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� Université de Toulouse

Abstract. In this paper we revisit and generalize various stochastic models extending the
deterministic Cucker-Smale model for self organization. We study flocking and swarming
properties. We show how these properties strongly depend on the structure and on the
variance of the noise.
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1. Introduction, motivations and existing models.

In recent years the observation, the description and the modeling of collective motions de-
served a lot of attention and consequently produced a huge literature. These kinds of col-
lective behaviors have been observed for several types of populations: humans, fishes, birds,
insects, bacteria, macromolecules, cells ... We refer to the beautiful survey [VZ12] for a nice
description of various models introduced during the last fifteen years. Despite its fundamen-
tal importance, the validation of such models will be ignored in the present work, where we
will focus on mathematical properties. However we shall make some small comments on the
structure of the models under study throughout the whole paper, and summarize them (with
some additional comments) in the final section.
If we read a lot of interesting papers on the subject, it turns out that we do not always com-
pletely understand all the mathematical arguments contained in some of them, in particular
those dealing with stochastic models. That is why, instead of pointing out these misunder-
standings, we decided to make this paper self-contained, at least for the potential readers a
little bit familiar with stochastic calculus.
Finally we shall only look at stochastic models where the noise comes from some Brownian
motion (or some continuous Ito process). Of course one should also look at jump processes
(P.D.M.P. for instance) or fractional processes whose local behavior could introduce other
interesting properties.
Let us come to the subject of this work.

The so-called Cucker-Smale model introduced in [CS07a, CS07b] is a mean-field kinetic de-
terministic model that intends to describe self organization of individuals in a population.
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Originally it is written as
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Here the pair (x
i
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(t)) 2 Rd ⌦ Rd denotes the pair position/velocity of the “particle”
i 2 {1, ..., N} at time t, � is some positive parameter and  
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The goal was to propose a model for flocking. In the deterministic context, flocking means
the following. Introduce the center of mass of the system
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the system (1.1) is said to flock if

for all i, lim
t!1

|v
i

(t)� v̄(t)| = 0 and sup
t�0

|x
i

(t)� x̄(t)| < +1 . (1.4)

It is known that in the situation of (1.2), flocking occurs for all initial conditions (uncondi-
tional flocking) provided r  1

2 , and for some initial conditions otherwise (see [CS07a, CS07b,
HL09, HT08]). Of course this is nothing else than convergence to some “equilibrium”. Indeed
if all initial velocities are the same (hence all equals to v̄), they do not evolve in time and
the motion of the positions block is simply a translation. This is some equilibrium for the
model and flocking is thus some kind of convergence to this equilibrium.

A lot of modified models have then been studied in the deterministic context, including delays,
no collisions and many other features. Some of them have introduced some randomness in
the model, in various ways. The goal of the present paper is to revisit, extend and study
these stochastic Cucker-Smale models.

The first question to ask is: where (and why) does randomness enter the game ?

The first idea is to consider that each individual has a degree of freedom (or craziness)
represented by some random noise independent of the behavior of all other individuals in the
population. This leads to the following system for the velocities
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where �
i

only depends on (x
i

, v

i

) and the w

i

’s are independent Rd valued noises. This kind
of model has been studied in [CM08] for “smooth” noises (actually smooth regularizations
of Brownian motions) and in [HLL09] for independent d-dimensional standard Brownian
motions w

i

and a constant di↵usion matrix �
i

(actually �
i

=
p
D Id

d

). The latter case has
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been revisited and completed by one of us in the recent [Péd16]. Here and in what follows
the meaning of dw is the Ito di↵erential (we shall come back later to this).

The second idea is to consider that the dynamics of the velocities is perturbed by a noisy
environment. This yields the following model
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(t)) dt + �
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(t) dw(t) , (1.6)

where this time the noise w is the same for all particles.
A very peculiar form of this model is studied in [AH10]. The authors consider therein a noise
w = (W,W, ...,W ) i.e. the same Brownian motion in all the directions of Rd and a diagonal
di↵usion matrix �

i

(t) whose diagonal entries are given by the vector �(v
i

(t)) where

�(v) = D(v � v

e

)

for some constant state v
e

, telling us that the “noise intensity” depends (in a simple way) on
the localization of the velocity.

Another idea is to consider that the “infinitesimal” communication rate is perturbed by some
noise. This leads to the following model
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where the w

ij

are again one dimensional noises.
This is done in [TLY14] with w

i,j

= w for all i, j and with a constant �
i,j

= �, i.e. for some
new constant �̄,
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Actually the authors replaced the Ito di↵erential by a Stratonovitch di↵erential. This choice
is not really natural since it introduces some repulsive modification on the drift due to the
Ito-Stratonovitch correction.
In the recent [EHS15] the authors consider instead N independent one dimensional Brownian
noises w

i

and the following system
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for constant �
i

. Actually these authors also introduce some delay in the coe�cients. A
similar model to (1.9) is also discussed in [SL15].

One immediately sees an important di↵erence in nature between all these models. In (1.8)
or (1.9), the dynamics v

i

(t) = v

i

(0) = v̄(0) for all i is still a solution, hence as for the
deterministic system we have some “dynamical” equilibrium. Similarly, if we assume v

i

(0) =
v

e

for all i, v
i

(t) = v

e

furnishes again some dynamical equilibrium for (1.6). In the general
case of (1.5) such a trivial solution does no more exist. This shows that the asymptotic
behavior of these stochastic systems may be (and actually is) very di↵erent.
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The second point is to understand what kind of asymptotic flocking is expected. Indeed since
the solutions are random processes, one can look at various behaviors: almost sure behavior,
moments behavior, distribution behavior. We will thus introduce three di↵erent notions of
stochastic flocking

Definition 1.1. Let (x
i

(t), v
i

(t))
i=1,...,N be a Rd ⌦ Rd valued stochastic process such that

dx

i

(t) = v

i

(t) dt for all i = 1, ..., N . Denote by v̄ and x̄ the centers of masses defined in
(1.3). We shall say that:

1) The system is almost surely flocking if (1.4) holds almost surely.
2) The system is flocking in Lp,q (p, q � 1) if for all i,

E(|v
i

(t)� v̄(t)|p) ! 0 as t ! +1
and

sup
t�0

E(|x
i

(t)� x̄(t)|q) < +1 .

Actually we will only look at the cases (p, q) = (1, 1), (2, 1), (2, 2). When q = 1 we
simply write Lp flocking.

3) The system is weakly flocking with rate "(R) if for all R > 0 and all i,

lim sup
t!+1

P(|v
i

(t)� v̄(t)| > R)  "(R) .

Remark 1.2. Of course quick enough convergence to 0 for the “centered” velocities is enough
to ensure boundedness for the “centered” positions.
For instance,

E(sup
t�0

|x
i

(t)� x̄(t)|)  E(|x
i

(0)� x̄(0)|) +
Z +1

0
E(|v
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⌘
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so that if in addition
R +1
0 ⌘

�1(s) ds < +1, E(sup
t�0 |x

i

(t)� x̄(t)|2) < +1 too. }

Results in [AH10] concern almost sure flocking, results in [TLY14] concern L2 flocking and
those in [Péd16] concern weak flocking.
Another very weak form of stochastic flocking is sometimes discussed: mean-flocking, i.e.

lim
t!+1

|E(v
i

(t)� v̄(t))| = 0 and sup
t�0

|E(x
i

(t)� x̄(t))| < +1 . (1.10)

Actually it is this type of flocking which is studied in [HLL09, EHS15]. We confess that we
are not really convinced that this kind of property really describes some “collective” behavior,
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though (1.10) can be seen at a first glance as the immediate generalization of deterministic
flocking.

In all cases the same strategy of study is used: first look at the motion of the center of mass
v̄(t) (the macroscopic level), then look at the fluctuations v̂

i

(t) = v

i

(t)� v̄(t) (the microscopic
level). As in all the previous works we shall assume in the whole paper that

for all i, j ,  

ij

=  

ji

. (1.11)

Under this assumption,
NX

i=1

NX

j=1

 

ij

(t) (v
i

(t)� v

j

(t)) = 0

so that the motion of v̄(t) is only driven by the noise.

In order to understand the di↵erence in nature of all these models we shall first look at the
simplest case i.e. with a constant communication rate and a constant di↵usion coe�cient.
This is done in the next section 2. In the following section we introduce the notion of
swarming and look at its connection with flocking, as it is the case in the deterministic
situation. In the two following sections, we still look at constant communication rates but
with more general di↵usion coe�cients for (1.6) and (1.7). This will be the opportunity to
introduce the methods that will be mainly used in the general case. In addition, as we shall
see in section 6, many results for a non constant communication rate can be deduced from
the ones obtained in the constant case. Up to section 6 what is obtained is “unconditional”
flocking, that is, without restriction on the initial condition.
Section 6 studies the case of non constant communication rate for the latter two models (1.6)
and (1.7). Actually if the communication rate is bounded from below, one can reduce the
study to the one with constant communication rate. If it is not bounded from below, we prove
some “conditional” flocking results, that is we extend for the first time the corresponding
deterministic results to the stochastic situation. The final section deals with comments and
simulations.

In order to keep the paper into a reasonable size, we will not discuss here other models of
Cucker-Smale type, introducing a mean field term depending on the positions too, or a local
mean field dependence as in [MT11]. This will be the aim of future work(s). However, some
aspects are already contained in [Péd16] for the model (1.5).

For the sake of simplicity we will assume throughout the paper that the initial conditions
(v(0), x(0)) are deterministic. All the results can be extended to random initial conditions
such that v(0)� v̄(0) and x(0)� x̄(0) are almost surely bounded. We shall also denote by |y|
the euclidean norm of a vector y 2 Rm whatever m is.

2. Constant communication rate. A new visit of the existing models.

In this section we assume that, for all t,

 

ij

(t) =  

ji

(t) =  > 0 . (2.1)
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Notice that in this situation, under mild assumptions on the di↵usion coe�cients (ensuring
that the stochastic integral is a true martingale) the expectations (E(v

i

(t)),E(x
i

(t))) satisfy
(1.1) with a constant communication rate, so that one always has mean-flocking.

First we will revisit (and extend) the known results we recalled in the introduction, hence
we assume that

(H1) in (1.5) we consider �
i

(t) =
p
D Id

d

,

(H2) in (1.6) as in [AH10] we consider �
i

(t) = D (v
i

(t) � v

e

), but here we assume that w

is a d-dimensional process w = (w1
, ..., w

d) such that each w

k is a standard linear
Brownian motion (we do not make any assumption on the correlations),

(H3) in (1.8) the same assumption for w is made as in (H2),

(H4) in (1.9) the same assumption is made for each w

i

= (w1
i

, ..., w

d

i

) (the w

i

’s being
independent) and in addition �

i

= � for all i.

We will prove the following

Theorem 2.1. Consider the previous models assuming (2.1). Then,

(1) If (H1) is satisfied, the system (1.5) is weakly flocking with a rate "(R) given by some
�

2 tail.

(2) If (H2) is satisfied, the system (1.6) is always almost surely flocking and L1 flocking,
but is L2 flocking if and only if 2� > D

2 (or v

i

(0) = v̄(0) for all i). In this case it
is also L2,2 flocking.
In addition v̄(t) goes almost surely to v

e

as t goes to infinity and x̄(t)� tv

e

is almost
surely bounded.

(3) If (H3) is satisfied, the system (1.8) is always almost surely flocking and L1 flocking,
but is L2 flocking if and only if 2� > �̄

2 (or v

i

(0) = v̄(0) for all i). In this case it
is also L2,2 flocking.
In addition v̄ is constant hence x̄(t) is linear in t.

(4) Assume that the system (1.9) is not at equilibrium i.e. does not satisfy v

i

(0) = v̄(0)
for all i. If (H4) is satisfied for (1.9), we have the following situation: define

↵ = (1� 1/N)(� )2 � 2� ,

then

(a) if ↵ < 0 the system is almost surely and L2,2 flocking. In addition the center
of mass v̄(t) converges almost surely and in L1 to some given random variable,
while x̄(t) has some asymptotic linear behavior.

(b) If 0  ↵ the system is not L2 flocking, moreover when ↵ > 0, the L2 norm of all
the v̂

i

(t) are going to infinity,
(c) if

�
1� 1

N

�
(� )2 > 2� >

�
1� 3

N

(� )2
�
the system is almost surely flocking

(but not L2).

Remark 2.2. The previous Theorem clearly shows the importance of defining the type of
stochastic flocking one wants to get, since on the same elementary model one can have one
flocking property and not another one. It also seems that L2 flocking is more demanding. }
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Proof. In the first three cases one can find an explicit solution for the involved stochastic
di↵erential equations using that

1

N

NX

j=1

(v
i

� v

j

) = v

i

� v̄ .

Let start with (1.8) assuming (H3). It can be rewritten for all i = 1, ..., N and all k = 1, ..., d,

dv

k

i

(t) = �� (vk
i

(t)� v̄

k(t)) dt + �̄ (vk
i

(t)� v̄

k(t)) dwk(t) . (2.2)

In particular dv̄

k(t) = 0 so that v̄

k(t) = v̄

k(0) = v

k

e

and (2.2) becomes a particular case of
(1.6) with v

e

= v̄(0). This yields the following explicit solution

v

k

i

(t) = v̄

k(0) + (vk
i

(0)� v̄

k(0)) e�̄w

k

t

� ( 12 �̄
2+� ) t

. (2.3)

Since
w

k

t

t

! 0 almost surely as t ! +1,

there is almost sure convergence to the constant center of mass for the velocities. But if B
.

is a linear standard Brownian motion,
Z +1

0
e

aB

t

�bt

dt is almost surely bounded for any a 2 R and b > 0 (2.4)

since B

t

/t goes almost surely to 0 when t goes to infinity . Thus we have shown almost sure
flocking for the model (2.2). Notice that the center of mass of the positions is here simply
given by x̄(t) = x̄(0) + tv̄(0).

In addition, on one hand

E(|vk
i

(t)� v̄

k

i

(t)|) = |vk
i

(0)� v̄

k(0)|E(e�̄w

k

t

� 1
2 �̄

2
t) e�2� t

= |vk
i

(0)� v̄

k(0)| e�2� t

while

E((vk
i

(t)� v̄

k

i

(t))2) = (vk
i

(0)� v̄

k(0))2 E(e2�̄w

k

t

� (�̄2+2� ) t)

= (vk
i

(0)� v̄

k(0))2 e(�2� +�̄2)t E(e2�̄w

k

t

� 2�̄2
t)

= (vk
i

(0)� v̄

k(0))2 e(�2� +�̄2)t
.

Hence if �2� + �̄

2 � 0 there is no L2 flocking. For the positions we may use the Remark
1.2 to get L1 flocking. For L2,2 flocking, assuming �2� + �̄

2
< 0, since

e

✓t E(|v̂k
i

(t)|2) ! 0 as t ! +1
for some ✓ > 0, we also have,

Z +1

0
e

✓t/2 E(|v̂k
i

(t)|2) dt < +1 ,

so that we are again in the situation of Remark 1.2.

Remark 2.3. This result di↵ers from [TLY14] since almost sure flocking occurs in all cases
while small noise is required in [TLY14] (that actually does not really study almost sure
flocking). This is only due to the fact that, as we said before, the Ito-Stratonovitch correction
introduces some repulsive part in the drift in [TLY14]. }
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(1.6) assuming (H2) is thus a little bit more general if v̄(0) 6= v

e

. In this case

v̄

k(t) = v

k

e

+ (v̄k(0)� v

k

e

) eDw

k

t

� D

2
t

2 (2.5)

converges almost surely to v

k

e

, and at the microscopic level v̂k
i

(t) = v

k

i

(t)� v̄

k(t) satisfies

dv̂

k

i

(t) = �� v̂

k

i

(t) dt + D v̂

k

i

(t) dwk(t)

so that

v̂

k

i

(t) = v̂

k

i

(0) eDw

k

t

� ( 12 D

2+� ) t

and we get almost sure flocking as before. This time the center of mass v̄(t) goes almost
surely to v

e

as t goes to infinity and x̄(t)� t v

e

is almost surely bounded.

The key point here is that, summing up the equations over i, we obtain an autonomous
S.D.E. for the motion of v̄.

Actually the same occurs under (H1) in (1.5). Thanks to the independence of the w

i

’s, v̄ is
simply a Brownian motion with covariance matrix D

N

Id

d

. We can then get an explicit solution
for the motion of v̂ which becomes some degenerate dN -dimensional Ornstein-Uhlenbeck
process (see [Péd16] section 1),

dv̂

i

(t) = ��v̂
i

(t) dt +
p
D

✓
1� 1

N

◆
dw

i

(t) �
p
D

N

X

j 6=i

dw

j

(t) , (2.6)

degenerate means that since
P

i

v̂

i

= 0 the process is an O-U process on this subspace. It
is then easy to show that v̂ is ergodic with a (degenerate but explicit) gaussian invariant
distribution so that it is weakly flocking with a rate "(R) corresponding to some �2 tail.
However using a Central Limit Theorem one can see that x̂(t) behaves like

p
t times a

gaussian vector (in distribution) so that the Probability for x̂(t) to belong to some bounded
set goes to 0 as t ! +1 for all bounded sets, that is, weak flocking really only concerns the
velocities. We refer to [Péd16] for the details and the explicit computations.

Finally let us look at (1.9) assuming (H4). We first get

dv̄(t) =
�  

N

 
NX

i=1

v

i

(t) dw
i

(t) � v̄(t)
NX

i=1

dw

i

(t)

!
(2.7)

and then

dv̂

k

i

(t) = �� v̂

k

i

(t) dt + �  

✓
1� 1

N

◆
v̂

k

i

(t) dw
i

(t) � �  

N

X

j 6=i

v̂

k

j

(t) dw
j

(t) . (2.8)
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Of course since the coe�cients are globally Lipschitz, (2.8) admits a unique strong solution.
Thus using Ito’s formula we get,

z

k(t) :=
NX

i=1

(v̂k
i

)2(t) = z

k(0) � 2� 

Z
t

0
z

k(s) ds + 2� 
NX

i=1

✓Z
t

0
(v̂k

i

)2(s) dw
i

(s)

◆

� 2� 

N

NX

i,j=1

✓Z
t

0
(v̂k

i

v̂

k

j

)(s) dw
j

(s)

◆
+ (� )2

✓
1� 1

N

◆2 Z
t

0
z

k(s) ds

+
(� )2

N

2

NX

i 6=j=1

Z
t

0
(v̂k

j

)2(s) ds (2.9)

= z

k(0) +

✓
�2� + (� )2

✓
1� 1

N

◆◆ Z
t

0
z

k(s) ds

+2� 
NX

i=1

✓Z
t

0
(v̂k

i

)2(s) dw
i

(s)

◆
,

since
P

j

v̂

k

j

(s) = 0.

It follows

u

k(t) := E(zk(t)) = u

k(0) +

✓
�2� + (� )2

✓
1� 1

N

◆◆ Z
t

0
u

k(s) ds . (2.10)

A rigorous proof of (2.10) is straightforward: it is enough to stop the process at the exit time
of open balls of radius R (to be sure that the stochastic integrals are true martingales), to
take the expectation and then to use the monotone convergence theorem for letting R go to
infinity. (2.10) is exactly solved by

u

k(t) = u

k(0) e↵t where ↵ = (1� 1/N)(� )2 � 2� . (2.11)

We thus have to distinguish three cases: when ↵ > 0 u

k(t) grows to infinity and there is no
L2 flocking, when ↵ < 0 we may have L2 flocking, when ↵ = 0 there is no L2 flocking.

We can be more precise. First we have (with an obvious new notation)

u

k

i

(t) = u

k

i

(0) +

 
�2� + (� )2

✓
1� 1

N

◆2
! Z

t

0
u

k

i

(s) ds +
(� )2

N

2

X

j 6=i

Z
t

0
u

k

j

(s) ds

= u

k

i

(0) +

✓
�2� + (� )2

✓
1� 2

N

◆◆ Z
t

0
u

k

i

(s) ds +
(� )2

N

2

Z
t

0
u

k(s) ds

= u

k

i

(0) +

✓
↵� (� )2

N

◆ Z
t

0
u

k

i

(s) ds +
(� )2 uk(0)

↵N

2
(e↵t � 1) ,

so that it is easily seen (by contradiction for instance) that when ↵ > 0, uk
i

(.) cannot be
bounded by some C e

�t for � < ↵. Hence all the uk
i

(t) are growing to infinity at an exponential
rate.

Of course for ↵ < 0, E((v̂k
i

)2(s))) decays exponentially fast; hence we get L2,2 flocking as
before.
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Notice in this case that

E(|v̄k(t)� v̄

k(0)|2) = (� )2

N

2

Z
t

0
u

k(s) ds =
(� )2

N

2

u

k(0)

|↵| (1� e

↵t)

is bounded. According to (2.7), (v̄k(t) � v̄

k(0))
t�0 is thus a martingale which is bounded

in L2. According to Doob’s convergence of martingale theorem we know that there exists a
random variable a

k such that

(v̄k(t)� v̄

k(0)) ! a

k a.s. as t ! +1 .

Since the convergence also holds in L1 we get in addition that x̄(t) � x̄(0) � t(v̄(0) + a) is
bounded in L1.

What can be said about the almost sure behavior ? Using Ito formula we get that for all
t < T0, where T0 is the hitting time of 0 for z

k(.) (notice that for t � T0 one has z

k

t

= 0
almost surely),

ln(zk
t

) = ln(zk(0)) +↵t+2� 
NX

i=1

Z
t

0

(v̂k
i

)2(s)

z

k

s

dw

i

(s)� 2(�  )2
NX

i=1

Z
t

0

(v̂k
i

)4(s)

(zk
s

)2
ds . (2.12)

Since
P

i

�

4
i

 (
P

i

�

2
i

)2, the martingale term

M

k(t) =
NX

i=1

Z
t

0

(v̂k
i

)2(s)

z

k

s

dw

i

(s)

whose bracket is given by

hMki(t) =
Z

t

0

(
P

N

i=1 v̂
k

i

)4(s)

(
P

N

i=1(v̂
k

i

)2(s))2
ds  t

satisfies the two following properties

(1) t

�1/2
M

k

t

is bounded in L2 for t 2 [1,+1[,
(2) t

�1
M

k

t

! 0 almost surely as t ! +1.

The second point is the standard law of large numbers for martingales.

Using in addition that
P

N

i=1 �
4
i

� 1
N

(
P

N

i=1 �
2
i

)2, we immediately deduce that zk(t) converges

almost surely to 0, hence that we have almost sure flocking, as soon as ↵ <

2(�  )2

N

and that
z

k(t) goes to infinity (hence no almost sure flocking) if ↵ > 2(�  )2. But the latter cannot
occur due to the value of ↵. ⇤

3. Some general properties.

In this section we introduce some general properties (holding true for any of the model we
are considering) that we will use in the sequel.

We start with some simple algebraic remarks:

X

1i,jN

|v
i

� v

j

|2 = 2
X

1i,jN

hv
i

, v

i

� v

j

i = 2N
NX

i=1

|v
i

|2 � 2N2|v̄|2 = 2N
NX

i=1

|v
i

� v̄|2 , (3.1)
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X

1i,jN

|v
i

� v

j

|2 =
X

1i,jN

|v̂
i

� v̂

j

|2 = 2N
NX

i=1

|v̂
i

|2 , (3.2)

and similarly, if  
ij

=  

ji

,

X

1i,jN

 

ij

hv
i

, v

i

� v

j

i = 1

2

X

1i,jN

 

ij

|v
i

� v

j

|2 , (3.3)

and more generally
X

1i,jN

 

ij

hu
i

, v

i

� v

j

i = 1

2

X

1i,jN

 

ij

hu
i

� u

j

, v

i

� v

j

i . (3.4)

The final (3.4) will allow us to control, in some cases, flocking by a weaker notion called
swarming we will define now.

Definition 3.1. Let (x
i

(t), v
i

(t))
i=1,...,N be a Rd ⌦ Rd valued stochastic process such that

dx

i

(t) = v

i

(t) dt for all i = 1, ..., N . Denote by v̄ and x̄ the centers of masses defined in
(1.3). We shall say that:

1) The system is almost surely (resp. Lp) weakly swarming if

for all i, sup
t�0

|v
i

(t)� v̄(t)| < +1 almost surely (3.5)

respectively

for all i, sup
t�0

E(|v
i

(t)� v̄(t)|p) < +1 . (3.6)

2) The system is almost surely (resp. Lp, resp. Lp,q ) strongly swarming if in addition,
for all i,

sup
t�0

|x
i

(t)� x̄(t)| < +1

almost surely, respectively

sup
t�0

E(|x
i

(t)� x̄(t)|) < +1 ,

respectively

sup
t�0

E(|x
i

(t)� x̄(t)|q) < +1 .

When E(sup
t�0 |x

i

(t)� x̄(t)|q) < +1 we shall say that the swarming property is uniform (in
time).

In some situations, proving swarming is enough to get flocking. Indeed, assume that

 

ij

(v, x) =  (|x
i

� x

j

|2) and define  (b) =

Z
b

0
 (a) da . (3.7)

We thus have

 (|x
i

(t)� x

j

(t)|2)� (|x
i

(0)� x

j

(0)|2) = 2

Z
t

0
 

ij

(s) hx
i

(s)� x

j

(s), v
i

(s)� v

j

(s)i ds .



12 P. CATTIAUX, F. DELEBECQUE, AND L. PÉDÈCHES

Hence, denoting x

ij

= x

i

� x

j

and v

ij

= v

i

� v

j

;

hx
ij

(t), v
ij

(t)i = hx
ij

(0), v
ij

(0)i � �

N

Z
t

0

NX

l=1

 

il

(s) hx
ij

(s), v
il

(s)i ds

+
�

N

Z
t

0

NX

l=1

 

jl

(s) hx
ij

(s), v
jl

(s)i ds +

Z
t

0
|v

i

(s)� v

j

(s)|2ds+M

ij

(t)

where M

ij

(.) is a local martingale term. Let us sum up in i, j. The following term appears

A = �
X

i,j,l

 

il

hx
i

� x

j

, v

i

� v

l

i+
X

i,j,l

 

jl

hx
i

� x

j

, v

j

� v

l

i .

Let us calculate A, first exchanging the role of i and j in the second term,

A = � 2
X

i,j,l

 

il

hx
i

� x

j

, v

i

� v

l

i

= � 2N
X

i,l

 

il

hx
i

, v

i

� v

l

i + 2
X

j

*
x

j

,

X

i,l

 

il

(v
i

� v

l

)

+

= � 2N
X

i,l

 

il

hx
i

, v

i

� v

l

i = �N

X

i,l

 

il

hx
i

� x

l

, v

i

� v

l

i

thanks to (3.4) and since
P

i,l

 

il

(v
i

� v

l

) = 0.
As usual using some exhausting sequence of stopping times (if it exists) we may integrate
up to these random times, for which we get true martingales, take the expectation and then
pass to the limit. So we may assume that we have true martingales if we can check that the
brackets of the M

ij

have finite expectation. We shall come back to this point later.
Hence we sum up over all indices and take the expectation, in order to get

NX

i,j=1

E(hx
ij

(t), v
ij

(t)i) =
NX

i,j=1

E(hx
ij

(0), v
ij

(0)i) +
Z

t

0
E(

NX

i,j=1

|v
i

(s)� v

j

(s)|2) ds

+�

Z
t

0

NX

i,j=1

E( 
ij

(s) hx
i

(s)� x

j

(s), v
i

(s)� v

j

(s)i) ds

and finally
Z

t

0
E(

NX

i,j=1

|v
i

(s)� v

j

(s)|2) ds =
NX

i,j=1

(E(hx
ij

(t), v
ij

(t)i � hx
ij

(0), v
ij

(0)i)) (3.8)

� �

2

NX

i,j=1

E( (|x
i

(t)� x

j

(t)|2)� (|x
i

(0)� x

j

(0)|2))

 2N2 max
i,j

✓
(sup
s�0

E(|x
i

(s)� x

j

(s)|2))
1
2 (sup

s�0
E(|v

i

(s)� v

j

(s)|2))
1
2

◆

� �

2

NX

i,j=1

E( (|x
i

(t)� x

j

(t)|2)� (|x
i

(0)� x

j

(0)|2)) .
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We shall thus use the following elementary Lemma

Lemma 3.2. Let h : R ! R+ be a C

1 function with a bounded derivative.
If
R +1
0 h(s) ds < +1, then h(t) ! 0 as t ! +1.

Combining the preceeding computations and Lemma 3.2, we can easily deduce that L2,2

swarming implies L2,2 flocking, as soon as  is at most linear, in order to control the second
term in the previous sum. Let us state a more general result that will be completed in the
situations we are looking at later

Lemma 3.3. Consider any of our models. Assume that (3.7) is fulfilled for some bounded
function  . Assume in addition that,

(1) a unique solution (v(.), x(.)) exists and is such that for all i, j, hv
i

(.)� v

j

(.), x
i

(.)�
x

j

(.)i is a L2 semi martingale,
(2) for all i, j, s 7! E(|v

i

(s)� v

j

(s)|2) is well defined and di↵erentiable with a bounded
derivative,

(3) the system is L2,2 strongly swarming.

Then the system is L2,2 flocking.

We shall check the required assumptions for each model.

4. Relaxing (H2) in (1.6) for constant communication rates.

In this section we shall study the model (1.6), still assuming that (2.1) is satisfied, but
relaxing the assumption (H2). Namely we will consider the following general model

dv

i

(t) = � � 

N

NX

j=1

(v
i

(t)� v

j

(t)) dt + �(v
i

(t), x
i

(t)) dw(t) , (4.1)

where w is a d-dimensional Brownian motion (the same for all the particles). That is, we
consider that the dynamics of a particle is perturbed by a noisy environment depending on
the position and the velocity of this particle.

Once again the dynamics of the center of mass is given by a (at least local) martingale

dv̄(t) =
1

N

 
NX

i=1

�(v
i

(t), x
i

(t))

!
dw(t) := s(v(t), x(t)) dw(t) . (4.2)

It follows

dv̂

k

i

(t) = �� v̂

k

i

(t) dt+
dX

l=1

✓

k,l

i

(v(t), x(t)) dwl(t)

where

✓

k,l

i

(v, x) = �

k,l(v
i

, x

i

)� s

k,l(v, x) =
1

N

NX

j=1

(�k,l(v
i

, x

i

)� �

k,l(v
j

, x

j

)) .

Of course we will assume enough regularity on � for (4.1) to admit a unique solution. Notice
that if

v

i

(0) = v0 and x

i

(0) = x0 for all i,
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then the unique solution of (4.1) is given by a dynamic equilibrium v

i

(t) = v̄(t) and x

i

(t) =
x̄(t) for all i, where (v̄, x̄) solves

dv̄(t) = �(v̄(t), x̄(t)) dw(t)

dx̄(t) = v̄(t) dt .

There is however a di↵erence with the deterministic model (or the model assuming (H2)):
this time one has in general to fix the initial positions to get some equilibrium.

As we did in the first section we define

z

k(t) :=
NX

i=1

(v̂k
i

)2(t) = z

k(0) � 2� 

Z
t

0
z

k(s) ds + 2
NX

i=1

dX

l=1

Z
t

0
v̂

k

i

(s) ✓k,l
i

(v(s), x(s)) dwl(s)

+

Z
t

0

 
NX

i=1

dX

l=1

(✓k,l
i

)2(v(s), x(s))

!
ds , (4.3)

so that

z(t) :=
dX

k=1

z

k(t) = z(0) � 2� 

Z
t

0
z(s) ds + 2

NX

i=1

dX

l=1

Z
t

0

 
dX

k=1

v̂

k

i

(s) ✓k,l
i

(v(s), x(s))

!
dw

l(s)

+

Z
t

0

 
dX

k=1

NX

i=1

dX

l=1

(✓k,l
i

)2(v(s), x(s))

!
ds . (4.4)

Hence

u(t) := E(z(t)) = u(0) � 2� 

Z
t

0
u(s) ds +

Z
t

0
U(v(s), x(s)) ds

where

U(v(s), x(s)) =
dX

k=1

NX

i=1

dX

l=1

E
h
(✓k,l

i

)2(v(s), x(s))
i
. (4.5)

Finally, at least formally (and rigorously up to the first time z(.) hits 0)

ln z(t) = ln z(0) + 2
NX

i=1

dX

l=1

Z
t

0

 
dX

k=1

v̂

k

i

(s) ✓k,l
i

(v(s), x(s))

z(s)

!
dw

l(s) � 2� t

+

Z
t

0

 
NX

i=1

dX

l=1

dX

k=1

(✓k,l
i

)2(v(s), x(s))

z(s)

!
ds (4.6)

� 2

Z
t

0

dX

l=1

0

B@

hP
N

i=1

P
d

k=1 v̂

k

i

(s) ✓k,l
i

(s)
i2

(z(s))2

1

CA ds .
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4.1. A first natural generalization of (H2).

Introduce the following assumption

(H2-1) � only depends on v and is Lipschitz continuous, i.e. there exists K such that for
all k, l, all (v, v0) ,

|�k,l(v)� �

k,l(v0)|  K |v � v

0| .
In this situation we have

|✓k,l
i

(v, x)|  1

N

X

j 6=i

|�k,l(v
i

)� �

k,l(v̄) + �

k,l(v̄)� �

k,l(v
j

)|

 N � 1

N

|�k,l(v
i

)� �

k,l(v̄)|+ 1

N

X

j 6=i

|�k,l(v
j

)� �

k,l(v̄)|

 K |v̂
i

|+ K

N

NX

j=1

|v̂
j

| .

Hence
NX

i=1

|✓k,l
i

(v, x)|2  K

2

0

@
NX

i=1

|v̂
i

|2 + 3

N

0

@
NX

j=1

|v̂
j

|

1

A
21

A  4K2
NX

i=1

|v̂
i

|2

and finally
dX

k=1

NX

i=1

dX

l=1

(✓k,l
i

)2(v(t), x(t))  4d2K2
z(t) . (4.7)

Of course if � is diagonal, we may replace d

2 by d, and if in addition �k,k only depends on
v

k we may replace d by 1 (as for (H2)).

Similarly, using Cauchy-Schwarz inequality it is easily seen that
0

B@

hP
N

i=1

P
d

k=1 v̂

k

i

(t) ✓k,l
i

(t)
i2

(z(t))2

1

CA

is uniformly bounded above.

We may thus use the same arguments as for the end of the previous proof of Theorem 2.1,
except that we do no more have any better lower bound for

0

B@

hP
N

i=1

P
d

k=1 v̂

k

i

(t) ✓k,l
i

(t)
i2

(z(t))2

1

CA

than 0. We have thus obtained

Theorem 4.1. Assume that (H2-1) is satisfied in (4.1). Then if 2� > 4K2
d

2, the system
(4.1) is almost surely and L2,2 flocking.
However, contrary to what happens when (H2) is satisfied, the center of mass v̄(t) does not
necessarily converge as t ! +1.
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Let us look at a very particular case: the case when � is diagonal and �

k,k(v) = �

k,k(vk).
We can thus rewrite (4.1)

dv

k

i

(t) = � � 

N

NX

j=1

(vk
i

(t)� v

k

j

(t)) dt + �

k,k(vk
i

(t)) dwk(t) , (4.8)

i.e. we can look at the system independently for each coordinate k, or if one prefers, reduce
the problem to the case of one dimensional particles i.e. d = 1. In the sequel we thus suppress
the superscript k.
The first elementary remark is that, if v

i

(0) = v

j

(0) for some pair i 6= j, the uniqueness of
the solution shows that v

i

(t) = v

j

(t) for all t. Using the Markov property, the same holds for
t � T for any stopping time T such that v

i

(T ) = v

j

(T ). Reordering the indices if necessary
we may assume that v1(0)  v2(0)  ...  v

N

(0) so that the dynamics preserves the order of
the velocities of the particles. The best quantity to look at is thus D1N (t) = v

N

(t) � v1(t)
instead of z(t), since D1N � v̂

i

for all i. The dynamics of D1N is given by

dD1N (t) = �� D1N (t) dt+ (�(v
N

(t))� �(v1(t))) dw(t) .

Since D1N is non negative we have

lnD1N (t) = lnD1N (0)�� t�
Z

t

0

(�(v
N

(s))� �(v1(s)))2

2D2
1,N (s)

ds+

Z
t

0

(�(v
N

(s))� �(v1(s)))

D1N (s)
dw(s) ,

and

D

2
1N (t) = D

2
1N (0)�

Z
t

0
(2� D

2
1N (s) � (�(v

N

(s))� �(v1(s)))
2) ds

+

Z
t

0
2D1N (s) (�(v

N

(s))� �(v1(s))) dw(s) .

Using the same arguments as before we thus have

Theorem 4.2. Assume that (H2-1) is satisfied in (4.8). Then the system (4.8) is always
almost surely flocking. If in addition 2� > K

2, then it is also L2,2 flocking.

4.2. More general environments.

One may ask about the physical meaning of a random environment acting on the veloc-
ities only. It can be the case for some aerodynamical perturbations for instance. But of
course, it is more natural (or at least as natural) to add some random perturbation that de-
pends on the position (and possibly the velocity too) of each particle. We shall now discuss
briefly this situation.

Assume for instance that all �k,l are bounded, say by M . We thus have

E(z
t

) := u(t)  u(0)� 2� 

Z
t

0
u(s) ds + 4M2

N d

2
t , (4.9)

so that

lim sup
t!+1

u(t)  2M2
Nd

2

� 

. (4.10)
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In particular u(.) is bounded on R+. Hence if all the �’s are bounded in (4.1), the system
is L2 weakly swarming, while in general it is hard to say anything about strong swarming.
Concerning this last point let us look at some particular case, namely

(H2-2) �(v, x) = �(x) is C

1 with partial derivatives bounded by K (but the �k,l are not
necessarily bounded themselves).

As for (4.8) we may look at each coordinate k individually, i.e. consider a system of N

1-dimensional particles governed by

dv

k

i

(t) = � � 

N

NX

j=1

(vk
i

(t)� v

k

j

(t)) dt +
dX

l=1

�

k,l(x
i

(t)) dwl(t) . (4.11)

Contrary to the situation of Theorem 4.2, in general the order of the velocities v

k

i

is not
preserved by the dynamics, and the only trivial equilibrium is given by v

i

(t) = v̄(0) and
x

i

(t) = x̄(0) + tv̄(0) for all t.

We shall nevertheless look at

v

k

i,j

(t) = v

k

i

(t)� v

k

j

(t) and x

i,j

(t) = x

i

(t)� x

j

(t)

which solves

dv

k

i,j

(t) = �� v

k

i,j

(t) dt+
dX

l=1

�

k,l

i,j

(t) dwl

t

where �k,l
i,j

(t) = �

k,l(x
i

(t)) � �

k,l(x
j

(t)). We already know that, if � is bounded, the system

is L2 weakly swarming. Here we assume that

sup
t>0

E(|x
i

(t)� x

j

(t)|2)  M

2
i,j

< +1. (4.12)

Of course when � is bounded (4.12) implies that the system is L2 strongly swarming. We
shall first show that it is still the case when (H2-2) is satisfied.

Let us make some computations: first if T
R

denotes the first time |v
i,j

|(.) exceeds R, we have

E((vk
i,j

)2(t ^ T

R

)) = E((vk
i,j

)2(0))� 2� E
✓Z

t^T
R

0
(vk

i,j

)2(s) ds

◆
+ E

 Z
t^T

R

0

dX

l=1

(�k,l
i,j

)2(s) ds

!

 E((vk
i,j

)2(0)) + dK

2
M

2
i,j

t

so that uk
i,j

(t) = E((vk
i,j

)2(t)) is well defined and satisfies

E((vk
i,j

)2(t)) := u

k

i,j

(t)  u

k

i,j

(0)� 2� 

Z
t

0
u

k

i,j

(s) ds+ dK

2
M

2
i,j

t

and finally

lim sup
t!+1

u

k

i,j

(t) 
dK

2
M

2
i,j

2� 
. (4.13)

It follows that

sup
t�0

E((vk
i,j

)2(t))  N

2
i,j

< +1 .
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Using what precedes we also see that s 7! E((vk
i,j

)2(s)) is di↵erentiable with

d

ds

E((vk
i,j

)2(s)) = � 2� E((vk
i,j

)2(s)) + E(
dX

l=1

(�k,l
i,j

)2(s))

which is bounded below by � 2� N

2
i,j

and bounded above by dM

2
i,j

K

2. Hence we may use
Lemma 3.3 in order to get

Lemma 4.3. Consider the system (4.1) under the assumption (H2-2). If for all pair (i, j),

sup
t�0

E(|x
i

(t)� x

j

(t)|2)  M < +1

then the system (4.1) is L2,2 flocking.

But we can go further. Indeed, in the situation of the previous lemma, we first of all have

E((vk
i,j

)2(0)) +

Z +1

0
E(

dX

l=1

(�k,l
i,j

)2(s)) ds = 2� 

Z +1

0
E((vk

i,j

)2(s)) ds < +1 . (4.14)

On one hand, using lemma 3.2 again (it is easily seen that the assumptions are satisfied) we
thus obtain

lim
t!+1

E((�k,l
i,j

)2(t)) = lim
t!+1

E((�k,l(x
i

(t))� �

k,l(x
j

(t)))2) = 0 . (4.15)

On the other hand, as before the martingale m

k

i,j

(t) =
P

d

l=1

R
t

0 �
k,l

i,j

(s) dwl(s) converges (as

t ! +1) almost surely and in L2 to a random variable m

k

i,j

such that

E[mk

i,j

|Fk(t)] = m

k

i,j

(t) ,

Fk(.) being the filtration of the Brownian motion w(.). Notice that

m

k

i,j

(t) = (� x

k

i,j

(t) + v

k

i,j

(t))� (� x

k

i,j

(0) + v

k

i,j

(0)) . (4.16)

We deduce that xk
i

(t)� x

k

j

(t) converges in Probability as t ! +1 to

1

� 

m

k

i,j

+ ((xk
i

(0)� x

k

j

(0)) +
1

� 

(vk
i

(0)� v

k

j

(0)))

(since v

k

i,j

(t) goes to 0 in L2 hence in Probability). In addition

lim
t!+1

E((xk
i,j

)2(t)) = E((xk
i,j

(0) +
1

� 

v

k

i,j

(0))2) +
1

(� )2
E((mk

i,j

)2) . (4.17)

It follows that the above convergence in Probability also holds in Lp for all p < 2.
Hence

Proposition 4.4. Consider the system (4.1) under the assumption (H2-2). If for all pair
(i, j),

sup
t�0

E(|x
i

(t)� x

j

(t)|2)  M < +1

then the system (4.1) satisfies the following

(1) it is L2,2 flocking,
(2) there exists some random vector x̂(1) such that x̂(t) converges in Lp (p < 2)

towards x̂(1) as t ! +1.
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Remark 4.5. Notice that, according to (4.17), if lim
t!+1

E((xk
i,j

)2(t)) = 0, then 0 =

� x

k

i,j

(0) + v

k

i,j

(0) and m

k

i,j

= 0.

If mk

i,j

= 0, then m

k

i,j

(t) = 0 for all t � 0, so that

v

k

i,j

(t) = v

k

i,j

(0) e�� t ; x

k

i,j

(t) = x

k

i,j

(0) +
v

k

i,j

(0)

� 

(1� e

�� t) .

So
0 = � x

k

i,j

(0) + v

k

i,j

(0) = � x

k

i,j

(t) + v

k

i,j

(t) .

But, since m

k

i,j

(t) = 0 for all t, we also have for all l,

�

k,l(x
i

(t)) � �

k,l(x
j

(t)) = 0 for all t � 0 .

In particular if �k,. : Rd 7! Rd is one to one, we get x
i,j

(t) = 0 for all t, hence v

i,j

(t) = 0 for
all t. }

Let us illustrate the previous remark with a simple example

Example 4.6. Almost a�ne di↵usion coe�cient.
Assume that for some k,

�

k(x) = Ax+B

for some constant invertible matrix A and constant vector B. Then, if (4.12) is satisfied for
all pair (i, j), (4.15) yields

lim
t!+1

E(|x
i

(t)� x

j

(t)|2) = lim
t!+1

E(|A�1(�k(x
i

(t))� �

k(x
j

(t))|2) = 0 ,

for all pair (i, j). According to the previous remark, the system is thus at equilibrium. Hence

Proposition 4.7. In addition to (H2-2), if for some k, �k(x) = Ax+B for some constant
invertible matrix A and constant vector B, the system (4.1) cannot be strongly L2,2 swarming,
except if it is at equilibrium (all coordinates are equal).

More generally (almost) the same occurs if one of the �k (k-th row of the matrix �), in addition
to be one to one, satisfies the following property: for a sequence (x(n), y(n)), �k(x(n)) �
�

k(y(n)) ! 0 implies x(n)� y(n) ! 0.
To see it, recall that (4.15) implies that �k(x

i

(t))��k(x
j

(t)) ! 0 in Probability. Hence up to
a subsequence t

n

we may assume that it converges almost surely, so that x
i

(t
n

)�x

j

(t
n

) ! 0
almost surely. But since x

i

(t) � x

j

(t) goes to some x

i,j

(1) as t ! +1 in Probability, we
deduce that x

i,j

(1) = 0. Using Lebesgue’s bounded convergence theorem we can thus deduce

Proposition 4.8. In addition to (H2-2), assume that for some k, �k is one to one and
satisfies (H2-21): for a sequence (x(n), y(n)), �k(x(n))��k(y(n)) ! 0 implies x(n)�y(n) !
0.
Then if the system (4.1) is uniformly L2,2 swarming (i.e. max

i,j

sup
t�0 |x

i

(t)�x

j

(t)| = M 2
L2), the system (4.1) is at equilibrium (all coordinates are equal).

The latter statement can be extended: if for instance �k(x(n))� �

k(y(n)) ! 0 only implies
x

k(n)� y

k(n) ! 0, then the conclusion of the proposition is still true provided the previous
property is satisfied for all k. }
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The previous assumptions on � imply in a sense that it cannot be bounded. Indeed for
d = 1, a smooth one to one function from R to R which is bounded, admits a limit at infinity
and thus cannot satisfy (H2-21). The typical example of smooth bounded (and presumably
interesting from a physical point of view) function is the case of periodic functions we shall
look at now.

Example 4.9. Periodic di↵usion coe�cient.
Assume now that � is T -periodic. For x 2 Rd we denote x̃ the unique vector in [0, T [d such
that xk � x̃

k belongs to TZ for all k = 1, ..., d. By T -periodic we mean that �(x) = �(x̃).
We shall introduce a new “one to one” assumption:
(H2-22). The set

N = {z̃ = x̃� ỹ such that for all (k, l) , �k,l(x)� �

k,l(y) } is reduced to {0} .

For instance if d = 2, the matrix

�(x1, x2) =

✓
sin(x1) cos(x2)
cos(x1) sin(x2)

◆

satisfies (H2-22) with T = 2⇡. The matrix

�(x1, x2) =

✓
sin(x1) cos(x1)
cos(x2) sin(x2)

◆

also does, but this case reduces after an immediate change of Brownian motion, to the case
of a constant di↵usion coe�cient.

If the system is strongly L2,2 swarming, we can as in the previous example, find some se-
quence t

n

such that for all (k, l), �k,l(x̃
i

(t
n

))� �

k,l(x̃
j

(t
n

)) ! 0 almost surely. According to
proposition 4.4, x

i

(t)� x

j

(t) goes to x

i,j

(1) in probability, so that taking a subsequence of
t

n

if necessary (we still denote by t

n

), we may assume that the convergence is almost sure.
It follows that x̃

i

(t
n

)� x̃

j

(t
n

) goes almost surely to x̃

i,j

(1).
Thanks to compactness, we have that for each ! for which both previous convergences hold,
extracting another subsequence if necessary both x̃

i

(t0
n

,!) and x̃

j

(t0
n

,!) converge to limits
x̃

i

(1,!) and x̃

j

(1,!), for which, using the continuity of �, it holds that �k,l(x̃
i

(1,!)) �
�

k,l(x̃
j

(1,!)) = 0. If (H2-22) is satisfied, we deduce that x̃

i

(1,!) � x̃

j

(1,!) = 0, i.e
x̃

i,j

(1,!) = 0 for almost all !. It means that x
i,j

(1) is a random variable taking its values
in (TZ)d.
The key point now is the following: if we add to x(0) any L2 random vector whose coor-
dinates belong to (TZ)d, we do not change the dynamics of the v(.). Hence, replacing all
x

i

(0) by x

0
i

(0) = x

i

(0) + x1,i(1) (for i > 1), we do not change the dynamics of the v

i

, we
do not change the strong swarming property, nor the uniform swarming property, and we
get in the limit x

0
1,i(1) = 0, hence for all (i, j), x0

i,j

(1) = 0. But now we may use remark
(4.5), periodicity and (H2-22) to conclude that all x0

i,j

(.) and all v
i,j

(.) are equal to 0 as soon

as lim
t!+1 E(((x0)k

i,j

(t))2) = 0, which is satisfied, thanks to Lebesgue bounded convergence

theorem as soon as the system is uniformly L2,2 swarming. Notice that now any random
vector (v, x) = (0, x) which x taking values in (TZ)dN is an equilibrium. We thus have

Proposition 4.10. In addition to (H2-2), assume that � is T periodic and satisfies (H2-22).
Then if the system (4.1) is uniformly L2,2 swarming (i.e. max

i,j

sup
t�0 |x

i

(t)�x

j

(t)| = M 2
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L2), the system (4.1) is at equilibrium (all velocities are equal and the di↵erences between
the positions belong to (TZ)d).

Hence in all situations we are able to handle, uniform swarming does not occur, unless the
system is at equilibrium, telling us that for a random environment depending on the positions
only, it seems di�cult to swarm out of equilibrium. }

5. A general form of (1.7) for constant communication rates.

We have already seen that the particular form (1.8) of (1.7) with constant communication
rate is a particular case of (1.6). Also notice that, still for constant communication rate,
when w

i,j

= w

i

for all j, the w

i

being independent, and �
i,j

= �

i

 

i,j

, we recognize (1.9). We
shall now look at another case, namely

dv

i

(t) = � � 

N

NX

j=1

(v
i

(t)� v

j

(t)) dt +
1

N

NX

j=1

�

ij

(t) (v
i

(t)� v

j

(t)) dw
i,j

(t) , (5.1)

where the w
ij

are d-dimensional noises (here vw is the vector such that each coordinate (vw)k

is given by v

k

w

k). We shall assume that

�

ij

= �

ji

, w

i,j

= w

j,i

, and (w
i,j

)
i<j

are independent. (5.2)

The meaning of these assumptions seems a little bit more natural that for the (1.9) model:
each pair of individuals (i, j) are interacting symmetrically with a constant communication
rate which is perturbed by some noise (we may include  in the �

ij

), all the interaction
noises being independent. Since we are speaking of constant communication rate, we shall
also assume that the �

ij

are constant (more general situations will be discussed in the next
section).

As we did before we shall look at v
i,j

= v

i

� v

j

which solves

dv

i,j

(t) = �� v

i,j

(t) dt +
1

N

NX

l=1

�

il

v

i,l

(t) dw
i,l

(t) � 1

N

NX

m=1

�

jm

v

j,m

(t) dw
j,m

(t) .

As before we can look separately at each coordinate (vk, xk). For the sake of simplicity, we
skip the superscript k in the sequel, or if one prefers we take d = 1.
Hence if we define z(t) =

P
1i,jN

(v
i,j

)2(t) (we skip the 2N in (3.1)), we have (being careful
with the indices for which the Brownian motions are independent on one hand or the same
on the other hand)

dz(t) = � 2� z(t) dt+
4

N

NX

i,j,l=1

�

il

v

i,l

(t) v
i,j

(t) dw
i,l

(t)

+
2

N

2

0

@
NX

i,j,l=1

�

2
il

v

2
i,l

(t) +
NX

i,j=1

�

2
ij

v

2
i,j

(t)

1

A
dt (5.3)

= � 2� z(t) dt+ 4
NX

i,l=1

�

il

v

i,l

(t) v̂
i

(t) dw
i,l

(t) +
2(N + 1)

N

2

0

@
NX

i,j=1

�

2
ij

v

2
i,j

(t)

1

A
dt .
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It follows

u(t) := E(z(t)) = u(0) � 2� 

Z
t

0
u(s) ds+

2(N + 1)

N

2

Z
t

0

0

@
NX

i,j=1

�

2
ij

E(v2
i,j

(s))

1

A
ds ,

from which we deduce
✓
(N + 1)

N

2
min
i,j

�

2
ij

� � 

◆Z
t

0
u(s) ds  u(t)� u(0)

2
 �

✓
� � (N + 1)

N

2
max
i,j

�

2
ij

◆Z
t

0
u(s) ds .

The latter furnishes conditions for L2,2 flocking or non flocking.
For almost sure flocking we may consider as we did before ln(z(t)) which solves

d(ln(z(t)) = � 2� dt+ 4
NX

i,l=1

(�
il

v

i,l

v̂

i

)(t)

z(t)
dw

i,l

(t) (5.4)

+
2(N + 1)

N

2

NX

i,l=1

(�2
il

v

2
i,l

)(t)

z(t)
dt � 4

NX

i,l=1

(�2
il

v

4
i,l

)(t)

z

2(t)
dt .

The non constant part of the drift term can be rewritten

A(t) =
2

z

2(t)

0

@N + 1

N

2

4
NX

i,l=1

(�2
il

v

2
i,l

)(t)

3

5

2

4 1

N

NX

i,l=1

(v2
i,l

)(t)

3

5 � 2
NX

i,l=1

(�2
il

v

4
i,l

)(t)

1

A

so that using again
P

N

i=1 �
4
i

� 1
N

(
P

N

i=1 �
2
i

)2 we get

A(t)  2

N

✓
N + 1

N

max
i,j

�

2
ij

� 2 min
i,j

�

2
ij

◆
.

Now we may argue as in the previous section. We have thus obtained

Theorem 5.1. Consider the system (5.1), under the assumption (5.2) and with constant
�

ij

. Then

(1) If � >

N+1
N

2 max
i,j

�

2
ij

the system is L2,2 flocking.

(2) If � <

N+1
N

2 min
i,j

�

2
ij

the system is not L2 flocking.

(3) If � � 1
N

⇣
N+1
N

max
i,j

�

2
ij

� 2 min
i,j

�

2
ij

⌘
> 0, the system is almost surely flock-

ing. In particular if �
ij

= � for all pair (i, j), the system is always almost surely
flocking.

Notice that the flocking properties are still the same if we consider bounded processes �
ij

(.)
instead of constants. Also note that we could improve the bounds for almost sure flocking by
using a more accurate comparison between

P
�

2
il

v

2
i,l

and
P

v

2
i,l

, but the present statement
is easier.

Remark 5.2. If we compare with (1.7) in his (1.8) version, the correspondence is �̄ = �

N

.
The comparison for flocking is thus between � and �

2
/N

2 and not with �/N . Of course
this is simply the observation that the variance of the noise is of order 1/N2 in (1.8) while it
is of order 1/N here. }
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6. General communication rate.

Since we are mainly interested in flocking or swarming properties, we shall only consider
models for which such properties may hold for constant communication rate. [Péd16] contains
informations on (1.5) for which it is possible to show the existence of stationary solutions
(using Ito-Nisio theory for stochastic delayed equations) as well as propagation of chaos when
N grows to infinity (also see [BCnC11] for this latter point). If we consider models for random
environment, we will only look at the case where the environment depends on the velocity
only. Hence we will focus on two type of systems.
First, noisy communication rates i.e.

dv

i

(t) = � �

N

NX

j=1

 

ij

(t)(v
i

(t)� v

j

(t)) dt +
1

N

NX

j=1

�

ij

(t) (v
i

(t)� v

j

(t)) dw
i,j

(t) , (6.1)

where the w

ij

are d-dimensional noises (again vw is the vector such that each coordinate
(vw)k is given by v

k

w

k), w
i,j

= w

j,i

and the (w
i,j

)
i<j

are independent Brownian motions.
Next, noisy environment

dv

i

(t) = � �

N

NX

j=1

 

ij

(t)(v
i

(t)� v

j

(t)) dt + �(v
i

(t)) dw(t) , (6.2)

where w is a d-dimensional Brownian motion.

6.1. Study of (6.2).

Consider the model given by (6.2). We shall introduce assumptions ensuring first existence
and uniqueness.

Proposition 6.1. Assume that

(1) The processes  
ij

(t) can be written  
ij

(t) =  

ij

(v(t), x(t)), where all the functions
 

ij

are locally Lipschitz, non-negative and satisfy  
ij

=  

ji

,
(2) � satisfies (H2-1) i.e. is globally K-Lipschitz or � is locally Lipschitz and bounded.

Then, for all initial state (v(0), x(0)) 2 L2 the system (6.2) admits a unique non-explosive
(global) strong solution.

Proof. Existence of a unique local strong solution is immediate thanks to our assumptions.
The only thing to prove is that it is global. Actually it is enough to show that v(.) does not
explode and to this end, as usual, it is enough to show that for all t � 0,

sup
R>0

E(|v(t ^ T

R

)|2) < +1
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where T

R

denotes the first (stopping) time |v(.)| hits the value R. Defining V (.) = |v(.)|2 we
have, using Ito’s formula and (3.3), that for t  T

R

,

dV (t) = � �

N

X

1i,jN

 

ij

(t)|v
i

(t)� v

j

(t)|2 dt+
NX

i=1

Trace (�(v
i

(t))�⇤(v
i

(t))) dt

+2

 
NX

i=1

v

⇤
i

(t)�(v
i

(t))

!
dw(t) ,

where a

⇤ denotes the transposed of the vector (or the matrix) a. When � is K-Lipschitz,
|�k,l(v

i

)|  K|v
i

|+ c for all (k, l), so that

E(|v(t ^ T

R

)|2)  E(|v(0)|2) + C(N)

✓Z
t

0
KE(|v(s ^ T

R

)|2) ds+ ct

◆
,

and the result follows using Gronwall’s lemma. When � is bounded the result is immediate.
⇤

Remark 6.2. It is worth noticing that if v
i

(0) = v̄(0) for all i, the unique solution of (6.2)
is given by v

i

(t) = v̄(t), x
i

(t) = x

i

(0) +
R
t

0 v̄(s)ds, where v̄(.) solves

dv̄(t) = �(v̄(t)) dw(t) .

This is in full generality the only dynamic equilibrium of the system. }

We consider again

z(t) =
NX

i=1

|v
i

(t)� v̄(t)|2 = 1

2N

X

1i,jN

|v
i

(t)� v

j

(t)|2 .

Using this time (3.1), Ito’s formula and (3.3), we obtain

dz(t) = � �

N

X

1i,jN

 

ij

(t)|v
i

(t)� v

j

(t)|2 dt+
NX

i=1

Trace (�(v
i

(t))�⇤(v
i

(t))) dt

�N Trace

  
1

N

NX

i=1

�(v
i

(t))

! 
1

N

NX

i=1

�

⇤(v
i

(t))

!!
dt

+2

 
NX

i=1

v̂

⇤
i

(t)�(v
i

(t))

!
dw(t) ,

(recall that a⇤ denotes the transposed of the vector (or the matrix) a). But since
P

i

v̂

i

= 0,
we may replace �(v

i

) by �(v
i

)� �(v̄) in the martingale term. After simple manipulations, it
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follows

dz(t) = � �

N

X

1i,jN

 

ij

(t)|v
i

(t)� v

j

(t)|2 dt (6.3)

+ 2

 
NX

i=1

v̂

⇤
i

(t)(�(v
i

(t))� �(v̄(t)))

!
dw(t)

+
1

2N
Trace

0

@
X

1i,jN

(�(v
i

(t))� �(v
j

(t)))(�⇤(v
i

(t))� �

⇤(v
j

(t)))

1

A
dt ,

and

d(ln z)(t) = � �

N

X

1i,jN

 

ij

(t)
|v

i

(t)� v

j

(t)|2

z(t)
dt (6.4)

+ 2

 
NX

i=1

v̂

⇤
i

(t)(�(v
i

(t))� �(v̄(t)))

z(t)

!
dw(t)

+
1

2N
Trace

0

@
X

1i,jN

(�(v
i

(t))� �(v
j

(t)))(�⇤(v
i

(t))� �

⇤(v
j

(t)))

z(t)

1

A
dt

� 2

���
P

N

i=1 v̂

⇤
i

(t)(�(v
i

(t))� �(v̄(t)))
���
2

z

2(t)
dt .

Of course, except for the part of the drift involving the  
ij

’s, these expressions are exactly
the same as in subsection 4.1 (in a more compact form). Hence we know how to manage
each term except this part of the drift. But of course if we define

 

min

= inf
i,j,v,x

 

i,j

(v, x) and  

max

= sup
i,j,v,x

 

i,j

(v, x) , (6.5)

we may write, on one hand

E(z(t))  E(z(0))� 2� 
min

Z
t

0
E(z(s)) ds

+
1

2N

Z
t

0
Trace

0

@
X

1i,jN

(�(v
i

(s))� �(v
j

(s)))(�⇤(v
i

(s))� �

⇤(v
j

(s)))

1

A
ds

and on the other hand

E(z(t)) � E(z(0))� 2� 
max

Z
t

0
E(z(s)) ds

+
1

2N

Z
t

0
Trace

0

@
X

1i,jN

(�(v
i

(s))� �(v
j

(s)))(�⇤(v
i

(s))� �

⇤(v
j

(s)))

1

A
ds ,

so that we may argue exactly as in subsubsection 4.1 to study L2 flocking or non flocking.
Similarly, we can get an upper bound for ln(z(t)) replacing all  

ij

(t) by  
min

, and a lower
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bound if � is diagonal with linear diagonal terms as in (1.6), and argue exactly as in sub-
subsection 4.1 and theorem 2.1 (2) in order to study almost sure flocking. This yields the
following two results

Theorem 6.3. Assume that  
ij

(t) =  

ij

(v(t), x(t)) where all the functions  
ij

are locally
Lipschitz, non-negative and satisfy  

ij

=  

ji

, and that � satisfies (H2-1) i.e. is globally
K-Lipschitz. Define  

min

and  
max

as in (6.5). Then :

(1) if 2� 
min

> 4K2
d

2 the system (6.2) is almost surely and L2,2 flocking. When � is
diagonal we may replace d

2 by d, if in addition the diagonal term �

k,k(v) = �

k,k(vk)
we may replace d by 1.

(2) If � is diagonal with linear entries, i.e. �k,k(v) = D(vk � v

k

e

), the system is always
almost surely flocking provided D 6= 0.
If 2� 

max

 D

2, the system is not L2 flocking.

For (2) just remark that, when � is diagonal with linear entries, it holds

Trace

0

@
X

1i,jN

(�(v
i

(t))� �(v
j

(t)))(�⇤(v
i

(t))� �

⇤(v
j

(t)))

z(t)

1

A �

� 2

���
P

N

i=1 v̂

⇤
i

(t)(�(v
i

(t))� �(v̄(t)))
���
2

z

2(t)
 �D

2
,

so that we get almost sure flocking (looking at ln(z(t)) as soon as D 6= 0.
For the L2 non-flocking property it is enough to look at the lower bound for E(z(t)) since
the second integral is explicit for this �.

Remark 6.4. Since for positive constant communication rate the deterministic Cucker-Smale
is always flocking, the introduction of noises in the previous section only introduced in some
cases new (L2) non-flocking properties.
But here, for linear � we obtain, whatever  and the initial condition are, almost sure
flocking, so that this time the noise can help to (almost surely) flock, since for the classical
communication rate (1.2), we only know that flocking holds true for some initial conditions
in the deterministic case (D = 0) when r >

1
2 . }

Comparing swarming and flocking is also easy. Indeed, when (3.7) is satisfied, if the process
is L2,2 swarming, the local martingale term of hx

ij

, v

ij

i, given by
Z

t

0
(x⇤

i

(s)� x

⇤
j

(s)) (�(v
i

(s))� �(v
j

(s))) dw(s)

is a true L2 martingale once � is globally Lipschitz (recall that swarming means boundedness
for both the expectations of |v

i

� v

j

|2 and |x
i

� x

j

|2). In addition, it is easily seen that, if
 is bounded, condition (2) in Lemma 3.3 is satisfied under the L2,2 swarming assumption
(recall that this assumption includes sup

t

E(|v
i

(t)� v

j

(t)|2) < +1). Hence

Proposition 6.5. In the situation of theorem 6.3, assume that (3.7) is satisfied and that  
is bounded. Then L2,2 swarming implies L2,2 flocking.
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Of course (1) in theorem 6.3 is not fully satisfactory, since it is reasonable to consider models
where the communication rate decays with the distance between particles as in (1.2). Let us
consider such cases assuming that (3.7) is in force. Define

 

l

(r) = min
0ur

 (u) , (6.6)

and
T

r

= inf{s � 0 ; max
i,j

|x
i

(s)� x

j

(s)| � r} . (6.7)

Remark 6.6. Back to the deterministic model.

Assume that � = 0, hence consider the deterministic model. First of all dz(t)  0, so
that z(t)  z(0) i.e. for all (i, j), sup

t

|v
i

(t)� v

j

(t)| < +1. Hence, according to Proposition
6.5 (where one can forget all the expectations and squares), the process is flocking as soon
as sup

t

|x
i

(t)� x

j

(t)| < +1 for all (i, j). But for t  T

r

,

dz(t)  � 2� 
l

(r2) z(t)

so that z(t)  z(0) e� 2� 
l

(r2) t and

|x
i

(t)� x

j

(t)|  |x
i

(0)� x

j

(0)|+
Z

t

0
|v

i

(s)� v

j

(s)| ds

 |x
i

(0)� x

j

(0)|+
Z

t

0
z

1
2 (s) ds

 |x
i

(0)� x

j

(0)|+ z

1
2 (0)

� 

l

(r2)
(1� e

�� 

l

(r2) t) ,

i.e. for all (i, j),

sup
tT

r

|x
i

(t)� x

j

(t)|  |x
i

(0)� x

j

(0)|+ z

1
2 (0)

� 

l

(r2)
. (6.8)

In particular if for all (i, j), |x
i

(0) � x

j

(0)| + z

1
2 (0)

� 

l

(r2) < r then T

r

= +1 and the system is

flocking.
Choosing r0 = max

i,j

|x
i

(0)� x

j

(0)| and some C > 1, it is thus enough that

z

1
2 (0)  � r0 (C � 1) 

l

(C2
r

2
0) . (6.9)

We recover that if the decay to 0 of  
l

(r) is (strictly) slower than r

� 1
2 , the system is flocking

for all initial conditions (we may let C go to infinity), while if it is faster, one has to choose
the initial conditions in such a way that (6.9) (where one can optimize in C) is satisfied.
Note that we are far from the optimal conditions, but the previous approach is completely
elementary. }

In the stochastic case, for t < T

r

(which is now a random stopping time), we have (a.s.)

ln(z(t))� ln(z(0))  � (2� 
l

(r2)� 4K2
d

2) t+ ln(N(t)) , (6.10)

where
N

t

= e

M(t)� 1
2 hMi(t)
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and M

.

is a martingale whose bracket satisfies hMi(t) =
R
t

0 ↵(s) ds with |↵(t)|  4K2. Re-
mark that the remaining stochastic term is the logarithm of an exponential (true) martingale.
Of course, if

✓(r,K) = 2� 
l

(r2)� 4K2
d

2
> 0 , (6.11)

(6.10) shows that z(t) ! 0 as t ! +1 almost surely on the set {T
r

= +1}. To understand
the behavior of T

r

, write

|x
i

(t ^ T

r

)� x

j

(t ^ T

r

)|  |x
i

(0)� x

j

(0)| + z

1
2 (0)

Z
t

0
e

� (� 
l

(r2)�2K2
d

2) s
N

1
2 (s)1

s<T

r

ds .

What we have to do is to control the almost sure behavior of N(t). To this end we first prove
a lemma

Lemma 6.7. Let M(t) be a martingale satisfying hMi(t)  Ct. Define

S(a, b) = inf{t � 0 , M(t)� bhMi(t) � a} .
Then

P(S(a, b) < +1)  e

�2ab
.

Proof. We know that under our assumptions, for all ⌘ > 0, e⌘M(t)� ⌘

2

2 hMi(t) is a martingale.
Hence

E
✓
e

⌘M(t^S(a,b))� ⌘

2

2 hMi(t^S(a,b))
◆

= 1 .

Choose ⌘ = 2b. This yields

E
⇣
1
S(a,b)<+1 e

2bM(t^S(a,b))�2b2hMi(t^S(a,b))
⌘
 1 .

Using Lebesgue bounded convergence theorem we may let t go to infinity and obtain the
desired result. ⇤
Remark 6.8. If M is a standard Brownian motion, it is known that the inequality is an
equality. }

We deduce from this lemma, that with probability larger than 1� e

�2ab,

N(t)  e

a+(b� 1
2 )hMi(t)  e

a+4(b� 1
2 )K

2
t

,

so that

|x
i

(s ^ T

r

)� x

j

(s ^ T

r

)|  |x
i

(0)� x

j

(0)| + z

1
2 (0) e

a

2

� 

l

(r2)� 2K2
d

2 � 2K2(b� 1
2)

,

provided � 
l

(r2) > 2K2
d

2 + 2K2(b� 1
2).

Thus, on {S(a, b) = +1} we may let s go to infinity and get that on {T
r

< +1},

r  |x
i

(0)� x

j

(0)| + z

1
2 (0)e

a

2

� 

l

(r2)� 2K2
d

2 � 2K2(b� 1
2)

, (6.12)

which is no more random. Hence, if (6.12) is not satisfied, we have

P(T
r

= +1 , S(a, b) = +1) � 1� e

�2ab
.

We have thus obtained:
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Theorem 6.9. In the situation of theorem 6.3 assume in addition that (3.7) is in force. Let
r > 0. Let a, b > 0. Assume that

• � 

l

(r2) > 2K2(d2 + (b� 1
2)) where  l

is defined in (6.6),
• the initial condition satisfies, for all (i, j),

|x
i

(0)� x

j

(0)| + z

1
2 (0) e

a

2

� 

l

(r2)� 2K2(d2 + (b� 1
2))

< r

where z(0) =
P

N

k=1 |vk(0)� v̄(0)|2.
Then the system (6.2) is flocking with a probability larger than 1� e

�2ab.

Remark 6.10. Note that, as in Theorem 6.3, when � is diagonal, we may replace condition
� 

l

(r2) > 2K2(d2 + (b� 1
2)) by � l

(r2) > 2K2(d+ (b� 1
2)). If in addition the diagonal term

�

k,k(v) = �

k,k(vk), we may replace it by � 
l

(r2) > 2K2(1 + (b� 1
2)). }

The previous result is apparently the first one dealing with “conditional flocking” (i.e. flocking
for a subset of initial conditions) in a stochastic context (the results in [CM08] have some
similarities but are actually di↵erent since they deal with approximate flocking before some
stopping time).

Remark 6.11. Remark that when K = 0 corresponding to a constant �, we may take any
b going to infinity and a going to 0 so that ba goes to infinity. We thus obtain almost sure
flocking under the same initial conditions than for the deterministic result (in particular
for any initial condition if r 

l

(r2) ! +1 as r ! +1). This is not surprising since the
microscopic variables satisfy the deterministic system of di↵erential equations. Only the
center of mass is driven by some Brownian motion.
Also notice that when  

l

is bounded from below, we recover the almost sure statement in
Theorem 6.3, taking b = 1

2 , r = +1 and finally letting a go to infinity.
Finally remark that on T

r

= +1,  
l

is bounded from below by  
l

(r2), so that according to
(6.10) and the law of large numbers for the martingale N

t

, z(t) goes to 0 at an exponential
(random) rate (depending on sup

t

(N
t

/t)), or if one prefers, for any  < � 

l

(r2) � 2K2
d

2,
there exists a random time ⌧



such that for t > ⌧



the decay of z(t) to 0 is at least Ce

�(t�⌧


).
⌧



is simply the last time N

t

/t is bigger than � 
l

(r2)� 2K2
d

2 � . }

6.2. Study of (6.1).

Let us turn to (6.1). Looking at the calculations (5.3) we see that we can mimic what we have

just done with the following main modifications: replace 4K2
d

2 by 2(N+1)
N

2 max
i,j

k �2
i,j

k1
and for the variance of the martingale part 4K2 by 4max

i,j

k �2
i,j

k1. In the very particular
case where for all (i, j), �

ij

= � for some constant �, we can argue as in Theorem 5.1 (3).

Hence we only state a general result whose proof is left to the reader :

Theorem 6.12. Consider (6.1). Assume that the processes  
ij

(t) =  

ij

(v(t), x(t)) where all
the functions  

ij

are locally Lipschitz, non-negative and satisfy  
ij

=  

ji

, that the processes
�

i,j

(t) = �

i,j

(x(t), v(t)) where all the functions �
ij

are locally Lipschitz, bounded and satisfy
�

ij

= �

ji

. Define  
min

and  
max

as in (6.5). Then:
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(1) for all initial state (v(0), x(0)) 2 L2 the system admits a unique non-explosive
(global) strong solution.

(2) If � 
min

>

N+1
N

2 max
i,j

k �2
i,j

k1 the system is L2,2 flocking.

(3) If � 
max

<

N+1
N

2 min
i,j

inf
t�0 �

2
i,j

(t) then the system is not L2 flocking.

(4) If � 
min

>

N+1
N

2 max
i,j

k �2
i,j

k1 � 2
N

min
i,j

k �2
i,j

k1 the system is almost surely
flocking.

(5) If �
ij

= � for all pair (i, j) and some constant �, the system is always almost surely
flocking, whatever  is.

Assume in addition that  satisfies (3.7). Then

(6) if  is bounded, L2,2 swarming implies L2,2 flocking.
(7) Let r > 0, a, b > 0. Assume that

(a)

� 

l

(r2) >

✓
2b+

N + 1

N

2

◆
max
i,j

k �2
i,j

k1 � 2

N

min
i,j

inf
t�0

�

2
i,j

(t)

where  
l

is defined in (6.6),
(b) the initial condition satisfies, for all (i, j),

|x
i

(0)� x

j

(0)| + z

1
2 (0) e

a

2

� 

l

(r2)�
�
2b+ N+1

N

2

�
max

i,j

k �2
i,j

k1 + 2
N

min
i,j

inf
t�0 �

2
i,j

(t)
< r

where z(0) =
P

N

k=1 |vk(0)� v̄(0)|2.

Then the system is flocking with a probability larger than 1� e

�2ab.

Once again when � goes uniformly to 0 we recover the deterministic situation just by choosing
a and b in an appropriate way.

6.3. A simple example with N = 2 for (6.2).

The reader certainly remarked that, when � is constant in (6.2), changing v(t) into v(t) �
�w(t), the system obeys the deterministic dynamics (this is the favorite random situation
for the non probabilists). Hence in this situation, conditional flocking or non flocking holds
with probability 1, depending on the deterministic behavior.
It should be interesting to exhibit an example (even with two particles) where almost sure
flocking holds with a strictly positive probability strictly less than 1. This seems to be a hard
task. However we shall study in details simple examples to better understand what happens.
For reasons we shall explain later, we shall consider the case N = 2 and d = 1.

6.3.1. An explicit deterministic example.

Take N = 2, d = 1 and look at the deterministic system

dv1(t) = �2
v1(t)� v2(t)

1 + |x1(t)� x2(t)|2
dt

dv2(t) = �2
v2(t)� v1(t)

1 + |x1(t)� x2(t)|2
dt ,
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with an initial condition v1(0) = �v2(0), x1(0) = �x2(0). The unique solution satisfies
v1(t) = �v2(t), x1(t) = �x2(t) and the di↵erence v(t) = v1(t)� v2(t) = 2v1(t) satisfies

dv(t) = � v(t)

1 + |x(t)|2 dt

so that

v(t)� v(0) = arctan(x(0))� arctan(x(t))

and

x(t)� x(0) =

Z
t

0
(v(0) + arctan(x(0))� arctan(x(s))) ds .

We confess that we do not know how to solve the O.D.E.

x

0(t) = c� arctan(x(t)) .

Nevertheless we can study the qualitative behavior of the system. Indeed one can notice the
following points

(1) if v(0) = 0 the unique solution is v(t) = 0 and x(t) = x(0).
(2) It follows that if v(0) � 0, then the solution v(t) � 0 for all t � 0. Indeed if v(.)

reaches 0 then it is sticked at 0 according to the previous point.
If one prefers, one can also write

v(t) = v(0) e
�

R
t

0
ds

1+|x(s)|2 � v(0) e�t

.

Hence x(.) is non decreasing, so that assuming that x(0) � 0, lim
t!+1 x(t) = x(1) 

+1.

Now consider a solution such that x(0) = 0 (for simplicity) and v(0) � 0. If x(1) < +1,

since x(t)  x(1), (v)0(t)  � v(t)
1+|x(1)|2 so that v(t) ! 0 as t ! +1 at an exponential

rate. Thus, 0 = v(0) � arctan(x(1)) by letting t go to infinity. Similarly if x(1) = +1,
lim

t!+1 v(t) = v(0)� ⇡

2 � 0 since v(t) � 0.
Hence

(1) if x(0) = 0 and 0  v(0) < ⇡

2 , x(1) < +1 so that v(t) ! 0 and x(t) ! tan(v(0)),
the system is flocking,

(2) if x(0) = 0 and v(0) � ⇡

2 , x(t) ! +1 and v(t) ! v(0)� ⇡

2 , so that the system is not
flocking.

6.3.2. Back to the stochastic model.

Consider the general case with  satisfying (3.7). If we add a stochastic term such that
�(�v) = ��(v) (assuming as before that � is K-Lipschitz) we still have v1(t) = �v2(t),
x1(t) = �x2(t) and the di↵erence v(t) satisfies

dv(t) = � (|x(t)|2) v(t) dt+ 2�

✓
v(t)

2

◆
dw(t) .

Again the unique solution starting from v(0) = 0 and x(0) is v(t) = 0, x(t) = x(0), so that
using the Markov property, if v(0) � 0, v(t) � 0 for all t � 0. For simplicity again we assume



32 P. CATTIAUX, F. DELEBECQUE, AND L. PÉDÈCHES

that x(0) = 0 and v(0) > 0.
Hence, up to the first time v(.) reaches 0 (and then is sticked at 0) we may write

d(ln(v(t))) = � (|x(t)|2) dt� 2
�

2(v(t)/2)

v

2(t)
dt+ 2

�(v(t)/2)

v(t)
dw(t) . (6.13)

Here again we have

v(t) = v(0) e�
R
t

0  (|x(s)|2) ds
e

N(t)� 1
2 hNi(t) (6.14)

where N(.) is a L2 martingale, so that v(.) does not hit 0 in finite time a.s. But this
representation allows us to obtain more information. Indeed lemma 6.7 tells us that for any
a > 0,

P
✓
sup
t�0

(N(t)� 1

2
hNi(t)) � a

◆
 e

�a

.

Hence

P
✓
lim sup
t!+1

v(t) = +1
◆

 P
✓
lim sup
t!+1

(N(t)� 1

2
hNi(t)) = +1

◆
= 0 . (6.15)

We know that the martingale term in (6.13) satisfies almost surely,

lim
t!+1

1

t

Z
t

0

�(v(s)/2)

v(s)
dw(s) = 0 .

Assume that

� is of class C1 with a bounded derivative, �0(0) > 0, and �(v) > 0 for all v > 0. (6.16)

As a consequence

inf
0va

�(v)

v

= �

min

(a) > 0 .

Notice that (6.16) is satisfied in particular if �(v) � Cv for some C > 0 and all v � 0,
which is nothing else than a simple extension of the linear case, since in this case, for v � 0,
Cv  �(v)  Kv.
Now for almost all given !, lim sup v(t)(!) = v

max

(!) < +1, so that

1

t

Z
t

0

�

2(v(s)(!)/2)

v

2(s)(!)
ds � 1

4
�

2
min

(v
max

(!)/2) . (6.17)

It follows that ln(v(t)) ! �1 i.e. v(t) ! 0, and that the latter convergence is exponential

(at least e�
1
2 �

2
min

(v2
max

(!)/2) t), so that x(t) is almost surely bounded, and the system is almost
surely flocking. We have proved

Proposition 6.13. Consider (6.2) for N = 2, d = 1 with �(v) = ��(�v), and assume that
(3.7) and (6.16) are satisfied. Then the system is always almost surely flocking.

Remark 6.14. (1) In the previous proof, since we know that v(t) goes to 0, using
L’Hospital’s and Cesaro’s rules, we obtain

lim
t!+1

1

t

Z
t

0
2
�

2(v(s)/2)

v

2(s)
ds =

1

2
(�0(0))2 ,

which is no more random. But one has to be careful because this limit is not uniform
in !.
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(2) Of course what we have just done is to show (exponential) stability for some sto-
chastic di↵erential equation. Indeed, since we are in dimension 1 and the interaction
term is non-positive, we know that v(t)  u(t) where u(.) solves

du(t) = �(u(t)) dw(t) .

Our proof shows that u(t) ! 0 at an exponential rate almost surely.
(3) Assume that � is compactly supported, say by [�M,M ]. Thus, (6.16) is not

fulfilled. Take  (u) = 1
1+u

2 . If v(0) > M+ ⇡

2 , then v(.) behaves like the deterministic
model (hence stays larger than M) and does not flock. Hence in (6.16) the behavior
of �(v)/v near the origin is not su�cient to control flocking.

(4) However if we only skip the assumption �

0(0) > 0 in (6.16) and replace it by
�

0(0) = 0, the previous proof shows that lim inf
t!+1 v(t) = 0. Indeed if not we get

again a lower bound as in (6.17), by taking the minimum of �(v/2)/v on the interval
[v

min

= lim inf v(t), v
max

= lim sup v(t)].

Is it possible to get flocking while the process u(.) in (2) does not flock, that is to get an
example where the interaction  really does matter ? Here is almost one.
Choose

�(v/2) =
v

3
2

1 + v

2
.

Then if 0  v  v

max

,
v

(1 + v

2
max

)2

�

2(v2 )

v

2
 v .

Hence, since v

max

= lim sup v(t) < +1 almost surely, if
R +1
0

�

2(v(s)/2)
v

2(s) ds < +1 (resp.

= +1), sup
t

x(t) 
R +1
0 v(s) ds < +1 (resp. = +1) almost surely, so that in all cases
Z +1

0

✓
 (|x(t)|2) + 2

�

2(v(t)/2)

v

2(t)

◆
dt = +1 .

Come back to the expression (6.14). We know that e

N(t)� 1
2 hNi(t) is almost surely finite, so

that if
R +1
0  (|x(t)|2) dt = +1, v(t) ! 0. In addition, lemma 6.7 tells us that for any a > 0,

P
✓
sup
t�0

(N(t)� bhNi(t)) � a

◆
 e

�2ab
,

so that for b < 1
2 , e

N(t)�bhNi(t) is almost surely finite. Thus if

hNi(t) = 4

Z
t

0

�

2(v(s)/2)

v

2(s)
ds ! +1 ,

e

N(t)� 1
2 hNi(t) goes to 0 and so does v(t) again.

But we do not know whether sup
t

x(t) is always a.s. finite or not, so that we do not know
whether the process is flocking or not. }

Finally, in the particular case  (u) = 1
1+u

2 , if v(0) >

⇡

2 , x(0) = 0, the system is not L1

flocking. Indeed, taking the expectation (v(t) � 0) we have

E(v(t)) = v(0)� E(arctan(x(t))) � v(0)� ⇡

2
> 0 .
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So once again, Lp flocking is much more demanding.

7. Comments and simulations.

What kind of (temporary) conclusions can we draw after this study ?

(1) All the models we have discussed in the introduction (except (1.9) for which we do
not have a convincing interpretation) have their “reasonable” physical (or biological)
interpretation and at the same time su↵er potential criticism. They are only models
and certainly not a description of reality.

(2) Too independent noises destroy the collective behavior (without any politically correct
reference).

(3) Random environment depending in a certain way of the positions can also destroy
the collective behavior.

(4) Noises whose variances depend either linearly on the velocities or on the di↵erences
between velocities may help, at least at the almost sure level, to flock. But actually
in many of these situations, the communication between individuals is simply a per-
turbation of a stochastic system which is already stable (though, except in a very few
number of particular cases, one cannot reduce the study to the use of the theory of
stability of S.D.E. as detailed in the book [Mao07]).

(5) Due to the previous item, L2 flocking is presumably more convincing.

We shall now illustrate our results (and the situations that are not covered by our results)
with some simulations. First we shall consider the system (6.2)

dv

i

(t) = � �

N

NX

j=1

 

ij

(t)(v
i

(t)� v

j

(t)) dt + �(v
i

(t)) dw(t) .

In all the section we will choose

 

ij

(t) =  (|x
i

(t)� x

j

(t)|) with  (u) = (1 + u

2)�1

in dimension d = 2 with N = 9 particles and communication intensity � = 10.

We shall consider two basic sets of initial configurations (x1(0), v1(0)) and (x2(0), v2(0)) given
by x

1(0) = 0

v

1(0) =

✓
�0.4 0.2 �0.3 �0.3 �0.1 �0.2 0.2 0.5 0.2
0.4 �0.1 0.2 0.5 0.3 0.1 �0.3 0.2 0.3

◆

x

2(0) =

✓
1 0 0 0 0 0 0 0 0
�4 0 0 0 0 0 0 0 0

◆

v

2(0) =

✓
�0.3 2 �0.5 �1.5 �0.1 �0.2 1.2 0.5 1.5
0.7 �0.6 2.1 0.4 0.8 2.6 �3.4 �0.6 0.2

◆

Define z(0) =
P

N

k=1 |v
k

(0)� v̄(0)|2 and M

x

(0) = max
i,j

|x
i

(0)�x

j

(0)|. Recall the discussion
preceding (6.9) to ensure flocking starting from (x(0), v(0)), i.e. we want to find some r > 0
such that the function g defined by

g(r) = M

x

(0) +

p
z(0)

�

(1 + r

2)� r



STOCHASTIC CUCKER-SMALE 35

is negative at r. This is equivalent to the following

p
z(0) <

�

2

 r
M

x

(0)2 +
1

4
�M

x

(0)

!

and it is easy to show that the first set of initial data satisfies this condition, while the second
one does not (see Figure 1 below). In the sequel we shall use modified initial data of the form
(xi(0), ✓vi(0)) for some given ✓’s and will plot the function g to see whether the corresponding
initial data do satisfy the condition or not.

Figure 1. r 7! g(r) in case (x2(0), v2(0))

We shall now plot several simulations of the stochastic model or numerical approximations in
the deterministic case. In both cases the numerical scheme is a simple explicit Euler scheme.

On each Figure we draw the evolution in time of

t 7!
 

NX

i=1

|v
i

(t)� v̄(t)|2
! 1

2

for both the stochastic and deterministic systems. Recall that we do not have theoretical
results about the flocking property for the deterministic system once condition (6.9) is not
satisfied.

In the next Figure 2 we choose �(v) = v and initial conditions (x2(0), v2(0)). According to
Theorem 6.3 (2), we know that the stochastic system is almost surely flocking, but we do not
know about L2 flocking.

We observe that in this case the deterministic system flocks too and a reasonably quick
convergence for the stochastic system.

Next, still with �(v) = v, we change the initial configuration by choosing (x2(0), 5 v

2(0)).
In this situation we see that the deterministic system does not flock anymore, while the
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Figure 2. t 7!
⇣P

N

i=1 |v
i

(t)� v̄(t)|2
⌘ 1

2
for �(v) = v in case (x2(0), v2(0))

stochastic system almost surely flocks. In Figure 3 we plot the evolution of the velocities on
the right hand side, but also, on the left hand side, the evolution of t 7! max

i,j

|x
i

(t)� x

j

(t)|.

Figure 3. (x2(0), 5 v

2(0)) , � = v first case.

The next two figures are obtained with the same data (be careful with the vertical scale
which is not the same for each figure). The convergence to 0 in the stochastic case can
be surprisingly quick (Figure 5), very slow (Figure 4 where the fluctuation size presumably
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indicates that there is no L2 flocking) or similar to the previous case (Figure 3 where we also
observe a chaotic stabilization of the positions).

Figure 4. (x2(0), 5 v

2(0)) ,
� = v second case.

Figure 5. (x2(0), 5 v

2(0)),
� = v third case.

The next situation we want to illustrate is the one of Theorem 6.9. To this end we choose
�(vi) = 1 + sin vi for each of the two coordinates v

i of v, hence a diagonal �. Since � is
1-Lipschitz, we choose b = 1/2 and a = ln 2 so that if the initial conditions satisfy the assump-
tion in Theorem 6.9, the latter tells us that the stochastic system flocks with a probability
larger than or equal to 1

2 .

To fulfill this assumption we choose this time (x1(0), 0.1 v

1(0)) as initial conditions. We thus
know that the deterministic system is flocking. The next figure 6 plots the condition showing
that some r can be found, while figure 7 presents an example of simulation. Actually in this
case we have not been able to obtain a non-flocking stochastic simulation, showing that, for
sure, our result is far from optimal.

To observe something interesting we have to change the initial conditions and thus take
(x2(0), 3 v

2(0)). If we still have the flocking property for the deterministic model, we have
observed (as the two examples show) various cases in the stochastic setting, with or without
flocking, indicating that flocking may occur with some probability strictly larger than 0 and
strictly smaller than 1.
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Figure 6. (x1(0), 0.1 v

1(0)) condition
Figure 7. (x1(0), 0.1 v

1(0))
and � = 1 + sin(v).

Figure 8. (x2(0), 3 v

2(0)) ,
�(v) = 1 + sin(v) with flock

Figure 9. (x2(0), 3 v

2(0)) ,
�(v) = 1+sin(v) with no flock

Finally, we show some simulations when � is a function of x and no more of v. As we have
seen, this situation is completely unclear, even for a constant communication rate. This
chaotic behavior is illustrated by the final three pictures where, as before, we have drawn the
behavior of the positions on the left hand side and of the velocities on the right hand side.
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Figure 10. (x2(0), v2(0)), � = 1 + sin(x) first case

Figure 11. (x2(0), v2(0)), � = 1 + sin(x) with flock
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