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PART I
FROM DIFFUSION TO HAMILTONIAN EQUATIONS:
THE EXAMPLE OF CLASSICAL GRAVITATION

The trajectory t ∈ R+ → Xt(a) ∈ R3 of each "particle" labelled by
a ∈ R3 (mod Z3 for simplicity) is driven by

d2Xt

dt2 + (∇φ)(t ,Xt) = 0, 1 +△φ = ρ =

∫

T3
δ(x − Xt(a))da

where ρ(t , x) and φ(t , x), x ∈ T3, respectively denote the density field
(supposed to be of unit average) and the gravitational potential.

YB (CNRS, LMO Orsay) Diffusion vs Hamiltonian Olympe de Gouges 02/07/25 2 / 19



MONGE-AMPERE GRAVITATION (MAG)
(Y.B., G. Loeper GAFA ’04, Y.B.Confl. Math ’11, B. Lévy, Y.B., R. Mohayahee arXiv 24)

ρ(t , x) = det(I + D2φ(t , x)) instead of ρ(t , x) = 1 +△φ(t , x)

d2Xt

dt2 + (∇φ)(t ,Xt) = 0, ρ =

∫
δ(x − Xt(a))da

i) exact in 1d, asymptotically correct for weak fields;
ii) much less singular as ρ concentrates (φ staying Lipschitz in x);
iii) might be as good as the Poisson equation as an approximation to
the Einstein equations (conjecture), based on the "vague" analogy

Einstein equation
Ricci curvature

∼ Monge−Ampere equation
Gauss curvature

iv) has a computational complexity similar to Poisson thanks to the
Monge-Ampère solver by Quentin Mérigot (2D) and Bruno Lévy (3D).
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MONGE-AMPERE vs NEWTON (B. Lévy, Y.B., R. Mohayaee arxiv 2404.07697v2)
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PURELY STOCHASTIC ORIGIN OF DISCRETE
MONGE-AMPERE GRAVITATION
FROM THE MODEL OF A BROWNIAN CLOUD
Ambrosio, Baradat, B., Analysis and PDEs ’22, Léonard, Mohayaee arXiv 24
(picture taken from B. Lévy, Y.B., R. Mohayaee arxiv 2404.07697v2)

4

FIG. 1. Left panel: unconditioned motion of M independent Brownian particles; Center panel: motion of independent
Brownian particles conditioned by their initial and final positions (in red and blue respectively); Right: conditioned Brownian
motion with vanishing noise, all trajectories tend to geodesics.

terms, by replacing the Laplace operator (determinant
of the trace of the Hessian) with the Monge-Ampère
operator (determinant of the Hessian), as derived in
equations (3) to (6).

In this section, we detail an alternative derivation,
leading to the the very same equation, but this time
motivated by a physical principle. We shall use later
this alternative physically-motivated path of reasoning
to invent an e�cient numerical simulation algorithm.

Following [10], we shall derive Monge-Ampère grav-
ity from a microscopic model, that shares some simi-
larities with the relation between optimal transport and
Schrödinger bridges [28]. For the sake of completeness,
we mention that there also exists an elegant “pilot-wave-
like derivation [26].

The idea resembles the least action principle: assume
that a motion from a fixed initial condition to a fixed
final configuration minimizes (or extremizes) some crite-
rion, deduce the law of motion in-between as a di↵erential
relation, then extrapolate it.

So we consider the time evolution of a density field
⇢(r, t), that accounts for a (huge) number of M indistin-
guishable particles. The only assumption regarding the
particles is that they move randomly and do not inter-
act. With this only assumption, everything will spread
out and converge to a uniform distribution of particles
(see the left panel of Figure 1).

Now we suppose that the density field ⇢(r, t) was ob-
served at time t = 0 and at a time t = T . Then we seek
for the “most probable motion from the initial condition
at time t = 0 (red particles in Figure 1-center panel) that
accounts for the observations at time t = T (blue parti-
cles in Figure 1-center panel). As can be seen, this may
be thought of as a statistical version of the least action
principle, where we seek for the most probable motion
(instead of extremizing an action).

The initial condition at time t = 0 is represented
by a permutation �0 of M particles, that accounts
for the particle’s indistiguishability :

�
X0

1 , . . . , X0
M

 
=

�
q�0(1), . . . ,q�0(M)

 
. We suppose that each particle’s

trajectory is given by Xi(t) = X0
i + ✏Bi(t) where the

Bi(t)’s are M independent realizations of a Brownian
motion and where ✏ denotes the amount of noise.

Given a set of points (Yi)
M
i=1, the probability of the

(very unlikely, hence large deviation) event that at time
T , each position Yi is occupied by one of the particles
Xi(t) writes:

Prob

✓
X ✏

i (T ) ⇡
perm

Y

◆
⇡ (2⇡✏T )�

3M
2

M !

P
�2SM

exp

"
�P

i
|Y�(i)�X0

i |2

2✏T

#

(21)
where the sum is over all permutations SM of [1 . . . M ]
to account for particle’s indistinguishability.

Similarly to what happens in path integrals, among the
permutations, the one that minimizes

P
i

|Y�(i)�X0
i |2 has

a tremendous influence. As the noise ✏ tends to zero, the
log of this quantity (a “smoothed infimum) becomes the
true infimum (Laplace lemma or Boltzmann distribution
in statistical physics):

�lim
✏!0

✏ log Prob


X ✏

i (T ) ⇡
perm

Y

�
⇡ inf

�2SN

"P
i

|Y�(i)�X0
i |2

2T

#

(22)
This corresponds to a discrete version of the optimal
transport (7) (the permutation � is the discrete version
of the mass-preserving transport T ).

Moreover, when ✏ tends to zero, all the trajectories be-
come geodesics (rectilinear uniform), see Figure 1-right:

Xi(t) = X0
i + t

T (Y(�|Y )(i))�X0
i )

where: (�|Y ) = Arg inf
�2SN

hP
i |Y�(i)�X0

i |2
2T

i (23)

Then, one can derive a law of motion in the form of an
ordinary di↵erential equation by using a simple property:
along a uniform rectilinear trajectory (Eq. 23), X0 is the

We define a brownian cloud to be a finite set of N indistinguishable points in the
euclidean space, i.e. as a point in the quotient space (Rd )N/SN , initially located on
the cubic lattice {A(α) ∈ Rd , α = 1, · · ·,N} and subject to N independent Brownian

motions in Rd , with uniform noise ν.
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HEAT EQUATION AND BROWNIAN CLOUDS

In PDE terms, this corresponds to the heat equation in RNd :

∂ρ

∂t
(t ,X ) =

ν

2
△ ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑

σ∈SN

N∏

α=1

δ(X (α)− A(σ(α)))

where the initial data takes the relabeling symmetry into account so
that ρ(t ,X ) is the probability density of finding the brownian cloud at

position X (up to a permutation of the labels) at time t

ρ(t ,X ) =
1

N!
(2πνt)−Nd/2

∑

σ∈SN

N∏

α=1

exp(−|X (α)− A(σ(α)|2
2νt

)
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"L’ONDE PILOTE"

After solving the heat equation in the space of "clouds" X ∈ RNd

∂ρ

∂t
(t ,X ) =

ν

2
△ ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑

σ∈SN

δ(X − Aσ)

we may solve the companion ODE in the same space RNd

dXt

dt
= v(t ,Xt), v(t ,X ) = −ν

2
∇(log ρ)(t ,X )

This is an adaptation of de Broglie’s "onde pilote" idea. As a matter of fact, a similar
calculation also works for the free Schrödinger equation:

(i∂t +△)ψ = 0, ψ(0,X ) =
∑

σ exp(−||X − Aσ||2/a2), v = ∇Im logψ
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"ONDE PILOTE" AND ZERO NOISE LIMIT

Setting t = exp(2θ), we more explicitly get
(with abuse of notation Xt → Xθ):

dXθ

dθ
= −∇XΦν,θ(Xθ) , Φν,θ(X ) = ν exp(2θ) log

∑

σ∈SN

exp(
−||X − Aσ||2
2ν exp(2θ)

)

Surprisingly enough, we may easily pass to the limit ν → 0
in the class of maximal monotone operators (cf. Brezis’ book)

d+Xθ

dθ
= −∇XΦ(Xθ), Φ(X ) = lim

ν→0
Φν,θ(X ) = − inf

σ∈SN
||X − Aσ||2/2

Indeed, Φν,θ(X ) reads − ||X ||2+||A||2
2 + a convex function of X .

N.B. Through ∇XΦ, this equation includes sticky collisions in 1D.

YB (CNRS, LMO Orsay) Diffusion vs Hamiltonian Olympe de Gouges 02/07/25 9 / 19



"ONDE PILOTE" AND ZERO NOISE LIMIT

Setting t = exp(2θ), we more explicitly get
(with abuse of notation Xt → Xθ):

dXθ

dθ
= −∇XΦν,θ(Xθ) , Φν,θ(X ) = ν exp(2θ) log

∑

σ∈SN

exp(
−||X − Aσ||2
2ν exp(2θ)

)

Surprisingly enough, we may easily pass to the limit ν → 0
in the class of maximal monotone operators (cf. Brezis’ book)

d+Xθ

dθ
= −∇XΦ(Xθ), Φ(X ) = lim

ν→0
Φν,θ(X ) = − inf

σ∈SN
||X − Aσ||2/2

Indeed, Φν,θ(X ) reads − ||X ||2+||A||2
2 + a convex function of X .

N.B. Through ∇XΦ, this equation includes sticky collisions in 1D.

YB (CNRS, LMO Orsay) Diffusion vs Hamiltonian Olympe de Gouges 02/07/25 9 / 19



"ONDE PILOTE" AND ZERO NOISE LIMIT

Setting t = exp(2θ), we more explicitly get
(with abuse of notation Xt → Xθ):

dXθ

dθ
= −∇XΦν,θ(Xθ) , Φν,θ(X ) = ν exp(2θ) log

∑

σ∈SN

exp(
−||X − Aσ||2
2ν exp(2θ)

)

Surprisingly enough, we may easily pass to the limit ν → 0
in the class of maximal monotone operators (cf. Brezis’ book)

d+Xθ

dθ
= −∇XΦ(Xθ), Φ(X ) = lim

ν→0
Φν,θ(X ) = − inf

σ∈SN
||X − Aσ||2/2

Indeed, Φν,θ(X ) reads − ||X ||2+||A||2
2 + a convex function of X .

N.B. Through ∇XΦ, this equation includes sticky collisions in 1D.

YB (CNRS, LMO Orsay) Diffusion vs Hamiltonian Olympe de Gouges 02/07/25 9 / 19



1D sticky collisions

horizontal : 51 grid points in x /vertical : 60 grid points in t
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 1.5

 2
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-1.5 -1 -0.5  0  0.5  1  1.5
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LARGE DEVIATIONS FOR THE "ONDE PILOTE"

dXθ

dθ
= −∇XΦν,θ(Xθ) +

√
η

dBθ

dθ
Φν,θ(X ) = νe2θ log

∑
σ∈SN

exp(−||X−Aσ||2

2νe2θ ),

we first get a large deviation Vencel-Freidlin action for the limit η → 0,
while ν > 0 is kept fixed.

Then, we may pass to the limit ν → 0 and obtain as "Γ−limit"

∫ θ1

θ0

||d+Xθ

dθ
+∇XΦ(Xθ)||2dθ, Φ(X ) = − inf

σ∈SN
||X − Aσ||2/2

which (at least in 1D) handles sticky collisions thanks to ∇XΦ!
L. Ambrosio, A. Baradat, Y.B. Analysis and PDE 2023
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BACK TO MONGE-AMPERE GRAVITATION!

Using the least action principle, we obtain

d2Xθ(α)

dθ2 = Xθ(α)− A(σopt(α)) , Xθ(α) ∈ Rd , α = 1, · · ·,N

σopt = Arginf σ∈SN

N∑

α=1

|Xθ(α)− A(σ(α))|2

(but not in the sense of Bouchut/Ambrosio!)

and finally, using Optimal Transport tools, the continuous version

d2Xθ

dθ2 + (∇φ)(θ,Xθ) = 0, det(Id + D2φ) = ρ =

∫
δ(x − Xθ(a))da
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From Hamiltonian equations to diffusions
Y.B. Ann. Toulouse ’17, Y.B., Xianglong Duan ARMA ’18,
Lecture notes "Hidden Convexity" Y.B. ’20, hal-02928398.

First example: from Euler to Fourier.

The Euler model for fluids (1755/57) reads

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) = −∇p

where (ρ,p, v) ∈ R1+1+3 are the density, pressure and velocity fields of
a fluid and p is assumed to be a given function of ρ.

Let us now perform the quadratic change of time

ρ(t , x) = ρ̃(θ, x), θ = t2/2, v(t , x) = ṽ(θ, x)
dθ
dt
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The Euler model for fluids (1755/57) reads

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) = −∇p

where (ρ,p, v) ∈ R1+1+3 are the density, pressure and velocity fields of
a fluid and p is assumed to be a given function of ρ.

Let us now perform the quadratic change of time

ρ(t , x) = ρ̃(θ, x), θ = t2/2, v(t , x) = ṽ(θ, x)
dθ
dt
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from Euler to Fourier and diffusion in porous media

After the quadratic change of time, the Euler equations become

∂θρ+∇ · (ρv) = 0, ρv + 2θ[∂θ(ρv) +∇ · (ρv ⊗ v)] = −∇(p(ρ))

leading as θ << 1 to the Fourier law and the porous media equation

ρv = −∇p, ∂θρ = △(p(ρ))

This can be done in many other ways (for ex. Lattanzio-Tzavaras did it some years
ago with the relative entropy method, by adding suitable friction terms).
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From Schrödinger to Derrida-Lebowitz-Speer-Spohn

In a similar way the quantum diffusion equation
(aka DLSS equation)

∂tρ+∆2ρ−∇⊗∇ :
∇ρ⊗∇ρ

ρ
= 0

can be obtained after the same quadratic change of time from the
Schrödinger equation (written in Madelung’s form).
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From Born-Infeld’s Electromagnetism
to the diffusion of divergence-free vector fields

In a d + 1 dimensional Lorentzian space-time manifold of metric
gijdx idx j the BI theory involves vector potentials A = Aidx i

that are critical points ∗ of the fully covariant∗∗ action

∫ √
−det(g + dA)

* for compactly supported variations/** invariant under changes of coordinates/
We will concentrate on the 3+1 Minkowski space of special relativity

(as Max Born and Leopold Infeld did in 1934).
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Max Born (1882-1970)
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Through quadratic change of time, a diffusion equation
for divergence-free vector fields à la Born-Infeld!
(Xianglong Duan arXiv:1706.01661,
Y.B. Ann. Toulouse, Y.B. and Xianglong Duan ARMA ’18)

∂θB +∇× (B × v) +∇× (ρ−1∇× (ρ−1B)) = 0

∂θρ+∇ · (ρv) = 0, ρv = ∇ · (B ⊗ B
ρ

) +∇(ρ−1)

An "incompressible" version (ρ = cst) reads

∂θB +∇× (B × v) +∇× (∇× B) = 0

v = ∇ · (B ⊗ B) +∇p, ∇ · v = 0

which is a quite decent diffusion equation from a MHD viewpoint
with fascinating metastability issues!
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MERCI CHRISTIAN ET BONNE CONTINUATION !
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