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Christian, un modèle scientifique mais pas que...

Par modestie, il vous l’a caché, mais Christian a déjà rejoint un

groupe de doom métal progressif (dont le prochain album

s’intitulera évidemment Schrödinger bridge to Babylon).
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Introduction 4

Introduction

The title obviously needs some explanations.

Push-forwards (aka image measures) Let ρ ∈ P(Rd)

(Borel probability measure on R
d) and T : R

d → R
d a Borel

map. The pushforward of ρ through T is the probability

measure T#ρ defined by

T#ρ(B) = ρ(T−1(B)), ∀B Borel subset of Rd.

In other words, if X is a random variable with law ρ (X ∼ ρ)

then T (X) has law T#ρ.
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Introduction 5

Very natural object, but tricky to compute in general, examples

• easy case, discrete to discrete: ρ = 1
N

∑N
i=1 δxi

, then T#ρ is

just 1
N

∑N
i=1 δT (xi),

• T with finite range: T =
∑N

i=1 1Ai
yi, then

T#ρ =
∑N

i=1 ρ(Ai)δyi
,

• ρ has a density f and T is a diffeomorphism, change of

variables formula: T#ρ has density g with

| det(DT )|g ◦ T = f.

/4



Introduction 6

Question: Under which reasonable assumptions can we say

that when ρ is close to ρ̃, then T#ρ is close to T#ρ̃?

Imagine ρ is "nice" (easy to draw samples from e.g. uniform on

a cube) and T#ρ is some target measure, ρ approximated (by

quantization or sampling) by ρ̃, is T#ρ̃ close to the target?

By close, we mean in some weak convergence sense, quantified

by Wasserstein distance.
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Given p ≥ 1, Wasserstein p-distance between ρ and ρ̃:

Wp(ρ, ρ̃)
p := inf

{
E(|X − X̃ |p), X ∼ ρ, X̃ ∼ ρ̃

}

= inf
γ∈Π(ρ,ρ̃)

{∫

Rd×Rd

|x− x̃|pdγ(x, x̃)

}

where Π(ρ, ρ̃) is the set of probability measures having ρ and ρ̃

as marginals. Projections π1(x, y) = x, π2(x, y) = y, then

Π(ρ, ρ̃) = {γ ∈ P(Rd × R
d) : π1#γ = ρ, π2#γ = ρ}

Makes sense for ρ and ρ̃ with finite p-moments. This is an

instance of the Monge-Kantorovich optimal transport problem.

Existence is easy.
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Known facts: Wp is a distance, it metrizes weak convergence

(convergence in law for random variables), W1 ≤Wp (Hölder),

and for ρ and ρ̃ supported on BR,

Wp(ρ, ρ̃) ≤ (2R)
p−1

p W1(ρ, ρ̃)
1
p

most useful cases are p = 1 and p = 2.

Recall for p = 1, the Kantorovich-Rubinstein inequality:
∫

Rd

ud(ρ− ρ̃) ≤ Lip(u)W1(ρ, ρ̃).
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If T is Lipschitz, obviously by definition of Wp, we have

Wp(T#ρ, T#ρ̃) ≤ Lip(T )Wp(ρ, ρ̃).

End of the story? No: what if T is discontinuous or even

possibly set-valued (in which case T#ρ is not even well-defined).

And in particular what if T is an "optimal" (in a way I will

explain) map in the sense that T ∈ ∂φ with φ convex?
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Outline

➀ Quadratic optimal transport, optimal maps

➁ Main result

➂ How small is the singular set of a convex function?
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The quadratic optimal transport problem 11

The quadratic optimal transport problem

Quadratic OT, Brenier’s seminal results (1989, 1991). Let α be

a probability supported on BR. Developing the squared

distance, note that

W 2
2 (ρ, α)

2
=

1

2

∫

Rd

|x|2dρ(x) +
1

2

∫

Rd

|y|2dα(y)

− sup
γ∈Π(ρ,α)

∫

Rd×Rd

x · y dγ(x, y)

so γ is optimal iff it maximizes the correlation under the

marginal constraints.

The quadratic optimal transport problem/1
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Duality

sup
γ∈Π(ρ,α)

∫

Rd×Rd

x · y dγ(x, y)

coincides with the infimum of
∫

BR

φdρ+

∫

BR

ψdα

among pairs (φ, ψ) such that

φ(x) + ψ(y) ≥ x · y, ∀(x, y) ∈ BR × BR

Given φ, the smallest admissible ψ is

ψ(y) = φ∗(y) = max
x∈BR

{x · y − φ(x)}, y ∈ BR.

.

The quadratic optimal transport problem/2
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We still improve the cost by taking

φ(x) = ψ∗(x) = max
y∈BR

{x · y − ψ(y)}, x ∈ BR

so that φ is convex and R-Lipschitz

Given φ = ψ∗, ψ = φ∗ a pair of conjugate optimal potentials, a

plan γ ∈ Π(ρ, α) is optimal iff it satisfies the complementary

slackness condition

φ(x) + φ∗(y) = x · y, on sptγ.

The quadratic optimal transport problem/3
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Optimality of γ is therefore equivalent to the fact that

sptγ ⊂ ∂φ for some convex and R Lipschitz φ; we recall that for

a convex φ,

∂φ = {(x, y) : y ∈ ∂φ(x)}

where ∂φ(x) is the subdifferential of φ at x i.e. the set of y’s for

which

φ(x) + φ∗(y) = x · y

or equivalently

φ(x′) ≥ φ(x) + (x′ − x) · y, ∀x′.

The quadratic optimal transport problem/4
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γ optimal: disintegrate it with respect to its first marginal

γ(dx, dy) = ρ(dx)⊗ γx(dy)

i.e.
∫

Rd×Rd

f(x, y)γ(dx, dy) =

∫

Rd

∫

Rd

f(x, y)γx(dy)ρ(dx)

then sptγx ⊂ ∂φ(x) (optimal plans send all the mass at x to

∂φ(x)).

If ρ is absolutely continuous, then ∂φ(x) = {∇φ(x)} for a.e. x

and then γx = δ∇φ(x).

The quadratic optimal transport problem/5
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Brenier’s theorem (ρ absolutely continuous): the optimal plan is

unique, it is induced by a map, this map is the gradient of a

convex function (and if a map in such a form pushes forward ρ

to α, it is an optimal map).

Brenier’s map T = ∇φ is a remarkable change of variable (or

transport) between ρ and α. Monotone and has a potential,

DT = D2φ, SDP, related to Monge-Ampère equations etc...

Brenier’s map is a (nontrivial) extension to several dimensions

of the notion of monotone change of variables.

The quadratic optimal transport problem/6
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One can parameterize the set of probability measures, fixing a

"nice" reference measure ρ by the bijective map

T ∈ {∇φ, with φ convex} 7→ T#ρ.

Note that T = ∇φ is the optimal map between ρ and 7→ T#ρ.

The quadratic optimal transport problem/7
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Main result

We wish to investigate the following stability question for

optimal plans/maps (i.e. subgradients/gradients of convex

functions). Given φ convex and Lipschitz, ρ and ρ̃ in P(Rd)

supported on BR, γ and γ̃ in P(Rd,Rd) such that

• π1#γ = ρ, π1#γ̃ = ρ̃

• sptγ ⊂ ∂φ, sptγ̃ ⊂ ∂φ (so that both γ and γ̃ are optimal

between their marginals)

Can we bound W2(π2#γ, π2#γ̃) in terms of W2(ρ, ρ̃)?

Main result/1
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The answer is obviously no without additional assumptions:

take d = 1, ρ = ρ̃ = δ0, φ = | · | and γ = δ(0,1), γ̃ = δ(0,−1) then

W2(ρ, ρ̃) = 0 and W2(π2#γ, π2#γ̃) = 2!

We should at least ask that ρ is absolutely continuous (so that

it does not see the singular set of φ). To make things as simple

as possible, we shall always assume:

• ρ and ρ̃ in P(Rd) are supported on BR, φ convex and

R-Lipschitz (so π2#γ, and π2#γ̃ are supported on BR as

well),

• ρ is absolutely continous with a density bounded by Mρ (so

that γ = (id,∇φ)#ρ and π2#γ = ∇φ#ρ) .

Main result/2
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An example. Let φ = |·| on R and let ε ∈ (0, 12 ). Set

ρ = λ[− 1
2
, 1
2
] and ρε = λ|[− 1

2
,− ε

2
]∪[ ε

2
, 1
2
] + εδ0.

Let γ = (id, sign)#ρ and

γε =

∫

[− 1
2
,− ε

2
]∪[ ε

2
, 1
2
]

δ(x,sign(x))dx+ εδ(0,1).

Then

π1#γ = ρ, π1#γ
ε = ρε, spt(γ) ⊂ ∂φ, spt(γε) ⊂ ∂φ.

Easy to compute

W2(π2#γ, π2#γ
ε) = (2ε)1/2, W2(ρ, ρ

ε) = (ε3/12)1/2,

so that W2(π2#γ, π2#γ
ε) ∼W2(ρ, ρ

ε)1/3.

Main result/3
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Theorem 1 (C., Delalande, Mérigot) Let ρ and ρ̃ be

probability measures supported on the ball BR of Rd, with ρ

absolutely continuous with a density bounded by Mρ and let φ be

a convex R-Lipschitz function, let γ̃ in P(Rd,Rd) such that

• π1#γ̃ = ρ̃

• sptγ̃ ⊂ ∂φ

then we have

W2(∇φ#ρ, π2#γ̃) ≤ CW2(ρ, ρ̃)
1
3 (1)

for the explicit constant

C = 28d+
23
2 d2(1 + ωd)(1 +Mρ)(1 +R)4+d,

with ωd denoting the volume of the unit ball of Rd.

Main result/4
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The previous example shows that a Hölder quantitative stability

estimate with exponent 1/3 is the best we can hope for. Sharp

in terms of exponent (likely not at all for the constant C).

Extension to (sharp in terms of exponents) comparisons in

Wp/Wq distances and push forward by optimal maps for Wr

(with r ≥ 2 so that optimal potentials are semiconcave) ....

Main result/5



Main result 23

The first step in the proof is the following. Let S be an optimal

map between ρ and ρ̃ i.e. S#ρ = ρ̃ and

W2(ρ, ρ̃) = ‖id− S‖L2(ρ). Disintegrate γ̃ as

γ̃ = ρ̃⊗ γ̃x̃

then since S#ρ = ρ̃ the plan
∫

BR

δ∇φ(x) ⊗ γ̃S(x)ρ(x)dx

is a transport plan between ∇φ#ρ, π2#γ̃, we have

W 2
2 (∇φ#ρ, π2#γ̃) ≤

∫

BR

∫

BR

|∇φ(x)− y|2dγ̃S(x)(y)ρ(x)dx.

Main result/6
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Let η > 0, we split the previous integrals into two terms the

integral on Ωη := {| id−S| > η}, note that by Markov’s

inequality we have

ρ(Ωη) ≤
W 2

2 (ρ, ρ̃)

η2

so
∫

Ωη

∫

BR

|∇φ(x)− y|2dγ̃S(x)(y)ρ(x)dx ≤
4R2W 2

2 (ρ, ρ̃)

η2

Main result/7
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We now have to estimate the contribution of

BR \ Ωη = {| id−S| ≤ η}. For x ∈ BR \ Ωη, since

spt(γ̃S(x)) ⊂ ∂φ(S(x)) we have
∫

BR

|∇φ(x)− y|2dγ̃S(x)(y) ≤ diam(∂φ(B(x, η)))2

so
∫

BR\Ωη

∫

BR

|∇φ(x)− y|2dγ̃S(x)(y)ρ(x)dx

≤Mρ

∫

BR

diam(∂φ(B(x, η))2dx

assume that
∫

BR

diam(∂φ(B(x, η))2dx ≤ Cη (2)

Main result/8
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then we obtain

W 2
2 (∇φ#ρ, π2#γ̃) .

W 2
2 (ρ, ρ̃)

η2
+ η

so choosing η ∼W2(ρ, ρ̃)
2
3 we get the desired result.

It remains to prove (2): this is a matter of quantifying the

smallness of the singular set of φ.

Main result/9



On the singular set of a convex function 27

On the singular set of a convex function

φ : R
d → R convex and Lipschitz, the singular set of φ where

diam ∂φ > 0 is of measure 0 (and in fact it is d− 1-rectifiable, a

remarkable fine geometric measure theoretical was done by

Alberti, Ambrosio and Cannarsa). We want to quantify this

smallness in terms of covering number. Recall that if K is a

compact subset of Rd and η > 0, N (K, η) is the minimal

number of balls of radius η needed to cover K.

How small is the singular set of a convex function?/1
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Theorem 2 (C., Delalande, Mérigot) Denote

Ση,α = {x ∈ R
d : diam(∂φ(B(x, η)) ≥ α},

then, we have

N (Ση,α ∩BR, 8η) ≤ cd,R,η
Lip(φ)

αηd−1
,

with cd,R,η = 48d2(R + 4η)d−1.

The dependence in α and η is sharp.

How small is the singular set of a convex function?/2
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A direct corollary is the fact that (2) holds:
∫

BR

diam(∂φ(B(x, η)))2dx

=

∫ ∞

0

∣∣{x ∈ BR : diam(∂φ(B(x, η)))2 ≥ t}
∣∣dt

≤

∫ (2Lip(φ))2

0

48d2(R+ 4η)d−1 Lip(φ)

t1/2ηd−1
ωd(8η)

ddt

= cd,R,ηLip(φ)
2η.

How small is the singular set of a convex function?/3
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It remains to prove the bound on N (Ση,α ∩B(0, R), 8η). Let

ε = 4η and Z be a maximal ε packing of Σ := Ση,α ∩BR and N

be the cardinality of Z, Z being a 2ε = 8η covering of Σ,

N (Σ, 8η) ≤ N . Now for x ∈ Z, by construction we have

α ≤ diam(∂φ(B(x, η)). (3)

How small is the singular set of a convex function?/4
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With the monotonicity of ∂φ, one can prove that

Lemma 1 If φ is convex

diam(∂φ(B(x, η))) ≤
12

ωdηd
‖∇φ‖L1(B(x,4η)).

Proof:. Firstly diam(∂φ(B(x, η))) ≤ 2‖∇φ‖L∞(B(x,η). But if

y ∈ B(x, η) is a differentiability point and z ∈ B(y, η), by

convexity we have

oscB(x,2η)(φ) ≥ φ(z)− φ(y) ≥ ∇φ(y) · (z − y),

so maximing in z yields

‖∇φ‖L∞(B(x,η)) ≤
oscB(x,2η)(φ)

η
.

How small is the singular set of a convex function?/5
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Let y0 and y1 be respectively a minimizer and maximizer of φ

over B(x, 2η), let g1 ∈ ∂φ(y1), y ∈ R
d a differentiability point,

then

φ(y1) + g1(y − y1) ≤ φ(y) ≤ φ(y0) +∇φ(y) · (y − y0).

In particular if y ∈ B(x, 4η) ∩H+ where H+ is the half space

where g1 · (y − y1) ≥ 0, we have

|∇φ(y)| ≥
oscB(x,2η)

|y − y0|
.

How small is the singular set of a convex function?/6
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Now observe that

B(y1 + ηg1/|g1|, η) ⊂ B(y1, 2η) ∩H+ ⊂ B(x, 4η)

integrating the previous inequality yields

‖∇φ‖L1(B(x,4η) ≥ oscB(x,2η)

∫

B(y1+ηg1/|g1|,η)

1

|y − y1|+ |y1 − y0|
dy

≥
ηd−1 ωd oscB(x,2η)

6

hence, the desired inequality:

diam(∂φ(B(x, η))) ≤
2 oscB(x,2η)(φ)

η
≤

12

ωdηd
‖∇φ‖L1(B(x,4η)).

How small is the singular set of a convex function?/7
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Now if we denote by c the average of ∇φ over B(x, 4η), the

L1-Poincaré-Wirtinger’s inequality together with the fact that

D2φ ≤ ∆φid (in the sense of SDP matrix-valued measures)

yields

‖∇φ− c‖L1(B(x,4η)) . η∆φ(B(x, 4η))

so if x ∈ Z we have

α ≤ diam(∂φ(B(x, η)) = diam(∂φ(B(x, η))− c)

. η−d‖∇φ− c‖L1(B(x,4η))

. η1−d∆φ(B(x, 4η)).

How small is the singular set of a convex function?/8
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Summing over Z, we get, using first the fact that Z is a 4η

packing and ∆φ ≥ 0 and then the divergence theorem and the

fact that φ is Lipschitz

αN . η1−d
∑

x∈Z

∆φ(B(x, 4η)) . η1−d∆φ(BR+4η)

= η1−d

∫

BR+4η

∆φ = η1−d

∫

∂(BR+4η)

∂φ

∂n

. η1−d(R+ 4η)d−1Lip(φ).

so

N (Ση,α ∩BR, 8η) ≤ N ≤
C(R + 4η)d−1Lip(φ)

αηd−1
,

which is the desired result.

How small is the singular set of a convex function?/9
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Bonne retraite (!) Christian et merci pour tout!!!

How small is the singular set of a convex function?/10


