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A question by H. Brezis and E. Lieb
(Brezis, Lieb (1985)) Is there a natural way to bound

Sd ‖∇u‖2L2(Rd) − ‖u‖
2
L2∗ (Rd)

from below in terms of the“distance” off from the set of optimal
[Aubin-Talenti] functions when d ≥ 3 ?

(Bianchi, Egnell 1990) There is a positive constant α such that

Sd ‖∇u‖2L2(Rd) − ‖u‖
2
L2∗ (Rd) ≥ α inf

ϕ∈M
‖∇u−∇ϕ‖2L2(Rd)

(Cianchi, Fusco, Maggi, Pratelli 2009) (also a version for
‖∇u‖pLp(Rd)) There are constants α and κ such that

Sd ‖∇u‖2L2(Rd) ≥ (1 + κλ(u)α) ‖u‖2L2∗ (Rd)

where λ(u) = infϕ∈M
{
‖u−ϕ‖2∗

L2∗ (Rd)

‖u‖2∗
L2∗ (Rd)

: ‖u‖2∗L2∗ (Rd) = ‖ϕ‖2∗L2∗ (Rd)

}
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Sobolev and Hardy-Littlewood-Sobolev
inequalities

B Stability in a weaker norm but with explicit constants
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Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in Rd, d ≥ 3,

‖u‖2L2∗ (Rd) ≤ Sd ‖∇u‖2L2(Rd) ∀ u ∈ D1,2(Rd) (1)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖2
L

2 d
d+2 (Rd)

≥
∫
Rd
v (−∆)−1v dx ∀ v ∈ L

2 d
d+2 (Rd) (2)

are dual of each other. Here Sd is the Aubin-Talenti constant and
2∗ = 2 d

d−2
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Improved Sobolev inequality by duality

Theorem

(JD, G. Jankowiak) Assume that d ≥ 3 and let q = d+2
d−2 . There exists

a positive constant C ≤ 1 such that

Sd ‖wq‖2
L

2 d
d+2 (Rd)

−
∫
Rd
wq (−∆)−1wq dx

≤ CSd ‖w‖
8
d−2
L2∗ (Rd)

[
‖∇w‖2L2(Rd) − Sd ‖w‖2L2∗ (Rd)

]
for any w ∈ D1,2(Rd)
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Proof: the completion of a square
Integrations by parts show that∫

Rd
|∇(−∆)−1 v|2 dx =

∫
Rd
v (−∆)−1 v dx

and, if v = uq with q = d+2
d−2 ,∫

Rd
∇u · ∇(−∆)−1 v dx =

∫
Rd
u v dx =

∫
Rd
u2∗ dx

Hence the expansion of the square

0 ≤
∫
Rd

∣∣∣∣Sd ‖u‖ 4
d−2
L2∗ (Rd)∇u−∇(−∆)−1 v

∣∣∣∣2 dx
shows that

0 ≤ Sd ‖u‖
8
d−2
L2∗ (Rd)

[
Sd ‖∇u‖2L2(Rd) − ‖u‖

2
L2∗ (Rd)

]
−
[
Sd ‖uq‖2

L
2 d
d+2 (Rd)

−
∫
Rd
uq (−∆)−1 uq dx

]
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ Rd (3)

If we define H(t) := Hd[v(t, ·)], with

Hd[v] :=
∫
Rd
v (−∆)−1v dx− Sd ‖v‖2

L
2 d
d+2 (Rd)

then we observe that

1
2 H′ = −

∫
Rd
vm+1 dx+ Sd

(∫
Rd
v

2 d
d+2 dx

) 2
d
∫
Rd
∇vm · ∇v

d−2
d+2 dx

where v = v(t, ·) is a solution of (3). With the choice m = d−2
d+2 , we

find that m+ 1 = 2 d
d+2

J. Dolbeault Sobolev and related inequalities
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A preliminary observation

Proposition

(JD) Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (3) with

nonnegative initial datum in L2d/(d+2)(Rd), then

1
2
d

dt

[∫
Rd
v (−∆)−1v dx− Sd ‖v‖2

L
2 d
d+2 (Rd)

]
=
(∫

Rd
vm+1 dx

) 2
d [

Sd ‖∇u‖2L2(Rd) − ‖u‖
2
L2∗ (Rd)

]
≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (1) if v is optimal for (2)

J. Dolbeault Sobolev and related inequalities
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Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d ≥ 5 for integrability reasons

Theorem

(JD) Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(
1 + 2

d

) (
1− e−d/2

)
Sd such that

Sd ‖wq‖2
L

2 d
d+2 (Rd)

−
∫
Rd
wq (−∆)−1wq dx

≤ C ‖w‖
8
d−2
L2∗ (Rd)

[
‖∇w‖2L2(Rd) − Sd ‖w‖2L2∗ (Rd)

]
for any w ∈ D1,2(Rd)
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Solutions with separation of variables
Consider the solution of ∂v∂t = ∆vm vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2

where F is the Aubin-Talenti solution of

−∆F = d (d− 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd(1 + |x|2)d+2 |v(x)|

Lemma

(M. del Pino, M. Saez), (J. L. Vázquez, J. R. Esteban, A. Rodriguez)
For any solution v with initial datum v0 ∈ L2d/(d+2)(Rd), v0 > 0,
there exists T > 0, λ > 0 and x0 ∈ Rd such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·)− 1‖∗ = 0

with v(t, x) = λ(d+2)/2 vT (t, (x− x0)/λ)

J. Dolbeault Sobolev and related inequalities



Critical Sobolev and HLS inequalities
Subcritical interpolation inequalities

Reverse Hardy-Littewood-Sobolev inequality
Duality
Yamabe flow

Improved inequality: proof (1/2)

The function J(t) :=
∫
Rd v(t, x)m+1 dx satisfies

J′ = −(m+ 1) ‖∇vm‖2L2(Rd) ≤ −
m+ 1

Sd
J1− 2

d

If d ≥ 5, then we also have

J′′ = 2m (m+ 1)
∫
Rd
vm−1 (∆vm)2 dx ≥ 0

Notice that

J′
J ≤ −

m+ 1
Sd

J− 2
d ≤ −κ with κT = 2 d

d+ 2
T

Sd

(∫
Rd
vm+1

0 dx

)− 2
d

≤ d

2

J. Dolbeault Sobolev and related inequalities
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Improved inequality: proof (2/2)
By the Cauchy-Schwarz inequality, we have

J′2

(m+ 1)2 = ‖∇vm‖4L2(Rd) =
(∫

Rd
v(m−1)/2 ∆vm · v(m+1)/2 dx

)2

≤
∫
Rd
vm−1 (∆vm)2 dx

∫
Rd
vm+1 dx = Cst J′′ J

so that Q(t) := ‖∇vm(t, ·)‖2L2(Rd)
(∫

Rd v
m+1(t, x) dx

)−(d−2)/d is
monotone decreasing, and

H′ = 2 J (Sd Q− 1) , H′′ = J′
J H′ + 2 J Sd Q′ ≤ J′

J H′ ≤ 0

H′′ ≤ −κH′ with κ = 2 d
d+ 2

1
Sd

(∫
Rd
vm+1

0 dx

)−2/d

By writing that −H(0) = H(T )−H(0) ≤ H′(0) (1− e−κT )/κ and using
the estimate κT ≤ d/2, the proof is completed �

J. Dolbeault Sobolev and related inequalities
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d = 2: Onofri’s and log HLS inequalities

H2[v] :=
∫
R2

(v − µ) (−∆)−1(v − µ) dx− 1
4π

∫
R2
v log

(
v

µ

)
dx

With µ(x) := 1
π (1 + |x|2)−2. Assume that v is a positive solution of

∂v

∂t
= ∆ log (v/µ) t > 0 , x ∈ R2

Proposition

If v = µ eu/2 is a solution with nonnegative initial datum v0 in L1(R2)
such that

∫
R2 v0 dx = 1, v0 log v0 ∈ L1(R2) and v0 logµ ∈ L1(R2),

then

d

dt
H2[v(t, ·)] = 1

16π

∫
R2
|∇u|2 dx−

∫
R2

(
e
u
2 − 1

)
u dµ

≥ 1
16π

∫
R2 |∇u|2 dx+

∫
R2 u dµ− log

(∫
R2 e

u dµ
)
≥ 0

J. Dolbeault Sobolev and related inequalities
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Another improvement

Jd[v] :=
∫
Rd
v

2 d
d+2 dx and Hd[v] :=

∫
Rd
v (−∆)−1v dx−Sd ‖v‖2

L
2 d
d+2 (Rd)

Theorem (J.D., G. Jankowiak)

Assume that d ≥ 3. Then we have

0 ≤ Hd[v] + Sd Jd[v]1+ 2
d ϕ
(

Jd[v] 2
d−1

[
Sd ‖∇u‖2L2(Rd) − ‖u‖

2
L2∗ (Rd)

])
∀u ∈ D , v = u

d+2
d−2

where ϕ(x) :=
√
C2 + 2Cx− C for any x ≥ 0

Proof: H(t) = −Y(J(t)) ∀ t ∈ [0, T ), κ0 := H′0
J0

and consider the
differential inequality

Y′
(
CSd s1+ 2

d + Y
)
≤ d+ 2

2 d Cκ0 S2
d s

1+ 4
d , Y(0) = 0 , Y(J0) = −H0

J. Dolbeault Sobolev and related inequalities
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... but C = 1 is not optimal

Theorem

(JD, G. Jankowiak) In the inequality

Sd ‖wq‖2
L

2 d
d+2 (Rd)

−
∫
Rd
wq (−∆)−1wq dx

≤ Cd Sd ‖w‖
8
d−2
L2∗ (Rd)

[
‖∇w‖2L2(Rd) − Sd ‖w‖2L2∗ (Rd)

]
we have

d

d+ 4 ≤ Cd < 1

based on a (painful) linearization

Extensions:
fractional Laplacian operator (Jankowiak, Nguyen)
Moser-Trudinger-Onofri inequality

J. Dolbeault Sobolev and related inequalities
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Subcritical interpolation inequalities
B Euclidean space: fast diffusion, entropies and improved asymptotic
expansions
Based on papers with A. Blanchet, M. Bonforte, G. Grillo,
J.L. Vázquez and papers with G. Toscani
B Sphere: explicit remainder terms based on nonlinear diffusions
Joint work with MJ. Esteban and M. Loss
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Higher order matching asymptotics
(J.D., G. Toscani) For some m ∈ (mc, 1) with mc := (d− 2)/d, we
consider on Rd the fast diffusion equation

∂u

∂τ
+∇ ·

(
u∇um−1) = 0

The strategy is easy to understand using a time-dependent rescaling
and the relative entropy formalism. Define the function v such that

u(τ, y + x0) = R−d v(t, x) , R = R(τ) , t = 1
2 logR , x = y

R

Then v has to be a solution of
∂v

∂t
+∇ ·

[
v
(
σ
d
2 (m−mc)∇vm−1 − 2x

)]
= 0 t > 0 , x ∈ Rd

with (as long as we make no assumption on R)

2σ− d2 (m−mc) = R 1−d (1−m) dR

dτ

J. Dolbeault Sobolev and related inequalities
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Refined relative entropy
Consider the family of the Barenblatt profiles

Bσ(x) := σ−
d
2
(
CM + 1

σ |x|
2) 1

m−1 ∀ x ∈ Rd (4)

Note that σ is a function of t: as long as dσ
dt 6= 0, the Barenblatt profile

Bσ is not a solution but we may still consider the relative entropy

Fσ[v] := 1
m− 1

∫
Rd

[
vm −Bmσ −mBm−1

σ (v −Bσ)
]
dx

Let us briefly sketch the strategy of our method before giving all
details
The time derivative of this relative entropy is

d

dt
Fσ(t)[v(t, ·)] = dσ

dt

(
d

dσ
Fσ[v]

)
|σ=σ(t)︸ ︷︷ ︸

choose it = 0
⇐⇒ Minimize Fσ[v] w.r.t. σ ⇐⇒

∫
Rd |x|

2Bσ dx =
∫
Rd |x|

2 v dx

+ m

m− 1

∫
Rd

(
vm−1 −Bm−1

σ(t)

) ∂v
∂t

dx

J. Dolbeault Sobolev and related inequalities
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The entropy / entropy production estimate
According to the definition of Bσ, we know that
2x = σ

d
2 (m−mc)∇Bm−1

σ

Using the new change of variables, we know that

d

dt
Fσ(t)[v(t, ·)] = −mσ(t) d2 (m−mc)

1−m

∫
Rd
v
∣∣∣∇ [vm−1 −Bm−1

σ(t)

]∣∣∣2 dx
Let w := v/Bσ and observe that the relative entropy can be written as

Fσ[v] = m

1−m

∫
Rd

[
w − 1− 1

m

(
wm − 1

)]
Bmσ dx

(Repeating) define the relative Fisher information by

Iσ[v] :=
∫
Rd

∣∣∣ 1
m− 1 ∇

[
(wm−1 − 1)Bm−1

σ

] ∣∣∣2Bσ w dx

so that d

dt
Fσ(t)[v(t, ·)] = −m (1−m)σ(t) Iσ(t)[v(t, ·)] ∀ t > 0

When linearizing, one more mode is killed and σ(t) scales out
J. Dolbeault Sobolev and related inequalities



Critical Sobolev and HLS inequalities
Subcritical interpolation inequalities

Reverse Hardy-Littewood-Sobolev inequality
Fast diffusion equations and best matching on Rd
Improved interpolation inequalities on the sphere

Improved rates of convergence

Theorem (J.D., G. Toscani)

Let m ∈ (m̃1, 1), d ≥ 2, v0 ∈ L1
+(Rd) such that vm0 , |y|2 v0 ∈ L1(Rd)

E[v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

where
γ(m) =


((d−2)m−(d−4))2

4 (1−m) if m ∈ (m̃1, m̃2]

4 (d+ 2)m− 4 d if m ∈ [m̃2,m2]

4 if m ∈ [m2, 1)

J. Dolbeault Sobolev and related inequalities



Critical Sobolev and HLS inequalities
Subcritical interpolation inequalities

Reverse Hardy-Littewood-Sobolev inequality
Fast diffusion equations and best matching on Rd
Improved interpolation inequalities on the sphere

Spectral gaps and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

(A. Blanchet, M. Bonforte, J.D., G. Grillo, J.-L. Vázquez)
J. Dolbeault Sobolev and related inequalities
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Best matching Barenblatt profiles

(Repeating) Consider the fast diffusion equation

∂u

∂t
+∇ ·

[
u
(
σ
d
2 (m−mc)∇um−1 − 2x

)]
= 0 t > 0 , x ∈ Rd

with a nonlocal, time-dependent diffusion coefficient

σ(t) = 1
KM

∫
Rd
|x|2 u(x, t) dx , KM :=

∫
Rd
|x|2B1(x) dx

where
Bλ(x) := λ−

d
2
(
CM + 1

λ |x|
2) 1

m−1 ∀ x ∈ Rd

and define the relative entropy

Fλ[u] := 1
m− 1

∫
Rd

[
um −Bmλ −mBm−1

λ (u−Bλ)
]
dx

J. Dolbeault Sobolev and related inequalities
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Three ingredients for global improvements
1 infλ>0 Fλ[u(x, t)] = Fσ(t)[u(x, t)] so that

d

dt
Fσ(t)[u(x, t)] = −Jσ(t)[u(·, t)]

where the relative Fisher information is

Jλ[u] := λ
d
2 (m−mc) m

1−m

∫
Rd
u
∣∣∇um−1 −∇Bm−1

λ

∣∣2 dx
2 In the Bakry-Emery method, there is an additional (good) term

4
[

1 + 2Cm,d
Fσ(t)[u(·, t)]

Mγ σ
d
2 (1−m)
0

]
d

dt

(
Fσ(t)[u(·, t)]

)
≥ d

dt

(
Jσ(t)[u(·, t)]

)
3 The Csiszár-Kullback inequality is also improved

Fσ[u] ≥ m

8
∫
Rd B

m
1 dx

C2
M‖u−Bσ‖2L1(Rd)

J. Dolbeault Sobolev and related inequalities
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improved decay for the relative entropy

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

t !→ f(t) e4t f (0)

t

(a)

(b)

(c)

Figure: Upper bounds on the decay of the relative entropy:
t 7→ f(t) e4t/f(0) (a): estimate given by the entropy-entropy production
method
(b): exact solution of a simplified equation
(c): numerical solution (found by a shooting method)

J. Dolbeault Sobolev and related inequalities
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A Csiszár-Kullback(-Pinsker) inequality

Let m ∈ (m̃1, 1) with m̃1 = d
d+2 and consider the relative entropy

Fσ[u] := 1
m− 1

∫
Rd

[
um −Bmσ −mBm−1

σ (u−Bσ)
]
dx

Theorem

Let d ≥ 1, m ∈ (m̃1, 1) and assume that u is a nonnegative function in
L1(Rd) such that um and x 7→ |x|2 u are both integrable on Rd. If
‖u‖L1(Rd) = M and

∫
Rd |x|

2 u dx =
∫
Rd |x|

2Bσ dx, then

Fσ[u]
σ
d
2 (1−m)

≥ m

8
∫
Rd B

m
1 dx

(
CM‖u−Bσ‖L1(Rd) + 1

σ

∫
Rd
|x|2 |u−Bσ| dx

)2

J. Dolbeault Sobolev and related inequalities
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An improved Gagliardo-Nirenberg inequality: setting
The inequality

‖f‖L2 p(Rd) ≤ CGN
p,d ‖∇f‖θL2(Rd) ‖f‖

1−θ
Lp+1(Rd)

with θ = θ(p) := p−1
p

d
d+2−p (d−2) , 1 < p ≤ d

d−2 if d ≥ 3 and 1 < p <∞
if d = 2, can be rewritten, in a non-scale invariant form, as∫

Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx ≥ Kp,d

(∫
Rd
|f |2 p dx

)γ
with γ = γ(p, d) := d+2−p (d−2)

d−p (d−4) . Optimal function are given by

fM,y,σ(x) = 1
σ
d
2

(
CM + |x− y|

2

σ

)− 1
p−1

∀ x ∈ Rd

where CM is determined by
∫
Rd f

2 p
M,y,σ dx = M

Md :=
{
fM,y,σ : (M,y, σ) ∈Md := (0,∞)× Rd × (0,∞)

}
J. Dolbeault Sobolev and related inequalities
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An improved Gagliardo-Nirenberg inequality
Relative entropy functional

R(p)[f ] := inf
g∈M(p)

d

∫
Rd

[
g1−p (|f |2 p − g2 p)− 2 p

p+1
(
|f |p+1 − gp+1)] dx

Theorem

Let d ≥ 2, p > 1 and assume that p < d/(d− 2) if d ≥ 3. If∫
Rd |x|

2 |f |2 p dx(∫
Rd |f |2 p dx

)γ = d (p−1)σ∗Mγ−1
∗

d+2−p (d−2) , σ∗(p) :=
(

4 d+2−p (d−2)
(p−1)2 (p+1)

) 4 p
d−p (d−4)

for any f ∈ Lp+1 ∩D1,2(Rd), then we have∫
Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx−Kp,d

(∫
Rd
|f |2 p dx

)γ
≥ Cp,d

(
R(p)[f ]

)2(∫
Rd |f |2 p dx

)γ
By Csiszár-Kullback: control of

∥∥|f |2 p − g2 p
∥∥4

L1(Rd)
J. Dolbeault Sobolev and related inequalities
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Best matching Barenblatt profiles are delayed

Let u be such that

v(τ, x) = µd

R(D τ)d u
(

1
2 logR(D τ), µ x

R(D τ)

)
with τ 7→ R(τ) given as the solution to

1
R

dR

dτ
=
(
µ2

KM

∫
Rd
|x|2 v(τ, x) dx

)− d2 (m−mc)

, R(0) = 1

Then
1
R

dR

dτ
=
[
R2(τ)σ

(
1
2 logR(D τ)

)]− d2 (m−mc)

that is R(τ) = R0(τ) ≤ R0(τ) where 1
R
dR0
dτ =

(
R2

0(τ)σ (0)
)− d2 (m−mc)

and asymptotically as τ →∞, R(τ) = R0(τ − δ) for some delay δ > 0

J. Dolbeault Sobolev and related inequalities
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The interpolation inequalities on Sd

On the d-dimensional sphere, let us consider the interpolation
inequality

‖∇u‖2L2(Sd) + d

p− 2 ‖u‖
2
L2(Sd) ≥

d

p− 2 ‖u‖
2
Lp(Sd) ∀u ∈ H1(Sd, dµ)

where the measure dµ is the uniform probability measure on
Sd ⊂ Rd+1 corresponding to the measure induced by the Lebesgue
measure on Rd+1, and the exposant p ≥ 1, p 6= 2, is such that

p ≤ 2∗ := 2 d
d− 2

if d ≥ 3. We adopt the convention that 2∗ =∞ if d = 1 or d = 2. The
case p = 2 corresponds to the logarithmic Sobolev inequality

‖∇u‖2L2(Sd) ≥
d

2

∫
Sd
|u|2 log

(
|u|2

‖u‖2L2(Sd)

)
dµ ∀u ∈ H1(Sd, dµ) \ {0}
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The Bakry-Emery method
Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ−

(∫
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖L1(Sd)

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

Bakry-Emery (carré du champ) method: use the heat flow
∂ρ

∂t
= ∆ρ

and compute d
dtEp[ρ] = − Ip[ρ] and d

dtIp[ρ] ≤ − d Ip[ρ] to get

d

dt
(Ip[ρ]− dEp[ρ]) ≤ 0 =⇒ Ip[ρ] ≥ dEp[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2

J. Dolbeault Sobolev and related inequalities
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The evolution under the fast diffusion flow
To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm . (5)

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p ∈ [1, 2∗]

Kp[ρ] := d

dt

(
Ip[ρ]− dEp[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Improved interpolation inequalities in the sphere
Let

λ? := inf
v ∈ H1

+(Sd, dµ)∫
Sd v dµ = 1∫

Sd x |v|
p dµ = 0

∫
Sd (∆v)2 dµ∫
Sd |∇v|2 ν dµ

> d

and consider the inequality∫
Sd
|∇f |2 ν dµ+ λ

p− 2 ‖f‖
2
2 ≥

λ

p− 2 ‖f‖
2
p

∀ f ∈ H1(Sd, dµ) s.t.
∫
Sd
x |f |p dµ = 0

Proposition

For any p ∈ (2, 2#), the inequality holds with

λ ≥ d+ (d− 1)2

d (d+ 2) (2# − p) (λ? − d)

J. Dolbeault Sobolev and related inequalities
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p = 2: the logarithmic Sobolev case

λ? = d+ 2 (d+ 2)
2 (d+ 3) +

√
2 (d+ 3) (2 d+ 3)

Proposition

Let d ≥ 2. For any u ∈ H1(Sd, dµ) \ {0} such that
∫
Sd x |u|

2 dµ = 0,
we have ∫

Sd
|∇u|2 dµ ≥ δ

2

∫
Sd
|u|2 log

(
|u|2

‖u‖22

)
dµ

with δ := d+ 2
d

4 d−1
2 (d+3)+

√
2 (d+3) (2 d+3)
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Stability under antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(−x) = u(x) ∀x ∈ Sd

Theorem

If p ∈ (1, 2) ∪ (2, 2∗), we have∫
Sd
|∇u|2 dµ ≥ d

p− 2

[
1 + (d2 − 4) (2∗ − p)

d (d+ 2) + p− 1

](
‖u‖2Lp(Sd) − ‖u‖

2
L2(Sd)

)
for any u ∈ H1(Sd, dµ) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality∫

Sd
|∇u|2 dµ ≥ d

2
(d+ 3)2

(d+ 1)2

∫
Sd
|u|2 log

(
|u|2

‖u‖2L2(Sd)

)
dµ
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The optimal constant in the antipodal framework

æ

æ
æ

æ

æ

1.5 2.0 2.5 3.0

6

7

8

9

10

11

12

Numerical computation of the optimal constant when d = 5 and
1 ≤ p ≤ 10/3 ≈ 3.33. The limiting value of the constant is numerically
found to be equal to λ? = 21−2/p d ≈ 6.59754 with d = 5 and p = 10/3
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Reverse Hardy-Littewood-Sobolev inequality
Joint work with J. A. Carrillo, M. G. Delgadino, R. Frank,
F. Hoffmann
B A family of inequalities
B Existence of minimizers and relaxation
B No concentration and regularity of measure valued minimizers
B Free Energy
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The reverse HLS inequality
For any λ > 0 and any measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
∫∫

RN×RN
|x− y|λ ρ(x) ρ(y) dx dy

N ≥ 1 , 0 < q < 1 , α := 2N − q (2N + λ)
N (1− q)

Convention: ρ ∈ Lp(RN ) if
∫
RN |ρ(x)|p dx for any p > 0

Theorem

Iλ[ρ] ≥ CN,λ,q

(∫
RN

ρ(x) dx
)α(∫

RN
ρ(x)q dx

)(2−α)/q
(6)

holds for any ρ ∈ L1
+ ∩ Lq(RN ) with CN,λ,q > 0 if and only if

q > N/(N + λ)
If either N = 1, 2 or if N ≥ 3 and q ≥ min

{
1− 2/N , 2N/(2N + λ)

}
,

then there is a radial nonnegative optimizer ρ ∈ L1 ∩ Lq(RN )

J. Dolbeault Sobolev and related inequalities
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0
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The conformally invariant case q = 2N/(2N + λ)

Iλ[ρ] =
∫∫

RN×RN
|x− y|λ ρ(x) ρ(y) dx dy ≥ CN,λ,q

(∫
RN

ρ(x)q dx
)2/q

2N/(2N + λ) ⇐⇒ α = 0

(Dou, Zhu 2015) (Ngô, Nguyen 2017)

The optimizers are given, up to translations, dilations and
multiplications by constants, by

ρ(x) =
(
1 + |x|2

)−N/q ∀x ∈ RN

and the value of the optimal constant is

CN,λ,q(λ) = 1
π
λ
2

Γ
(
N
2 + λ

2
)

Γ
(
N + λ

2
) ( Γ(N)

Γ
(
N
2
))1+ λ

N
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0. The
plain, red curve is the conformally invariant case
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A Carlson type inequality

Lemma

Let λ > 0 and N/(N + λ) < q < 1

(∫
RN

ρ dx

)1−N (1−q)
λ q

(∫
RN
|x|λ ρ(x) dx

)N (1−q)
λ q

≥ cN,λ,q
(∫

RN
ρq dx

) 1
q

cN,λ,q = 1
λ

(
(N+λ) q−N

q

) 1
q
(

N (1−q)
(N+λ) q−N

)N
λ

1−q
q

(
Γ(N2 ) Γ( 1

1−q )
2π

N
2 Γ( 1

1−q−
N
λ ) Γ(Nλ )

) 1−q
q

Equality is achieved if and only if

ρ(x) =
(
1 + |x|λ

)− 1
1−q

up to translations, dilations and constant multiples)

(Carlson 1934) (Levine 1948)
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An elementary proof of Carlson’s inequality

∫
{|x|<R}

ρq dx ≤
(∫

RN
ρ dx

)q
|BR|1−q = C1

(∫
RN

ρ dx

)q
RN (1−q)

and∫
{|x|≥R}

ρq dx ≤
(∫

RN
|x|λ ρ(x) dx

)q (∫
{|x|≥R}

|x|−
λ q

1−q dx

)1−q

= C2

(∫
RN
|x|λ ρ(x) dx

)q
R−λq+N (1−q)

and optimize over R > 0
... existence of a radial monotone non-increasing optimal function;
rearrangement; Euler-Lagrange equations
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Proposition

Let λ > 0. If N/(N + λ) < q < 1, then CN,λ,q > 0

By rearrangement inequalities: prove the reverse HLS inequality for
symmetric non-increasing ρ’s so that∫

RN
|x− y|λρ(y) dx ≥

∫
RN
|x|λ ρ(x) dx for all x ∈ RN

implies
Iλ[ρ] ≥

∫
RN
|x|λ ρ(x) dx

∫
RN

ρ dx

In the range N
N+λ < q < 1

Iλ[ρ](∫
RN ρ(x) dx

)α ≥ (∫
RN

ρ dx dx

)1−α ∫
RN
|x|λ ρ(x) dx

≥ c2−αN,λ,q

(∫
RN

ρq dx

) 2−α
q

and conclude with Carlson’s inequality
J. Dolbeault Sobolev and related inequalities
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The case q = 2

Corollary

Let λ = 2 and N/(N + 2) < q < 1. Then the optimizers for (6) are
given by translations, dilations and constant multiples of

ρ(x) =
(
1 + |x|2

)− 1
1−q

and the optimal constant is

CN,2,q = 1
2 c

2 q
N (1−q)
N,2,q

By rearrangement inequalities it is enough to prove (7) for symmetric
non-increasing ρ’s, and so

∫
RN xρ(x) dx = 0. Therefore

I2[ρ] = 2
∫
RN

ρ(x) dx
∫
RN
|x|2ρ(x) dx

and the optimal function is optimal for Carlson’s inequality
J. Dolbeault Sobolev and related inequalities
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0. The
dashed, red curve is the threshold case q = N/(N + λ)
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The threshold case q = N/(N + λ) and below

Proposition

Let λ > 0. If 0 < q ≤ N/(N + λ), then CN,λ,q = 0

Let ρ ≥ 0 be bounded with compact support, σ ≥ 0 a smooth function
with

∫
RN σ(x) dx = 1 and

ρε(x) := ρ(x) +M ε−N σ(x/ε)
Then

∫
RN ρε(x) dx =

∫
RN ρ(x) dx+M and, by simple estimates,∫

RN
ρε(x)q dx→

∫
RN

ρ(x)q dx as ε→ 0+ (7)

and
Iλ[ρε]→ Iλ[ρ] + 2M

∫
RN
|x|λ ρ(x) dx as ε→ 0+

If 0 < q < N/(N + λ), i.e., α > 1, take ρε as a trial function,

CN,λ,q ≤
Iλ[ρ] + 2M

∫
RN |x|

λ ρ(x) dx(∫
RN ρ(x) dx+M

)α (∫
RN ρ(x)q dx

)(2−α)/q =: Q[ρ,M ] (8)

and let M → +∞
J. Dolbeault Sobolev and related inequalities
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The threshold case: If α = 1, i.e., q = N/(N + λ), by taking the limit
as M → +∞, we obtain

CN,λ,q ≤
2
∫
RN |x|

λ ρ(x) dx(∫
RN ρ(x)q dx

)(2−α)/q

For any R > 1, we take

ρR(x) := |x|−(N+λ)
11≤|x|≤R(x)

Then ∫
RN
|x|λ ρR dx =

∫
RN

ρqR dx =
∣∣SN−1∣∣ logR

and, as a consequence,∫
RN |x|

λ ρR(x) dx(∫
RN ρ

N/(N+λ)
R dx

)(N+λ)/N =
(∣∣SN−1∣∣ logR

)−λ/N → 0 as R→∞

This proves that CN,λ,q = 0 for q = N/(N + λ)
J. Dolbeault Sobolev and related inequalities
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A relaxed inequality

Iλ[ρ]+2M
∫
RN |x|

λ ρ(x) dx ≥ Crel
N,λ,q

(∫
RN ρ(x) dx+M

)α (∫
RN ρ(x)q dx

) 2−α
q

with q > N/(N + λ). Let

Crel
N,λ,q := inf

{
Q[ρ,M ] : 0 ≤ ρ ∈ L1 ∩ Lq(RN ) , ρ 6≡ 0 , M ≥ 0

}
We know that Crel

N,λ,q ≤ CN,λ,q by restricting the minimization to
M = 0. On the other hand, Crel

N,λ,q ≥ CN,λ,q with appropriate test
functions:

Crel
N,λ,q = CN,λ,q

Lemma

Let λ > 0 and N/(N + λ) < q < 1. If ρ ≥ 0 is an optimal function for
either Crel

N,λ,q (for an M ≥ 0) or CN,λ,q (with M = 0), then ρ is radial
(up to a translation), monotone non-increasing and positive almost
everywhere on RN
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Regularity of the minimizers

Proposition

Let N ≥ 1, λ > 0 and N/(N + λ) < q < 2N/(2N + λ)Let (ρ∗,M∗) be
a minimizer for Crel

N,λ,q. Then the following holds:
1 If

∫
RN ρ∗ dx >

α
2

Iλ[ρ∗]∫
RN
|x|λ ρ∗(x) dx

, then M∗ = 0, and ρ∗ is bounded

ρ∗(0) =
(

(2−α)Iλ[ρ∗]
∫
RN

ρ∗ dx(∫
RN

ρq∗ dx
)(

2
∫
RN
|x|λ ρ∗(x) dx

∫
RN

ρ∗ dx−αIλ[ρ∗]
)) 1

1−q

2 If
∫
RN ρ∗ dx = α

2
Iλ[ρ∗]∫

RN
|x|λ ρ∗(x) dx

, then M∗ = 0 and ρ∗(0) =∞

3 If
∫
RN ρ∗ dx <

α
2

Iλ[ρ∗]∫
RN
|x|λ ρ∗(x) dx

, then ρ∗(0) =∞ and

M∗ =
α Iλ[ρ∗]−2

∫
RN
|x|λ ρ∗(x) dx

∫
RN

ρ∗ dx

2 (1−α)
∫
RN
|x|λ ρ∗(x) dx

> 0
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Regularity of the measure valued minimizers

Lemma

Let N ≥ 1, λ > 0 and N/(N + λ) < q < 1. Let (ρ∗,M∗) be a
minimizer for Crel

N,λ,q if q < 2N/(2N + λ) or let ρ∗ be a minimizer for
CN,λ,q if q ≥ 2N/(2N + λ). Assume that ρ∗ is unbounded. If λ < 2,
there is a c > 0 such that for all sufficiently small x ∈ RN ,

ρ∗(x) ≥ c |x|−λ/(1−q)

and if λ ≥ 2, there is a C > 0 such that

ρ∗(x) = C |x|−2/(1−q) (1 + o(1)
)

as x→ 0
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N = 4, region of the parameters (λ, q) for which CN,λ,q > 0 has a
bounded optimizer
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A mean-field evolution equation and the free energy

Let us consider
∂tρ = ∆ρq + ∇ · (ρ∇Wλ ∗ ρ)

where kernel Wλ(x) := 1
λ |x|

λ and the free energy functional

F[ρ] := − 1
1− q

∫
RN

ρq dx+ 1
2λ Iλ[ρ]

the equation conserves the mass and

d

dt
F[ρ(t, ·)] = −

∫
RN

ρ
∣∣∣ q

1−q∇ρ
q−1 −∇Wλ ∗ ρ

∣∣∣2 dx
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Boundedness of the free energy

Theorem

The free energy F is bounded from below on P(RN ) if and only if
q > N/(N + λ). If q > N/(N + λ), then there exists a global
minimizer µ∗ ∈ P(RN ) and, modulo translations, it has the form

µ∗ = (1− a) δ0 + a ρ∗

for some a ∈ (0, 1]. Moreover ρ∗ ∈ P(RN ) ∩ Lq(RN ) is radially
symmetric, non-increasing modulo translations and such that∫
RN ρ∗(x) dx = 1

If a = 1, then ρ∗ is an optimizer of (6). Conversely, if
ρ ∈ L1

+ ∩ Lq(RN ) is an optimizer of (6) with mass M > 0, then ρ/M
is a global minimizer of F on P(RN )

Finally, if either max
{
N/(N + λ), (N − 1)/N

}
< q < 1 and λ ≥ 1, or

N/(N + λ) < q < 1 and 2 ≤ λ ≤ 4, then the global minimizer µ∗ is
unique up to translation
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