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Christian, un modéle scientifique mais pas que...

Par modestie, il vous I’a caché, mais Christian a déja rejoint un

groupe de doom métal progressif (dont le prochain album

s’intitulera évidemment Schridinger bridge to Babylon).
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Introduction

‘ Introduction '

The title obviously needs some explanations.

Push-forwards (aka image measures) Let p ¢ Z(R%)
(Borel probability measure on R%) and T : R? — R? a Borel
map. The pushforward of p through 7' is the probability
measure 1. p defined by

Tup(B) = p(T~'(B)),VB Borel subset of R

In other words, if X is a random variable with law p (X ~ p)
then T'(X) has law Tlp.
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Introduction

Very natural object, but tricky to compute in general, examples

e casy case, discrete to discrete: p = % Zfll 0z,, then Tlp is
: N
just % ZiZl 5T($z‘)’

e ' with finite range: 1" = Zil 14,9, then

Tup = er\il p(Ai)(Syu

e p has a density f and T is a diffeomorphism, change of
variables formula: Tl p has density g with

| det(DT)|goT = f.
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Introduction

Question: Under which reasonable assumptions can we say

that when p is close to p, then Tl p is close to Ty p?

Imagine p is "nice" (easy to draw samples from e.g. uniform on

a cube) and Tlxp is some target measure, p approximated (by

quantization or sampling) by p, is T p close to the target?

By close, we mean in some weak convergence sense, quantified

by Wasserstein distance.
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Introduction

Given p > 1, Wasserstein p-distance between p and p:

Wy, p)? := inf {E(|X — X|"), X ~p, X ~ 5}

— inf x — x|Pdy(x, 2
’YGH(p,ﬁ){/Rded‘ Py )}

where II(p, p) is the set of probability measures having p and p

as marginals. Projections m(x,y) = x, ma(x,y) = y, then
M(p,p) = {y € PR xRY) : w4y = p, T2y = p}

Makes sense for p and p with finite p-moments. This is an
instance of the Monge-Kantorovich optimal transport problem.
Existence is easy.
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Introduction 8

Known facts: W), is a distance, it metrizes weak convergence
(convergence in law for random variables), W, < W, (Hélder),

and for p and p supported on Bp,

Wp(ﬂ, ﬁ) < (2R)%W1(p7 ﬁ)E

most useful cases are p =1 and p = 2.

Recall for p = 1, the Kantorovich-Rubinstein inequality:

/R “ud(p~ ) < Lip(u) Wi (p. 7).
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Introduction

If T is Lipschitz, obviously by definition of W, we have

W, (Tyep, Typ) < Lip(T)W,(p, 7).

End of the story? No: what if 1" is discontinuous or even

possibly set-valued (in which case Tl p is not even well-defined).

And in particular what if 7" is an "optimal" (in a way I will

explain) map in the sense that T' € d¢ with ¢ convex?
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Outline

Outline I

@® Quadratic optimal transport, optimal maps

@ Main result

@ How small is the singular set of a convex function?

10
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The quadratic optimal transport problem 11

‘The quadratic optimal transport problem'

Quadratic OT, Brenier’s seminal results (1989, 1991). Let « be
a probability supported on Br. Developing the squared

distance, note that

W2 e 1 1
> (P, @) — —/ lz|*dp(z) + —/ y[*da(y)
2 2 Rd 2 Rd

—  sup / z -y dy(z,y)
vEll(p,a) JRE x R4

so v is optimal iff it maximizes the correlation under the

marginal constraints.

The quadratic optimal transport problem/1



The quadratic optimal transport problem 12

Duality

sup / r -y dy(z,y)
vEIl(p,0) JRE x R4

coincides with the infimum of

odp+ | wda

Br Br

among pairs (¢, ) such that

o(x) +(y) > -y, V(z,y) € Br x Bg

Given ¢, the smallest admissible v is

¢*(y) = max{z -y — o(z)}, y € Br.

rEBR

The quadratic optimal transport problem /2



The quadratic optimal transport problem 13

We still improve the cost by taking

V() = yrrel%ﬁ{x -y —Y(y)}, v € Br

so that ¢ is convex and R-Lipschitz

Given ¢ = Y™, ¢ = ¢* a pair of conjugate optimal potentials, a
plan v € II(p, ) is optimal iff it satisfies the complementary
slackness condition

¢(x) + ¢"(y) = x -y, on spty.

The quadratic optimal transport problem/3



The quadratic optimal transport problem 14

Optimality of ~ is therefore equivalent to the fact that
spty C 0¢ for some convex and R Lipschitz ¢; we recall that for

a convex @,
¢ ={(z,y) : y € 0¢(x)}
where 0¢(x) is the subdifferential of ¢ at x i.e. the set of y’s for
which
o(x) +o"(y) =z-y

or equivalently

o(z') 2 p(x) + (2 — ) -y, Va'.

The quadratic optimal transport problem /4



The quadratic optimal transport problem 15

~ optimal: disintegrate it with respect to its first marginal

v(dx, dy) = p(dz) @ v*(dy)

/Rd ” f(z,y)v(dz, dy) :/Rd y (2, 1)7" (dy) p(da)

then spty® C 0¢(x) (optimal plans send all the mass at = to
dp(x)).

If p is absolutely continuous, then 0¢(x) = {Vo(x)} for a.e. x
and then v* = 0y g(a)-

The quadratic optimal transport problem /5



The quadratic optimal transport problem 16

Brenier’s theorem (p absolutely continuous): the optimal plan is
unique, it is induced by a map, this map is the gradient of a
convex function (and if a map in such a form pushes forward p

to «, it is an optimal map).

Brenier’s map T = V¢ is a remarkable change of variable (or
transport) between p and «. Monotone and has a potential,
DT = D?@, SDP, related to Monge-Ampére equations etc...

Brenier’s map is a (nontrivial) extension to several dimensions

of the notion of monotone change of variables.

The quadratic optimal transport problem /6



The quadratic optimal transport problem 17

One can parameterize the set of probability measures, fixing a

"nice" reference measure p by the bijective map

T € {V¢, with ¢ convex} — Tiup.

Note that T'= V¢ is the optimal map between p and +— Txp.

The quadratic optimal transport problem/7



Main result 18

Main result '

We wish to investigate the following stability question for
optimal plans/maps (i.e. subgradients/gradients of convex
functions). Given ¢ convex and Lipschitz, p and p in Z(R?%)

supported on Bg, v and 7 in Z(R%,R?) such that

® 147 = Py 7-‘-1#% — 15

e spty C 0¢, spty C 0¢ (so that both v and v are optimal
between their marginals)

Can we bound W (ma4,m247) in terms of Wa(p, p)?

Main result/1



Main result 19

The answer is obviously no without additional assumptions:
taked=1,p=p=200, ¢ =| | and v = d(0,1), ¥ = d(0,—1) then
WQ(,O,,E) = 0 and Wg(ﬂ'g#’}/,ﬂ'g#§) = 2!

We should at least ask that p is absolutely continuous (so that
it does not see the singular set of ¢). To make things as simple

as possible, we shall always assume:

e pand pin Z(R?) are supported on Bg, ¢ convex and

R-Lipschitz (so ma47, and w47 are supported on Br as

well),

e p is absolutely continous with a density bounded by M, (so
that v = (id, V¢)up and mauy = Voup) .

Main result/2



Main result 20

TigY = p, T4 = p°, spt(y) C 99, spt(y*) C 0¢.

Easy to compute

Wa(mauy, m2u®) = (26)/2, Wa(p, p°) = (£*/12)'/2,

so that Wa(mauy, m247°) ~ Wa(p, p=)L/3,

Main result/3



Main result 21

Theorem 1 (C., Delalande, Mérigot) Let p and p be
probability measures supported on the ball Br of R, with p
absolutely continuous with a density bounded by M, and let ¢ be
a convex R-Lipschitz function, let 5 in P (R, RY) such that

® TipY =P
e spty C 0¢
then we have
Wo(Voup, mayy) < CWa(p,p)3

for the explicit constant

C = 2575 (1 4+ wy) (1 + M,)(1 + R)**,

with wy denoting the volume of the unit ball of RY.
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Main result 22

The previous example shows that a Holder quantitative stability
estimate with exponent 1/3 is the best we can hope for. Sharp

in terms of exponent (likely not at all for the constant C').

Extension to (sharp in terms of exponents) comparisons in

W, /W, distances and push forward by optimal maps for W,

(with » > 2 so that optimal potentials are semiconcave) ....

Main result/5



Main result 23

The first step in the proof is the following. Let S be an optimal
map between p and p i.e. Syp = p and
Wa(p, p) = |lid = S||L2(,)- Disintegrate ¥ as

T =P

then since Sxp = p the plan

/ Sv(z) @7 p(a)da
Br

is a transport plan between Vo p, mo47, we have

Wi (Vospmad) < [ [ V() = o7 @ g)pla)da,

Main result /6



Main result g

Let n > 0, we split the previous integrals into two terms the
integral on €2, := {|id —S| > n}, note that by Markov’s
inequality we have
W3 (p, p)

2

p(Ldy) < .

/Q /B V() — y|*d75 ") (y)p(x)da

Main result /7



Main result 25

We now have to estimate the contribution of
Br\ Q, ={]id -S| < n}. For x € Br \ Q,, since
spt(7°®)) € 9¢(S(x)) we have

/B Vo(z) — y2d55@) (y) < diam(96(B(z, 1))’

/ / Vo(z) — yl2d75E (y)p(a)da
BR\SL7 Bgr

< M, diam(0¢(B(x,n))*dz
Br

assume that

/ diam(9¢(B(x,n))*dz < Cn
Br

Main result/8
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then we obtain

W3 (p, p)
> T

so choosing 1 ~ Wa(p, p)3 we get the desired result.

It remains to prove (2): this is a matter of quantifying the
smallness of the singular set of ¢.

Main result/9



On the singular set of a convex function 27

On the singular set of a convex function'

¢ : RY — R convex and Lipschitz, the singular set of ¢ where

diam 0¢ > 0 is of measure 0 (and in fact it is d — 1-rectifiable, a
remarkable fine geometric measure theoretical was done by
Alberti, Ambrosio and Cannarsa). We want to quantify this
smallness in terms of covering number. Recall that if K is a
compact subset of R and n > 0, N'(K,n) is the minimal

number of balls of radius n needed to cover K.

How small is the singular set of a convex function?/1



On the singular set of a convex function 28

Theorem 2 (C., Delalande, Mérigot) Denote

Yo ={r €R? : diam(0¢(B(x,n)) > a},

then, we have

with cq g, = 48d*(R + 4n)?~1.

The dependence in a and 7 is sharp.

How small is the singular set of a convex function?/2



On the singular set of a convex function 29

A direct corollary is the fact that (2) holds:
| diam(@6(B(,n)da
Br

_ /OOO ‘{x € Br : diam(9¢(B(x,n)))* > t}‘ dt

(2Lip(6))? Ii
< / 48d*(R + 4n)*1 tl/Qpn(j_)l wq(8n)edt
0

= ca,r,nLip(¢)*n.

How small is the singular set of a convex function?/3



On the singular set of a convex function 30

It remains to prove the bound on NV (3, , N B(0, R),8n). Let
e = 4n and Z be a maximal ¢ packing of ¥ := >, , N Br and N
be the cardinality of Z, Z being a 2¢ = 8n covering of 3,

N(X,8n) < N. Now for x € Z, by construction we have

a < diam(9¢(B(x,n)). (3)

How small is the singular set of a convex function?/4



On the singular set of a convex function 31

With the monotonicity of 0¢, one can prove that

Lemma 1 If ¢ is convex

12

diam(0¢(B(z,n))) < o

IVl L1 (B(z,4n))-

Proof:. Firstly diam(0¢(B(x,1))) < 2||V@| L~ (B(z,n)- But if
y € B(x,n) is a differentiability point and z € B(y,n), by

convexity we have

OSCB(:I;,zn)(¢) > ¢(2) — dly) = Voly) - (2 — y),

so maximing in z yields

OSCRB(x,2n) (Qb)
n

V| Lo (B(zm)) <

How small is the singular set of a convex function?/5



On the singular set of a convex function 32

Let yo and y; be respectively a minimizer and maximizer of ¢
over B(x,2n), let g1 € 0¢(y1), y € RY a differentiability point,
then

P(y1) + 91(y —y1) < d(y) < d(yo) + Vo(y) - (v — yo)-

In particular if y € B(x,4n) N H, where H is the half space
where g1 - (y — y1) > 0, we have

OSCB(x,2)

\Y .
Vo(y)| > F—

How small is the singular set of a convex function?/6



On the singular set of a convex function 33

Now observe that

B(y1 +ng1/|91],m) € B(y1,2n) N Hy C B(x,4n)

integrating the previous inequality yields
1

dy
B(yitnar /g 1Y — ¥1l + |y1 — wol

IV6lz: (BGaatn > 05C(ean) [

d—1
N Wda OSCRB(x,2n)

>
- 6
hence, the desired inequality:
2 0SCB(z,2n) (@) 12

n < wan® VOl L1 (B(w,an))-

diam(9¢(B(z,7))) <

How small is the singular set of a convex function?/7



On the singular set of a convex function 34

Now if we denote by ¢ the average of V¢ over B(x,4n), the
L'-Poincaré-Wirtinger’s inequality together with the fact that

D?¢ < A¢id (in the sense of SDP matrix-valued measures)
yields

vab — CHLl(B(x,éln)) S_} UA¢(B(5U7 477))
so if x € Z we have

a < diam(0¢(B(x,n)) = diam(d¢(B(z,n)) — ¢)

S NV — |l (B(a.an)
<n'TAG(B(x, 4n)).

How small is the singular set of a convex function?/8



On the singular set of a convex function 35

Summing over Z, we get, using first the fact that Z is a 4n
packing and A¢ > 0 and then the divergence theorem and the
fact that ¢ is Lipschitz

aN <n' ") A¢(B(x,4n)) Sn' " A¢(Bryan)
reEZL

_ _ 90
_ 771 d/ A¢ _ 771 d/ a_
BRr+tan 8(Bryay) YT

< 'R+ 4n)*'Lip(e).

C(R + 4n)*'Lip(¢)

N(En,a M BR, 877) S N S Oznd_l .

which is the desired result.

How small is the singular set of a convex function?/9
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Bonne retraite (!) Christian et merci pour tout!!!

How small is the singular set of a convex function?/10



