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Non-commutative functional inequalities

o

Gross 1975, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet
form:
— statement of the problem and proof of HC with non-optimal constant

Carlen and Lieb 1993, Optimal hypercontractivity for Fermi fileds and related
non-commutative integration inequalities:
— optimal constant

Olkiewicz and Zegarlinski 1998, Hypercontractivity for non-commutative L, spaces:
— Gross equivalence with LSl in the context of spin systems, but no proof of the positivity
of the LSI constant

Kastoryano and Temme 2013, Quantum logarithmic Sobolev inequalities and rapid mixing:
— Adaptation of the theory for finite dimensional systems (similar to Markov chains on
finite set)

More recent developments: applications in quantum information theory and some progress
for spin systems

In this talk:

How some properties of the (non-commutative) L, norms are central in the study of
hypercontractivity.
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Hypercontractivity for the Orstein-Uhlenbeck semigroup

The Orstein Uhlenbeck semigroup:
o functional space Lo (R, ) where v is the Gaussian measure;

o Markov semigroup (T: = efL)tzo where

—(FLF) =~(|VF?)
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Hypercontractivity for the Orstein-Uhlenbeck semigroup

The Orstein Uhlenbeck semigroup:
o functional space Lo (R, ) where v is the Gaussian measure;

o Markov semigroup (Tt = el),>o where

—(fLF) =~(|VF]?)

Theorem (Nelson 73, Gross 75)
I Tefllany < Ml VE>0, p=14e 2. J

The two points space:
o functional space Loo({—1,1}) = C2? with uniform distribution y;
o Markov semigroup P:f = et f + (1 — e~ t) u(f);
The Bernoulli space
o functional space Loo({—1,1}") = (C?)®" with uniform distribution pu®";
o Markov semigroup (P?")Qo.

HC of the OU semigroup can be proved by a TCL from HC of (Pt®")t20. J
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The role of uniform convexity of the L, norms

Uniform convexity of the L, norm

For all g, h € Lo (2, F, v) where (2, F, u) is a probability space,

<|Ig +hilp + llg — Al
2

2/p
> > gl + (p — 1) [Ih]12 -
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The role of uniform convexity of the L, norms

Uniform convexity of the L, norm

For all g, h € Lo (2, F, v) where (2, F, u) is a probability space,

<|Ig +hilp + llg — Al
2

2/p
> > gl + (p — 1) [Ih]12 -

o Any f € Loo({—1,1}", u®") can be writen:
f=g®@1+hQx,

where g, h € Loo({—1,1}""%, u®"=1) and x, Bernoulli variable of parameter 1/2;
e As g ®1 and h® x, are othogonal in L2({—1,1}", u®"), we have:

e

2 2 2
— ||p2n nH HP®"h
‘2 H v 8@ 2Jr v M@ Xn 2

2 2
= [Pl + o=y [P
< Il + (o - 1) 2

2/p
llg +hll; +llg — hll;
<< £ £ = =|fl2

2
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Summary of the classical case

@ The inequality:

2/p
lle + hll; + llg — Al 2 2
( > llgll; + (p = 1) [IAll;

2

implies HC of the Orstein Uhlenbeck semigroup with optimal constant
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Summary of the classical case

@ The inequality:

> llglls +(p— 1) |18l13

p p\ 2/p
<||g +hlI5+ llg — h||p>
2

implies HC of the Orstein Uhlenbeck semigroup with optimal constant

o Remark that a second related inequality implies the strong LSI for Markov chains on a finite
set:

’ IF15 = (p = 1) IIf = w(HI5 +v(F)?

In particular, it implies for f > 0:
- - - . .12
H(£2 log £2) = u(F)? log u(f)? < u( 72 log 72) — pu(F)? log u(F)? +2 | ||

where f = |f — u(f)].
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Non-commutative L, spaces
We consider the interpolating family of LP-norms ||-||, on Mg(C) defined by:
Tr 1
IXI, = (5 1XP)3, 1<p<too

(normalized Schatten norms). We will also need the (normalised) Hilbert-Schmidt inner
product:

XY= T x Y]
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Non-commutative L, spaces

We consider the interpolating family of LP-norms ||-||, on Mg(C) defined by:
Tr 1
IXI, = (5 1XP)3, 1<p<too

(normalized Schatten norms). We will also need the (normalised) Hilbert-Schmidt inner
product:

XY= T x Y]

Theorem (Uniform convexity of the NC L, norms)

Forall1 < p<2andall X,Y € My(C), we have (Carlen and Lieb 93)

2

2/p
) > X2+ (pp—1) VI3

<|IX + YIg+IX=YI7

For all1 < p <2 and all X € M4(C), we have (Olkiewicz and Zegarlinski 98)

()
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The fermion

© The fermionic Orstein Uhlenbeck semigroup
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The fermionic Orstein Uhlenbeck semigroup

The fermionic algebra

The fermionic algebra is a non-commutative analogue of the Bernoulli space.
Let X, ..., Xn be operators in M>(C)®" such that:

@ Anti-commutation relation:
X,'Xj-i-XjX,' = 25,']' Ion

o X is an element of M5(C)¥ ® lyn—k
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The fermionic algebra is a non-commutative analogue of the Bernoulli space.
Let X, ..., Xn be operators in M>(C)®" such that:

@ Anti-commutation relation:
X,'Xj-i-XjX,' = 25,']' Ion
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The fermionic Orstein Uhlenbeck semigroup

The fermionic algebra

The fermionic algebra is a non-commutative analogue of the Bernoulli space.
Let X, ..., Xn be operators in M>(C)®" such that:

@ Anti-commutation relation:
X,'Xj-i-XjX,' = 25,']' Ion

o X is an element of M5(C)¥ ® lyn—k
Lemma
The set:

{lan, Xiy Xiy -+ Xi

o forl<in<ip<---<ik<n andk=1,..,n}

is a basis of M>(C)®".

The Fermionic (OU) semigroup is define on M2(C)®" by:

Pe(Xiy Xip -+ X)) = € KE X5, Xy -+ X
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The fermionic Orstein Uhlenbeck semigroup

Fermionic hypercontractivity

Theorem (Carlen, Lieb 1993)

The fermionic semigroup is hypercontractive. More presicely, for all X € M2(C)®", all t > 0 and
pr =1+e"?,
1P(X)M2 < IX1l,,

and the constant p; is optimal.
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The fermionic Orstein Uhlenbeck semigroup

Fermionic hypercontractivity

Theorem (Carlen, Lieb 1993)

The fermionic semigroup is hypercontractive. More presicely, for all X € M2(C)®", all t > 0 and
pr =1+e"?,
1P(X)M2 < IX1l,,

and the constant p; is optimal.

Idea of the proof: write any X € M2(C)®" as:
X=A+BX,

and apply the same proof as for the Bernoulli space.
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Unital and trace-preserving quantum Markov semigroups

© Unital and trace-preserving quantum Markov semigroups
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Unital and trace-preserving quantum Markov semigroups

Quantum Markov semigroups

Evolution of open systems in the Markovian regime are modeled by quantum Markov
semigroups (QMS) (P:):>0 acting on My(C):

° Pt(/d) = lg;

Piys = PPs for all s, t > 0;
@ P(X)>0if X >0;

e t — P¢(X) is continuous;

The generator £ defined by P: = exp t L is called a Lindbladian. The QMS gives the solution of
the quantum Master equation:

d
EXL» = L(Xf) ) Xo =X (S Md((c) N
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Quantum Markov semigroups

Evolution of open systems in the Markovian regime are modeled by quantum Markov
semigroups (QMS) (P:):>0 acting on My(C):

° Pt(/d) = lg;

Piys = PPs for all s, t > 0;
@ P(X)>0if X >0;

e t — P¢(X) is continuous;

The generator £ defined by P: = exp t L is called a Lindbladian. The QMS gives the solution of
the quantum Master equation:

d
EXt = L(Xf) ) Xo =X (S Md((c) N

We will always assume that:

° % is an invariant state for P:

% [Pe(X)] = g [X] VX eB(H),vt>0,

e P is reversible:

Tr[Pe(X*) Y] = Tr[X* Pe(Y)] VE>0.

y
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One example: the depolarizing QMS

Depolarizing QMS:
Define: T
r
Ldep(X) = F[X] lg —X.

In this case:
o Pe(X)=e " tX+(1—e" ) T[X] 1y

° % is indeed invariant;

@ One has P:(X) o %[X] Ig.
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One example: the depolarizing QMS

Depolarizing QMS:
Define: T
r
Ldep(X) = F[X] lg —X.

In this case:
o Pe(X)=e " tX+(1—e" ) T[X] 1y

° % is indeed invariant;

@ One has P:(X) o %[X] Ig.

v
Mixing-time for primitive QMS:
When % is the unique invariant state,
Tr
Pr(X) Sihe d (X1 1a;
One is then interested in the mixing-time
. Tr
7(e) =inf{t >0; Xt—F[X]Id <e Xl VX EMGC)}.
oo
v
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Unital and trace-preserving quantum Markov semigroups

Definition of hypercontractivity

Definition

We say that a primitive QMS (Pt):>o is hypercontractive with constants c,d > 0 if:

1Py <eefa (31} (HC(e, )

p
for all time t > £ log(p — 1).
Equivalently, if for all t > 0,

11
P < e
1Pell2sp, < eXP{ (2 pt)}

where p; = 1 + e2t/¢,

e TRl Dl S0
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Unital and trace-preserving quantum Markov semigroups

Equivalence between HC and log-Sobolev inequality

Theorem (Olkiewicz, Zegarlinski 1999)
Let P be a reversible primitive QMS. The two following assertions are equivalent:
(i) HC(c, d) holds;
(ii) The following logarithmic Sobolev inequality holds for all p > 2:
Entp(X) < c&p,c(X) +d[IX]I] (LSly(c, d))

where Ent,, is the p-relative entropy:
T
Ent,(X) = gr [XP log X]

and &, ¢ is the p-Dirichlet form:

p

*m(xpflvﬁ(x)f

gp,ﬁ(x) =

(iii) LSla(c, d) holds

e s G e L ) £



Unital and trace-preserving quantum Markov semigroups

Equivalence between HC and log-Sobolev inequality

Theorem (Olkiewicz, Zegarlinski 1999)
Let P be a reversible primitive QMS. The two following assertions are equivalent:
(i) HC(c, d) holds;
(ii) The following logarithmic Sobolev inequality holds for all p > 2:
Entp(X) < c&p,c(X) +d[IX]I] (LSly(c, d))

where Ent,, is the p-relative entropy:
T
Ent,(X) = gr [XP log X]

and &, ¢ is the p-Dirichlet form:

p

*m(xpflvﬁ(x)f

gp,ﬁ(x) =

(iii) LSla(c, d) holds

Sketch of the proof: put p: =1+ (p — 1)e2t/c and differentiate the norm:
d p’(0)
— [IP(X)l = —— g ( Entp(X) — c & (X)) -
dt o pIXIET ’
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Unital and trace-preserving quantum Markov semigroups

Remarks

The L, regularity
£2(X) < £ £.0(X)

is less easy to prove than in the classical case. In particular, it is not known if it holds in the
general case where the invariant state is not %;
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Unital and trace-preserving quantum Markov semigroups

Remarks

The L, regularity
£2(X) < £ £.0(X)

is less easy to prove than in the classical case. In particular, it is not known if it holds in the
general case where the invariant state is not %;

The uniform convexity of the L, norms

IXI3 > (=) |x - T 2+ (Tpa)’

allows to conclude that we can always take d = 0 with ¢ < +o0. In particular it implies that for
all X >0,

T T 2
Enta(X) < Enta(1X — X1 + 2| x — T [x]
2
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Hypercontrac y for decohering quantum Markov semigroups

© Hypercontractivity for decohering quantum Markov semigroups
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Hypercontractivity for decohering quantum Markov semigroups

Simple definition of the decoherence time

Decoherence is the idea that there exists a preferred basis such that the off-diagonal terms of

any density matrix disappear in time:
X1 * X1 0

X = . —  Xdiag '=
. t—+oo diag

* Xy 0 Xy

Toulouse June 2018 17 / 22
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Hypercontractivity for decohering quantum Markov semigroups

Simple definition of the decoherence time

Decoherence is the idea that there exists a preferred basis such that the off-diagonal terms of

any density matrix disappear in time:
X1 * X1 0

X = . —  Xdiag '=
. t—+oo diag

* Xy 0 X4
Define an interpolating family of matrices between X and Xgjag as:
Xt:eitX-‘r(l—ei t)Xd,'ag . Xo :X EMd(C), X+oo :Xdiag;

This defines a QMS with Lindbladian
‘Cdeco(X) = Xdiag -X.

Question:
Can we adapt hypercontractivity to the study of the decoherence time:

m(e) = inf {t > 0; || Xe — Xaiag|| . <€ IXlloe VX € My(C)}.

Toulouse June 2018 17 / 22



Hypercontractivity for decohering quantum Markov semigroups

The fixed-points algebra

Proposition

Consider a QMS (P;)¢>o such as before (not necessarily primitive) and define
F(P) :={X € Mg(C); P(X) =X Vt>0}.

Define Ex the orthogonal projection on F(P) for (-,-). Then

P: (X) She Ex[X].
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The fixed-points algebra

Proposition

Consider a QMS (Pt)¢>0 such as before (not necessarily primitive) and define
F(P) :={X e My(C); Pe(X)=X Vt>0}.
Define Ex the orthogonal projection on F(P) for (-,-). Then

P: (X) She Ex[X].

Particular cases:
° ‘Cdep: ]:('P) = (Cld;
0 Lyeco: F(P) = diagonal operators.
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The fixed-points algebra

Proposition

Consider a QMS (Pt)¢>0 such as before (not necessarily primitive) and define
F(P) :={X e My(C); Pe(X)=X Vt>0}.
Define Ex the orthogonal projection on F(P) for {-,-). Then

Particular cases:
® Lyep: F(P)=Cly;
0 Lyeco: F(P) = diagonal operators.

We are interested in the decoherence-time:

7(e) =inf {t > 0; |Pe(X) — Er[X]lloc <€ [IX[loe VX € My(C)}.

o0

e s S e 18 /) £



Hypercontractivity for decohering quantum Markov semigroups

Amalgamated L, 4, norms (Junge and Parcet)

(Pt)¢>0 is hypercontractive if and only if it is primitive:

o HC(c, d) with ¢ > 0 implies exponential convergence towards %;
o Conversely, if (Pt):>0 is not primitive, there exists X € F(P) such that X ¢ Cly and for
p>2:

P, = [1X1, > 11Xl

e s S e 18 ) £



Hypercontractivity for decohering quantum Markov semigroups

Amalgamated L, 4, norms (Junge and Parcet)

(Pt)¢>0 is hypercontractive if and only if it is primitive:

o HC(c, d) with ¢ > 0 implies exponential convergence towards %;

o Conversely, if (Pt):>0 is not primitive, there exists X € F(P) such that X ¢ Cly and for
p>2:
P:(X)l,, = 11X1[, > [1X]l2

Amalgamated L, ¢ norms

1_1_ 1.
Forl§q§p§ooand7_q e
IXlqp7.7 = o ginf 1Al 1B, 171,
X=AYB
X = wp IAXBlg
P97 ) ser@) Al 1Bl
o F(P)=
Xlligpy = 1X1, s Xl gy, = Xl

e F(P)=My(C) or X € F(P):

Xllgpy. = IXlg s Xl gy, = = X,

v

e e e 10 ) 2



Hypercontractivity for decohering quantum Markov semigroups

Extension of the quantum Gross lemma to non-primitive QMS

o DF-g-relative entropy:

Entg, 7(X) := !

a|d

[Xp(logXp — log ET[XP])] ;

Q|+
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Hypercontractivity for decohering quantum Markov semigroups

Extension of the quantum Gross lemma to non-primitive QMS

o DF-g-relative entropy:

Entg, 7(X) := !

a|d

[Xp(logXp — log ET[XP])] ;

Q|+

o q-DF logarithmic Sobolev inequality: for any X > 0,
Enty, 7(X) < c &g, £(X) + d||X]|g (LSlg, 7(c,d))

o DF hypercontractivity: for any X € My4(C), and t > S log(p —1):

1Pl > <0 {d (5= 2) i (HC(c,d)

Lemma

For any positive definite X € My(C) and pr = 1+ (g — 1) e2t/¢,

__pr) (Entq,}-(X) _20q-1

d
—IPe(X)l(q,p(1)), = —
Pl (q.p(t), F o qlleg 1 ’0))

&g, [:(X)) .
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Hypercontractivity for decohering quantum Markov semigroups

Almost uniform convexity of the amalgamated L, norms

For X > 0, the amalgamated L, norms take the form (1 < p < 2):

1XNl2,p), 7 == w'
e aerP) A3,
Define:
o(a x,p) = 12X 2
IAll3,

Then one can prove:
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Hypercontractivity for decohering quantum Markov semigroups

Almost uniform convexity of the amalgamated L, norms

For X > 0, the amalgamated L, norms take the form (1 < p < 2):

Xl r = sup oAl
@R aeF ) A,
Define:
ora x_ oy IAX Al
(A X,p) = W '

Then one can prove:

Theorem (B., Rouzé 2018)
For all X > 0, one has

(A, X, p)? > (p—1) ®(A,|X — Ex[X]|, p)* + ®(A, E£[X], p)?
This implies

Entz, 7 (X) < Enta, 7 (IX — Ex[X]]) +2 IX = Ex[X]|5 + V2[IX|}3

e TRl Dl S0k
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Hypercontractivity for decohering quantum Markov semigroups

Results

Theorem (B., Rouzé 2018)

Let (Pt)t>0 be defined as before. Then,
(i) HCq, 7(c,d) = LSlg #(c,d) for all g > 1;
(ii) LSlz, 7(c,d) = HCx(c,d + log Cx), where Cx is a parameter depending on F(P);

(i) LSz, #(c, log v/2) holds with
1+ logd
CS —
AL
(iv) IfLSly 7(c,d) holds, then necessarily d > 0;
v)

| Pe(X) = ExlX] o0 < dr e " IX]l,  fort=ZInind+ ﬁ k>0,

where the dr is again a parameter depending on F(P).
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