ 0

• u is a submartingale.
A similar statement holds for supersolutions.

Consequence : comparison for the path-dependent heat equation
follows immediately
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Punctual Derivatives

• (α, β, γ) ∈ R× Rd × Sd : Qα,β,γ(t, ω) := αt + βωt + 1
2γωt · ωt

• The subject and the superjet of u are defined by

J u(t, ω) :=
{

(α, β, γ) : Qα,β,γ ∈ Au(t, ω)
}

J u(t, ω) :=
{

(α, β, γ) : Qα,β,γ ∈ Au(t, ω)
}

Definition u is punctually C 1,2 at (t, ω) if

cl
[
Jϕ(t, ω)

]
∩ cl
[
Jϕ(t, ω)

]
6= ∅
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Punctual smoothness of semimartingales

Theorem (Ren, NT & Zhang 2014)

Let u be a pathwise continuous P− submartingale for some
P ∈ P0

L . Then, u is punctually C 1,2, Leb⊗P0−a.e.

compare to convex functions...
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