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Gaussian isoperimetric inequality

Gauss space is R" with measure
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for every E C R”". It is a probability measure, y(R") = 1

Gaussian surface measure or Gaussian perimeter
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when E sufficiently regular. We will use the notation



Gaussian 1soperimetric inequality

Among all sets with given Gaussian measure, the half-space has the
smallest Gaussian perimeter.



Some notation
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Some other notation
e H,;, ={xeR':x w<s}, wesS!
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Observe that in every dimension

YHys) = (s)  and  Py(Hu) =2
Theorem (Gaussian isoperimetric inequality)
For every set E C R" with v(E) = ¢(s) it holds
D
P,(E) > e /2
and the equality holds if and only if E = H,, ; for some w € st=1

A lot of proofs... Sudakov-Tsirelson (1974), Borell (1975),
Carlen-Kerce (2001). The latter characterizes the extemals.



Symmetric case

The half-space is not symmetric. So a natural question is this.

Question: “Among all sets with given Gaussian measure, what is the
symmetric set with the smallest Gaussian perimeter?”

Easy question, hard answer: at the moment we have no a precise idea
about the possible shape of the solution. One of the main difficulties is
that symmetrization techniques fail (I mean, we failed in using them).

We go along a different path...



Stability

Question: How much is positive the following quantity?

P’Y(E) = e—sz/z



Theorem (Cianchi-Fusco-Maggi-Pratelli (2011))
For every set E C R" with v(E) = ¢(s) it holds

P,(E)— e 2 > ¢,  a(E)?

for some constant c,, ; depending both on the dimension n and the
volume ¢(s). Here a(E) := min,,— Y(EAH,, ;)
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Theorem (Cianchi-Fusco-Maggi-Pratelli (2011))
For every set E C R" with v(E) = ¢(s) it holds
P,(E)— e ? > ¢,y a(E)?

for some constant c,, ; depending both on the dimension n and the
volume ¢(s). Here a(E) := min,,—; 7(EAH,, ;)

+ The decay rate is sharp.

- The constant should not depend on the dimension
(here ~ 2™).



Theorem (Mossel-Neeman (2013))
For every set E C R" with v(E) = ¢(s) holds

P(E) — e '/* > ¢, a(E)*

for some constant cg depending only on the volume ¢(s).

- The decay rate is not sharp.

+ The constant does not depend on the dimension.



Theorem (Eldan (2015))
For every set E C R" with v(E) = ¢(s) holds

P(E) — e™*/* > ¢, B(E)|log B(E)| "

for some constant ¢y depending only on the volume o(s). Here

B(E) := miny,,_; |b(E) — b(H,s)| and b(E) := [, xdy.

The asymmetry [ is stronger since it controls the standard « as

o(E)’.
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Theorem (B-Brancolini-Julin (2017))
For every set E C R" with v(E) = ¢(s) holds
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for some absolute constant c.

+ The decay rate is sharp.
+ The constant does not depend on the dimension.

+ The dependence on the volume is optimal.



Theorem (B-Brancolini-Julin (2017))
For every set E C R" with v(E) = ¢(s) holds

PE)—e /2> °

>~ B(E)

for some absolute constant c.

+ The decay rate is sharp.
+ The constant does not depend on the dimension.
+ The dependence on the volume is optimal.

- The constant c is not sharp.



The barycenter

The half-space maximizes the lenght of the barycenter: if
V(E) = ¢(s), then

by = |b(Hw,s)| > |b(E)|

Moreover the asymmetry 3(E) is not obtained via a minimum
problem.

B(E) := by — |b(E)].



A new approach

We consider the functional
F(E) = Py(E) + e/7/2Ib(E)?,  ~(E) = ¢(s)

Remark

In minimizing F the two terms P.(E) and |b(E)| are in competition.
Minimizing P~(E) means to push the set E at infinity in one direction,
so that it becomes closer to a half-space. On the other hand,
minimizing |b(E)| means to balance the volume of E with respect to
the origin. For € small enough the perimeter term overcomes the
barycenter, and the only minimizers of F are the half-spaces H,,, ;.



Old result

Theorem (B-Brancolini-Julin (2017))

The only minimizers of the functional F are the half-spaces when
when € > 0 is small.



Old result

Theorem (B-Brancolini-Julin (2017))

The only minimizers of the functional F are the half-spaces when
when € > 0 is small.

Question: “What does it happen when ¢ is not longer small? Does the
barycenter term win?”



Some other notation
e Dy i={xeR": [x-w| <a(s)}, weS,
where a(s) is chosen such that y(D,, 5) = ¢(s)

The asymptotic behavior for s going to 400

a(s) =s+ % +o(1/s).



New result

Theorem (B-Julin (2018))

There exists so > 0 such that the following holds: when s > sg there is
a threshold e such that for € € [0,¢e;) the minimizer of F under
volume constraint y(E) = ¢(s) is the half-space H,, s, while for

€ € (&y,00) the minimizer is the symmetric strip D, .

g is the unique value of ¢ for which 7 (H,, ;) = F (D). The
asymptotic behavior is

\/;_”e‘f (1+o(1)).
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The first answer

Since symmetric sets have barycenter zero, we have the solution for
the symmetric Gaussian problem (when the volume is close to one).

Corollary

There exists so > 0 such that for s > s it holds

als 1 .S
PE) > 2% = (1+= 2 +o(1/)e s,

for any symmetric set E with volume v(E) = ¢(s), and the equality
holds if and only if E = D, s for some w & st



The second answer

We have also the optimal constant in the quantitative Gaussian
isoperimetric inequality (when the volume is close to one).

Corollary

There exists so > 0 such that for s > s it holds
P,(E) — e™/? > c,B(E),

for every set E with volume ~(E) = ¢(s). The optimal constant is
given by

In2
¢ = V2r &2 (Py(Du) = Po(Hus)) = V21— +0(1/5%).



The proof:

The proof is based on a dimensional reduction.

When the vector w is orthogonal to the barycenter, then the function
V,, has zero average and the second variation of F provides the
inequality
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If the second term is small enough, then v, = 0 and E is constant in
that direction. But “is it small enough?”



By using Cauchy-Schwarz inequality, we may estimate the second
term by
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and then, by the Eulero equation,
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By using Cauchy-Schwarz inequality, we may estimate the second
term by
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and then, by the Eulero equation,

9

V21 JorE

8
2 n—1 2 n—1
xpdHy < < ]éE V2 dH

Ops, it is larger than one! :(
And we cannot shrink .



From n to 2

No panic: all fine for n — 2 directions!
For these directions

€ 63

So the problem is 2-dimensional.
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A bit painfull, however...

From 2 to 1
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Future, maybe...

Conjecture (1)

The solution of the symmetric problem is a cylinder BX x R"=*, or its
complement, for some k depending on the volume and on the
dimension. Here B* denotes the k-dimensional ball with radius r.

Conjecture (2)

The minimizers of F are symmetric for any volume (tuning €).
Moreover, they should be finite-dimensional (with the dimension
depending on the volume).



