Stability of the Gaussian Isoperimetric Problem

Marco Barchiesi

Università di Napoli Federico II

Toulose – June 2018

- Symmetry of minimizers of a Gaussian isoperimetric problem with Vesa Julin
- Sharp dimension free quantitative estimates for the gaussian isoperimetric inequality, *Ann. Probab.* (2017)
 with Vesa Julin and Alessio Brancolini

http://cvgmt.sns.it/people/barchiesi/

Gaussian isoperimetric inequality

Gauss space is \mathbb{R}^n with measure

$$\gamma(E) := \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{E} e^{-\frac{|x|^{2}}{2}} dx$$

for every $E \subset \mathbb{R}^n$. It is a probability measure, $\gamma(\mathbb{R}^n) = 1$. Gaussian surface measure or Gaussian perimeter

$$P_{\gamma}(E) := \frac{1}{(2\pi)^{\frac{n-1}{2}}} \int_{\partial E} e^{-\frac{|x|^2}{2}} d\mathcal{H}^{n-1}(x)$$

when E sufficiently regular. We will use the notation

$$\mathcal{H}_{\gamma}^{n-1}=e^{-\frac{|x|^2}{2}}\mathcal{H}^{n-1}.$$

Gaussian isoperimetric inequality

Among all sets with given Gaussian measure, the half-space has the smallest Gaussian perimeter.

Some notation

•
$$H_{\omega,s} := \{ x \in \mathbb{R}^n : x \cdot \omega < s \}, \quad \omega \in \mathbb{S}^{n-1}$$

$$\bullet \ \phi(s) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{s} e^{-\frac{t^2}{2}} dt.$$

S

Some other notation

- $H_{\omega,s} := \{ x \in \mathbb{R}^n : x \cdot \omega < s \}, \quad \omega \in \mathbb{S}^{n-1}$
- $\phi(s) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{s} e^{-\frac{t^2}{2}} dt$.

Observe that in every dimension

$$\gamma(H_{\omega,s}) = \phi(s)$$
 and $P_{\gamma}(H_{\omega,s}) = e^{-s^2/2}$.

Theorem (Gaussian isoperimetric inequality)

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ it holds

$$P_{\gamma}(E) \ge e^{-s^2/2},$$

and the equality holds if and only if $E = H_{\omega,s}$ for some $\omega \in \mathbb{S}^{n-1}$.

A lot of proofs... Sudakov-Tsirelson (1974), Borell (1975), Carlen-Kerce (2001). The latter characterizes the externals.

Symmetric case

The half-space is not symmetric. So a natural question is this.

Question: "Among all sets with given Gaussian measure, what is the symmetric set with the smallest Gaussian perimeter?"

Easy question, hard answer: at the moment we have no a precise idea about the possible shape of the solution. One of the main difficulties is that symmetrization techniques fail (I mean, we failed in using them).

We go along a different path...

Stability

Question: How much is positive the following quantity?

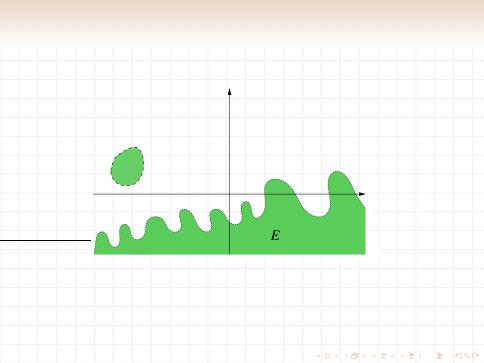
$$P_{\gamma}(E) - e^{-s^2/2}$$

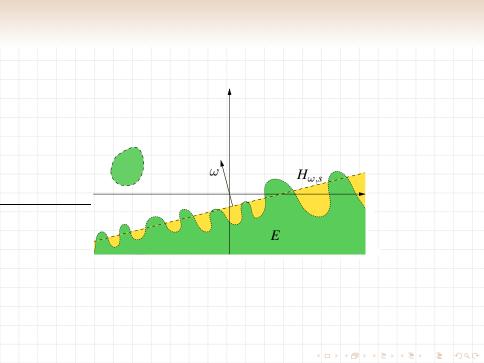
Theorem (Cianchi-Fusco-Maggi-Pratelli (2011))

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ it holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge c_{n,s} \alpha(E)^2$$

for some constant $c_{n,s}$ depending both on the dimension n and the volume $\phi(s)$. Here $\alpha(E) := \min_{|\omega|=1} \gamma(E\Delta H_{\omega,s})$





Theorem (Cianchi-Fusco-Maggi-Pratelli (2011))

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ it holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge c_{n,s} \alpha(E)^2$$

for some constant $c_{n,s}$ depending both on the dimension n and the volume $\phi(s)$. Here $\alpha(E) := \min_{|\omega|=1} \gamma(E\Delta H_{\omega,s})$

- + The decay rate is sharp.
- The constant should not depend on the dimension (here $\sim 2^n$).

Theorem (Mossel-Neeman (2013))

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge c_s \alpha(E)^{4+\varepsilon}$$

for some constant c_s depending only on the volume $\phi(s)$.

- The decay rate is not sharp.
- + The constant does not depend on the dimension.

Theorem (Eldan (2015))

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge c_s \,\beta(E) \big| \log \beta(E) \big|^{-1}$$

for some constant c_s depending only on the volume $\phi(s)$. Here $\beta(E) := \min_{|\omega|=1} |b(E) - b(H_{\omega,s})|$ and $b(E) := \int_E x \, d\gamma$.

The asymmetry β is stronger since it controls the standard α as

$$\beta(E) \ge \frac{e^{\frac{s^2}{2}}}{4} \alpha(E)^2.$$

Theorem (B-Brancolini-Julin (2017))

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge \frac{c}{1 + s^2} \beta(E)$$

for some absolute constant c.

- + The decay rate is sharp.
- + The constant does not depend on the dimension.
- + The dependence on the volume is optimal.

The constant *c* is **not** sharp.

Theorem (B-Brancolini-Julin (2017))

For every set $E \subset \mathbb{R}^n$ with $\gamma(E) = \phi(s)$ holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge \frac{c}{1 + s^2} \beta(E)$$

for some absolute constant c.

- + The decay rate is sharp.
- + The constant does not depend on the dimension.
- + The dependence on the volume is optimal.
- The constant *c* is **not** sharp.

The barycenter

The half-space maximizes the lenght of the barycenter: if $\gamma(E)=\phi(s)$, then

$$b_s:=|b(H_{\omega,s})|\geq |b(E)|.$$

Moreover the asymmetry $\beta(E)$ is not obtained via a minimum problem.

$$\beta(E) := b_s - |b(E)|.$$

A new approach

We consider the functional

$$\mathcal{F}(E) = P_{\gamma}(E) + \varepsilon \sqrt{\pi/2} |b(E)|^2, \qquad \gamma(E) = \phi(s)$$

Remark

In minimizing \mathcal{F} the two terms $P_{\gamma}(E)$ and |b(E)| are in competition. Minimizing $P_{\gamma}(E)$ means to push the set E at infinity in one direction, so that it becomes closer to a half-space. On the other hand, minimizing |b(E)| means to balance the volume of E with respect to the origin. For ε small enough the perimeter term overcomes the barycenter, and the only minimizers of \mathcal{F} are the half-spaces $H_{\omega,s}$.

Old result

Theorem (B-Brancolini-Julin (2017))

The only minimizers of the functional \mathcal{F} are the half-spaces when when $\varepsilon > 0$ is small.

Question: "What does it happen when ε is not longer small? Does the barycenter term win?"

Old result

Theorem (B-Brancolini-Julin (2017))

The only minimizers of the functional \mathcal{F} are the half-spaces when when $\varepsilon > 0$ is small.

Question: "What does it happen when ε is not longer small? Does the barycenter term win?"

Some other notation

• $D_{\omega,s} := \{x \in \mathbb{R}^n : |x \cdot \omega| < a(s)\}, \quad \omega \in \mathbb{S}^{n-1},$ where a(s) is chosen such that $\gamma(D_{\omega,s}) = \phi(s)$

The asymptotic behavior for s going to $+\infty$

$$a(s) = s + \frac{\ln 2}{s} + o(1/s).$$

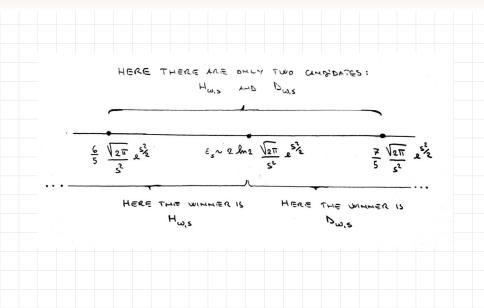
New result

Theorem (B-Julin (2018))

There exists $s_0 > 0$ such that the following holds: when $s \geq s_0$ there is a threshold ε_s such that for $\varepsilon \in [0, \varepsilon_s)$ the minimizer of \mathcal{F} under volume constraint $\gamma(E) = \phi(s)$ is the half-space $H_{\omega,s}$, while for $\varepsilon \in (\varepsilon_s, \infty)$ the minimizer is the symmetric strip $D_{\omega,s}$.

 ε_s is the unique value of ε for which $\mathcal{F}(H_{\omega,s}) = \mathcal{F}(D_{\omega,s})$. The asymptotic behavior is

$$\varepsilon_s = 2 \ln 2 \frac{\sqrt{2\pi}}{s^2} e^{\frac{s^2}{2}} (1 + o(1)).$$



◆□ → ◆□ → ◆ ■ → ■ ● り ◆ ○ ○ ○

The first answer

Since symmetric sets have barycenter zero, we have the solution for the symmetric Gaussian problem (when the volume is close to one).

Corollary

There exists $s_0 > 0$ such that for $s \ge s_0$ it holds

$$P_{\gamma}(E) \ge 2e^{-rac{a(s)^2}{2}} = \left(1 + rac{\ln 2}{s^2} + o(1/s^2)\right)e^{-rac{s^2}{2}},$$

for any symmetric set E with volume $\gamma(E) = \phi(s)$, and the equality holds if and only if $E = D_{\omega,s}$ for some $\omega \in \mathbb{S}^{n-1}$.

The second answer

We have also the optimal constant in the quantitative Gaussian isoperimetric inequality (when the volume is close to one).

Corollary

There exists $s_0 > 0$ such that for $s \ge s_0$ it holds

$$P_{\gamma}(E) - e^{-s^2/2} \ge c_s \beta(E),$$

for every set E with volume $\gamma(E) = \phi(s)$. The optimal constant is given by

$$c_s = \sqrt{2\pi} e^{s^2/2} \left(P_{\gamma}(D_{\omega,s}) - P_{\gamma}(H_{\omega,s}) \right) = \sqrt{2\pi} \frac{\ln 2}{s^2} + o(1/s^2).$$

The proof:

The proof is based on a dimensional reduction.

When the vector ω is orthogonal to the barycenter, then the function ν_{ω} has zero average and the second variation of \mathcal{F} provides the inequality

$$\left| \int_{\partial^* E} -\nu_\omega^2 d\mathcal{H}_\gamma^{n-1} + \frac{\varepsilon}{\sqrt{2\pi}} \left| \int_{\partial^* E} \nu_\omega x d\mathcal{H}_\gamma^{n-1} \right|^2 \ge 0. \right|$$

If the second term is small enough, then $\nu_{\omega} \equiv 0$ and E is constant in that direction. But "is it small enough?"

By using Cauchy-Schwarz inequality, we may estimate the second term by

$$\left| \int_{\partial^* E} \nu_\omega x \, d\mathcal{H}_\gamma^{n-1} \right|^2 \le \left(\int_{\partial^* E} x_\upsilon^2 \, d\mathcal{H}_\gamma^{n-1} \right) \left(\int_{\partial^* E} \nu_\omega^2 \, d\mathcal{H}_\gamma^{n-1} \right)$$

and then, by the Eulero equation,

$$\frac{\varepsilon}{\sqrt{2\pi}} \int_{\partial^* E} x_v^2 d\mathcal{H}_{\gamma}^{n-1} \le \frac{8}{5} \int_{\partial^* E} \nu_v^2 d\mathcal{H}_{\gamma}^{n-1}$$

Ops, it is larger than one! :(

By using Cauchy-Schwarz inequality, we may estimate the second term by

$$\left| \int_{\partial^* E} \nu_\omega x d\mathcal{H}_\gamma^{n-1} \right|^2 \le \left(\int_{\partial^* E} x_\upsilon^2 d\mathcal{H}_\gamma^{n-1} \right) \left(\int_{\partial^* E} \nu_\omega^2 d\mathcal{H}_\gamma^{n-1} \right)$$

and then, by the Eulero equation,

$$\frac{\varepsilon}{\sqrt{2\pi}} \int_{\partial^* E} x_v^2 d\mathcal{H}_{\gamma}^{n-1} \le \frac{8}{5} \int_{\partial^* E} \nu_v^2 d\mathcal{H}_{\gamma}^{n-1}$$

Ops, it is larger than one! :(And we cannot shrink ε .

From n to 2

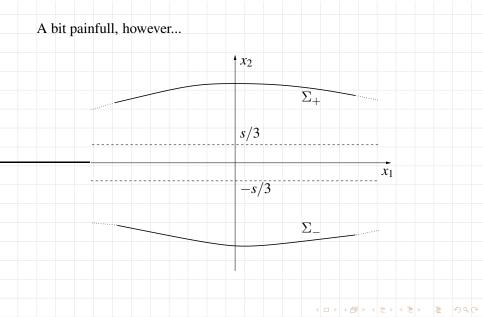
No panic: all fine for n-2 directions!

For these directions

$$\frac{\varepsilon}{\sqrt{2\pi}} \left| \int_{\partial^* F} \nu_\omega x d\mathcal{H}_\gamma^{n-1} \right|^2 \le \frac{63}{65} \int_{\partial^* F} \nu_\omega^2 d\mathcal{H}_\gamma^{n-1}.$$

So the problem is 2-dimensional.

From 2 to 1



Future, maybe...

Conjecture (1)

The solution of the symmetric problem is a cylinder $B_r^k \times \mathbb{R}^{n-k}$, or its complement, for some k depending on the volume and on the dimension. Here B_r^k denotes the k-dimensional ball with radius r.

Conjecture (2)

The minimizers of \mathcal{F} are symmetric for any volume (tuning ε). Moreover, they should be finite-dimensional (with the dimension depending on the volume).