Stability for Faber-Krahn INEQUALITIES

Brasco
(Università degli Studi di Ferrara)

Toulouse
14 Juin 2018

References

The main result presented in this talk is contained in

- B. - De Philippis - Velichkov, Duke Math. J., 164 (2015), 1777-1832

A summary of the proof (which is quite long) and a detailed account of similar problems can be found in

- B. - De Philippis, book chapter (2017), contained in "Shape Optimization and Spectral Theory" (edited by A. Henrot)

Both available at http://cvgmt.sns.it

Plan of the talk

The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp

Drums

Take a vibrating membrane fixed at the boundary of a set $\Omega \subset \mathbb{R}^{2}$
This is a superposition of a discrete set of stationary vibrations

$$
U(x, t)=\sum_{k \in \mathbb{N}} u_{k}(x)\left(\alpha_{k} \cos \left(\sqrt{\lambda_{k}(\Omega)} t\right)+\beta_{k} \sin \left(\sqrt{\lambda_{k}(\Omega)} t\right)\right)
$$

The eigenpair $\left(u_{k}, \lambda_{k}(\Omega)\right)$ solves

$$
-\Delta u_{k}=\lambda_{k}(\Omega) u_{k} \text { in } \Omega, \quad u_{k}=0 \text { on } \partial \Omega
$$

- $\lambda_{k}(\Omega)$ is k-the eigenvalue of the Dirichlet-Laplacian
- u_{k} is k-th eigenfunction
- $k \mapsto \sqrt{\lambda_{k}(\Omega)}$ increasing (it is the frequency of vibration)

The fundamental frequency or first eigenvalue

$\sqrt{\lambda_{1}(\Omega)}$ is the fundamental frequency of the drum
Variational characterization

$$
\lambda_{1}(\Omega)=\inf _{u \in C_{0}^{\infty}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{2}: \int_{\Omega}|u|^{2}=1\right\}
$$

i.e. this is the sharp constant in the Poincaré inequality

$$
\lambda_{1}(\Omega) \int_{\Omega}|u|^{2} \leq \int_{\Omega}|\nabla u|^{2}
$$

Remark
These definitions make (mathematical) sense in every dimension N

A question raised by Lord Rayleigh

Among drums with given area, which one has the lowest fundamental frequency λ_{1} ?

Faber (1923) and Krahn (1925) answer
The disk
Scaling law
We have that $\quad \lambda_{1}(t \Omega)=t^{-2} \lambda_{1}(\Omega)$ thus
$\lambda_{1}(\Omega)|\Omega|$ is invariant under dilations
In other words, this quantity only depends on the shape of the set, not on its size

Faber-Krahn inequality in dimension N

$$
\lambda_{1}(\Omega)|\Omega|^{2 / N} \geq \lambda_{1}(\text { ball }) \mid \text { ball }\left.\right|^{2 / N}
$$

with equality if and only if Ω itself is a ball
Proof.
Use the variational characterization of $\lambda_{1}(\Omega)$, plus the properties of the spherically symmetric decreasing rearrangement

- let u be a first eigenfunction of Ω
- let u^{*} be its spherically symmetric decreasing rearrangement
- by construction $1=\int|u|^{2}=\int\left|u^{*}\right|^{2}$
- moreover, by using Pólya-Szegő principle we have

$$
\lambda_{1}(\Omega)=\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega^{*}}\left|\nabla u^{*}\right|^{2} \geq \lambda_{1}\left(\Omega^{*}\right)
$$

A glimpse of Pólya-Szegő principle

If we set $\mu(t)=|\{x \in \Omega: u(x)>t\}| \quad$ (distribution function)

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \stackrel{\text { Coarea }}{=} \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u|^{2} \frac{d \sigma}{|\nabla u|}\right) d t \\
& \stackrel{\text { Jensen }}{\geq} \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u| \frac{d \sigma}{|\nabla u|}\right)^{2} \frac{d t}{\int_{\{u=t\}}|\nabla u|^{-1} d \sigma} \\
& =\int_{0}^{+\infty} \frac{\operatorname{Perimeter}(\{u>t\})^{2}}{-\mu^{\prime}(t)} d t \\
& \quad \begin{array}{l}
\text { Isoperimetry } \\
\geq
\end{array} \int_{0}^{+\infty} \frac{\text { Perimeter }\left(\left\{u^{*}>t\right\}\right)^{2}}{-\mu^{\prime}(t)} d t=\int_{\Omega^{*}}\left|\nabla u^{*}\right|^{2}
\end{aligned}
$$

If $\lambda_{1}(\Omega)=\lambda_{1}\left(\Omega^{*}\right)$, the superlevel sets of u are balls (by using the equality cases in the isoperimetric inequality)

Application I: hearing the shape of a drum ${ }^{1}$

Let $\operatorname{spec}(\Omega)=\left\{\lambda_{1}(\Omega), \lambda_{2}(\Omega), \ldots\right\}$ the collection of eigenvalues of the Dirichlet-Laplacian on Ω

Weyl's asymptotic

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{\#\left\{\lambda_{k}(\Omega): \lambda_{k}(\Omega) \leq t\right\}}{t^{N / 2}}=\frac{\omega_{N}}{(2 \pi)^{N}}|\Omega| \tag{W}
\end{equation*}
$$

Spectral rigidity

- if $\operatorname{spec}(\Omega)=\operatorname{spec}($ ball $)$, then $\quad|\Omega|=\mid$ ball $\mid \quad$ by (W)
- ...and obviously $\lambda_{1}(\Omega)=\lambda_{1}$ (ball)
- thanks to equality cases in Faber-Krahn inequality, Ω is a ball

[^0]
Application II: nodal domains

Theorem [Courant]
Let $\quad u_{n}=n-$ th eigenfunction of Ω
$\mathcal{N}(n)=$ number of nodal domains of φ_{n}
then we have

$$
\mathcal{N}(n) \leq n
$$

Theorem [Pleijel]
In dimension $N=2$, we have

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{N}(n)}{n} \leq\left(\frac{2}{j_{0,1}}\right)^{2} \simeq 0.691
$$

Proof.
Denote by $\left\{\Omega_{i}\right\}$ the nodal domains

$$
|\Omega| \lambda_{n}(\Omega)=\sum_{i=1}^{\mathcal{N}(n)}\left|\Omega_{i}\right| \lambda_{1}\left(\Omega_{i}\right) \stackrel{F-K}{\geq} \pi\left(j_{0,1}\right)^{2} \mathcal{N}(n)
$$

Then we use Weyl's asymptotic

Application III: conformal mappings

Theorem [Pólya-Szegő]

$\Omega \subset \mathbb{R}^{2}$ simply connected such that $|\Omega|=\left|D_{1}(0)\right|=\pi$. Let $x_{0} \in \Omega$ and $f_{x_{0}}: \Omega \rightarrow D_{1}(0)$ the conformal mapping such that $f_{x_{0}}\left(x_{0}\right)=0$. Then

$$
\left|f_{x_{0}}^{\prime}\left(x_{0}\right)\right| \geq 1
$$

Equality holds if and only if Ω is a disc
Proof.
Conformal transplantation technique and sub-harmonicity of $\left|\left(f_{x_{0}}^{-1}\right)^{\prime}\right|^{2}$ give

$$
\frac{\lambda_{1}(\Omega)}{\left|f_{x_{0}}^{\prime}\left(x_{0}\right)\right|^{2}} \leq j_{0,1}^{2} \quad \text { i. e. } \quad \frac{\lambda_{1}(\Omega)}{j_{0,1}^{2}} \leq\left|f_{x_{0}}^{\prime}\left(x_{0}\right)\right|
$$

Now use Faber-Krahn!

The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp

Quantitative stability of Faber-Krahn inequality

Question 1.

Add a remainder term in Faber-Krahn which measures how much Ω is far from being a ball?

In other words, one looks for

$$
\lambda_{1}(\Omega)|\Omega|^{2 / N}-\lambda_{1}(B)|B|^{2 / N} \geq g(d(\Omega)) \quad \text { (FKquant) }
$$

where

- $t \mapsto g(t)$ is a modulus of continuity
- $\Omega \mapsto d(\Omega)$ is an asymmetry functional

Question 2. (harder)

Answer Question 1. in a sharp way? i.e. such that for a sequence $\left\{\Omega_{n}\right\}_{n}$ converging to a ball we have

$$
\lambda_{1}\left(\Omega_{n}\right)\left|\Omega_{n}\right|^{2 / N}-\lambda_{1}(B)|B|^{2 / N} \sim g\left(d\left(\Omega_{n}\right)\right) \quad \text { for } n \rightarrow \infty
$$

The pioneers: Melas and Hansen \& Nadirashvili

Melas [J. Diff. Geom. (1992)]
For convex sets in every dimension, quantitative Faber-Krahn (FKquant) is valid with

$$
\begin{gathered}
g(t)=t^{2 N} \\
d_{\mathcal{M}}(\Omega)=\min \left\{\max \left\{\frac{\left|B_{2} \backslash \Omega\right|}{\left|B_{2}\right|}, \frac{, \Omega \backslash B_{1} \mid}{|\Omega|}\right\}: B_{1} \subset \Omega \subset B_{2} \text { balls }\right\}
\end{gathered}
$$

Hansen \& Nadirashvili [Potential Anal. (1994)]
For simply connected sets in dimension $N=2$ or convex sets for $N \geq 3$, quantitative Faber-Krahn (FKquant) is valid with

$$
g(t)=\text { a power } \quad d_{\mathcal{N}}(\Omega)=1-\frac{\text { inradius of } \Omega}{\text { radius of } B_{\Omega}}
$$

where B_{Ω} is a ball such that $\left|B_{\Omega}\right|=|\Omega|$

Topological obstructions

The topological restrictions in the previous results can not be removed

Counter-example
Take B_{ε} a ball with a small hole of radius ε at the center. Then

$$
\lambda_{1}\left(B_{\varepsilon}\right)\left|B_{\varepsilon}\right|^{2 / N} \rightarrow \lambda_{1}(B)|B|^{2 / N} \quad \text { but } \quad d_{\mathcal{M}} \geq d_{\mathcal{N}} \rightarrow \frac{1}{2}
$$

Remark
The asymmetry functionals are too rigid. If we want to treat general open set, a weaker asymmetry functional is needed

Fraenkel asymmetry

For a general open set, it is better to use

$$
\mathcal{A}(\Omega)=\inf \left\{\frac{|\Omega \Delta B|}{|\Omega|}: B \text { ball with }|B|=|\Omega|\right\}
$$

This is a L^{1} distance from the "manifold" of balls
Remarks

- $0 \leq \mathcal{A}<2$ and $\mathcal{A}(\Omega)=0$ if and only if Ω is a ball (up to a set of measure zero)
- for a convex set with N orthogonal planes of symmetry, an optimal ball can be placed at the intersection of the planes

The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp

Towards sharpness

Nadirashvili - Bhattacharya \& Weitsman conjecture

$$
\lambda_{1}(\Omega)|\Omega|^{2 / N}-\lambda_{1}(B)|B|^{2 / N} \geq \frac{1}{C_{N}} \mathcal{A}(\Omega)^{2}
$$

Exponent 2 is best possible
Take an ellipse E_{ε}, then

$$
\lambda_{1}\left(E_{\varepsilon}\right)-\lambda_{1}\left(B_{1}\right) \sim \varepsilon^{2} \quad \mathcal{A}\left(E_{\varepsilon}\right) \sim \varepsilon
$$

Figure: Ellipse E_{ε} with semi-axes $1+\varepsilon$ and $(1+\varepsilon)^{-1}$

Previous results

Many contributions by Bhattacharya, Sznitman, Povel, Fusco-Maggi-Pratelli...All of them, based on boosted Pólya-Szegő principle

With these methods, the best result up to now
The Hansen-Nadirashvili method (B. - De Philippis)

$$
\lambda_{1}(\Omega)|\Omega|^{2 / N}-\lambda_{1}(B)|B|^{2 / N} \geq c_{N} \mathcal{A}(\Omega)^{3}
$$

with $c_{N}>0$ explicit dimensional constant

Proof.

Idea: go back to Pólya-Szegő inequality. In place of isoperimetric inequality for $\{u>t\}$, use the the sharp quantitative isoperimetric inequality

$$
\text { Perimeter }(E)-\text { Perimeter }(B) \geq \beta_{N} \mathcal{A}(E)^{2}
$$

Key point: link the asymmetry of $\{u>t\}$ to that of the zero-level set, i.e. Ω.

Quantitative and sharp

The conjecture by Nadirashvili \& Bhattacharya-Weitsman is true More generally, at the same price, we get for free...

Main Theorem [B. - De Philippis - Velichkov]
For $1 \leq q<2^{*}$, we define

$$
\lambda_{1, q}(\Omega)=\min _{u \in W_{0}^{1,2}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{2}:\|u\|_{L^{q}(\Omega)}=1\right\}
$$

we have

$$
\lambda_{1, q}(\Omega)|\Omega|^{\beta}-\lambda_{1, q}(B)|B|^{\beta} \geq c_{N, q} \mathcal{A}(\Omega)^{2}
$$

Remarks

- The exponent β is given by scale invariance
- The original conjecture is for $q=2$
- $c_{N, q}$ is not explicit, we know his behaviour as $q \nearrow 2^{*}$

1st step : "just prove the result for $q=1$ "

Remark

For $q=1$, the quantity $1 / \lambda_{1,1}(\Omega)$ coincides with the torsional rigidity $T(\Omega)$

$$
T(B) \geq T(\Omega) \quad \text { if }|B|=|\Omega|
$$

Kohler-Jobin inequality
"The ball minimizes $\lambda_{1, q}$ among sets with given torsional rigidity" that is

$$
\lambda_{1, q}(\Omega) T(\Omega)^{\vartheta}-\lambda_{1, q}(B) T(B)^{\vartheta} \geq 0
$$

this implies

$$
\frac{\lambda_{1, q}(\Omega)}{\lambda_{1, q}(B)}-1 \geq\left(\frac{T(B)}{T(\Omega)}\right)^{\vartheta}-1
$$

1st step : "just prove the result for $q=1$ "

We thus have
Proposition [the Faber-Krahn hierarchy]
If one can prove

$$
T\left(B_{1}\right)-T(\Omega) \geq c_{N} \mathcal{A}(\Omega)^{2} \quad \text { for }|\Omega|=\left|B_{1}\right|
$$

then the Main Theorem is true for $q>1$, with a constant $\widetilde{c}_{N, q}$ only depending on q and c_{N} above
"Why the torsional rigidity should be better?"
Working with $T(\Omega)$ has the following advantage

$$
-\frac{1}{2} T(\Omega)=\min _{u \in W_{0}^{1,2}(\Omega)}\left\{\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} u\right\}
$$

and this is a convex problem without constraint, with a linear Euler-Lagrange equation

2nd step: "Main Theorem is true for almost spherical sets"

 We say that Ω is almost spherical if$$
\partial \Omega=\left\{x: x=(1+\varphi(y)) y \quad \text { with } y \in \partial B_{1}\right\},
$$

for a (smooth) funcion $\varphi: \partial B_{1} \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]$

Figure: Here it is an almost spherical set!

Proposition

Let Ω be $C^{2, \gamma}$ almost spherical with $\|\varphi\|_{C^{2, \gamma}} \ll 1$ such that

$$
|\Omega|=\left|B_{1}\right| \quad \text { and } \quad x_{\Omega}:=\operatorname{barycenter}(\Omega)=0
$$

then

$$
T\left(B_{1}\right)-T(\Omega) \geq \tau_{N}\|\varphi\|_{H^{1 / 2}\left(\partial B_{1}\right)}^{2}
$$

Proof.

We use the 2nd order Taylor expansion (Dambrine, 2002)

$$
T\left(B_{1}\right)-T(\Omega) \geq \frac{1}{2} \partial^{2} T\left(B_{1}\right)[\varphi, \varphi]-o\left(\|\varphi\|_{H^{1 / 2}}^{2}\right)
$$

The quadratic form $\partial^{2} T\left(B_{1}\right)$ is coercive on a suitable subspace of $H^{1 / 2}$

Remark

$$
\|\varphi\|_{H^{1 / 2}\left(\partial B_{1}\right)}^{2} \geq \int_{\partial B_{1}} \varphi^{2} \gtrsim\left(\int_{\partial B_{1}}|\varphi|\right)^{2} \simeq\left|\Omega \Delta B_{1}\right|^{2} \geq \mathcal{A}(\Omega)^{2}
$$

3rd step : "contradict the result!"

1. We suppose that there can not exist a constant $c>0$ such that

$$
T\left(B_{1}\right)-T(\Omega) \geq c \mathcal{A}(\Omega)^{2} \quad \text { for every }|\Omega|=\left|B_{1}\right|
$$

2. there is a nasty sequence $\left\{\Omega_{n}\right\}_{n \in \mathbb{N}}$ such that $\left|\Omega_{n}\right|=\left|B_{1}\right|$ and

$$
\frac{T\left(B_{1}\right)-T\left(\Omega_{n}\right)}{\varepsilon_{n}^{2}} \rightarrow 0 \quad \text { where } 0<\varepsilon_{n}:=\mathcal{A}\left(\Omega_{n}\right) \rightarrow 0
$$

3. The sequence $\left\{\Omega_{n}\right\}$ converges to a ball...but for sets close to a ball, we know by the 2nd step that

$$
0<\tau_{N} \leq \frac{T\left(B_{1}\right)-T\left(\Omega_{n}\right)}{\varepsilon_{n}^{2}}
$$

contradiction! NOT AT ALL, of course there is a problem of topology

4th step : "contradict in a smart way"

Remark

The sequence $\left\{\Omega_{n}\right\}_{n \in \mathbb{N}}$ does not converge in $C^{2, \gamma} \ldots$ but only in L^{1} ! For Ω_{n}, we can not use 2 nd step

Idea
Replace the nasty sequence $\left\{\Omega_{n}\right\}_{n \in \mathbb{N}}$ by a smoother one, still contradicting the stability, for example take U_{n} solving

$$
\min \left\{T\left(B_{1}\right)-T(\Omega):|\Omega|=\left|B_{1}\right| \quad \text { et } \quad \mathcal{A}(\Omega)=\varepsilon_{n}\right\}
$$

By construction, we still have

$$
\frac{T\left(B_{1}\right)-T\left(U_{n}\right)}{\varepsilon_{n}^{2}} \leq \frac{T\left(B_{1}\right)-T\left(\Omega_{n}\right)}{\varepsilon_{n}^{2}} \rightarrow 0 \quad \text { and } \quad \varepsilon_{n}=\mathcal{A}\left(U_{n}\right) \rightarrow 0
$$

U_{n} is the best way to contradict the stability

More precisely: penalized problem

We can suppose that

$$
T\left(B_{1}\right)-T\left(\Omega_{n}\right) \leq \sigma \varepsilon_{n}^{2}
$$

for a given $0<\sigma \ll 1$
New problem

$$
\min \left(T\left(B_{1}\right)-T(\Omega)\right)+\Lambda|\Omega|+\sqrt[3]{\sigma}\left(\mathcal{A}(\Omega)-\varepsilon_{n}\right)^{2}
$$

1. Λ is a Lagrange multiplier such that for $\sigma=0$ the ball B_{1} is a solution
2. $0<\sigma \ll 1$ is the parameter above, so that any solution U_{n} satisfies

- $\left|\mathcal{A}\left(U_{n}\right)-\varepsilon_{n}\right| \lesssim \sqrt[3]{\sigma} \varepsilon_{n}$
- $\left|\left|U_{n}\right|-\left|B_{1}\right|\right| \lesssim \sqrt[3]{\sigma} \varepsilon_{n}$
- $T\left(B_{1}\right)-T\left(U_{n}\right) \lesssim \sigma \varepsilon_{n}^{2}$

Free boundaries appear...

Memento

$-T(\Omega)$ as well is defined as a minimization problem over functions
Our penalized problem can be written as a free boundary problem

$$
\min _{u} \frac{1}{2} \int|\nabla u|^{2}-\int u+\Lambda|\{u>0\}|+\sqrt[3]{\sigma}\left(\mathcal{A}(\{u>0\})-\varepsilon_{n}\right)^{2}
$$

Relation with the previous problem
If u_{n} is a soluton, then $U_{n}=\left\{u_{n}>0\right\}$
Then the key point is the regularity of the free boundary $\partial\left\{u_{n}>0\right\}$

- We really hope for $C^{2, \gamma}$ regularity -

Optimality conditions and regularity

What is the best we can hope for?
Suppose that B_{1} is optimal for $\mathcal{A}\left(\left\{u_{n}>0\right\}\right)$
The optimality condition for the free boundary problem is

$$
\left|\frac{\partial u_{n}}{\partial \nu}\right|^{2}=\Lambda+2 \sqrt[3]{\sigma}\left(\mathcal{A}\left(\left\{u_{n}>0\right\}\right)-\varepsilon_{n}\right)\left(1_{\mathbb{R}^{N} \backslash B_{1}}-1_{B_{1}}\right)
$$

Problem

The term in red is not continuous
The free boundary ∂U_{n} is not even $C^{1, \gamma}$
Indeed by Elliptic Regularity, ∂U_{n} of class $C^{1, \gamma}$ forces the normal derivative of u_{n} to be continuous

We get stuck!
We needed to show that U_{n} converges $C^{2, \gamma}$ to a ball, but this is not possible

SO WHAT ?

A new asymmetry?

Of course, the problem is due to lack of regularity of Fraenkel asymmetry...what if we replace $\mathcal{A}(\Omega)$ by a "smoother" asymmetry?

Back to almost spherical sets

We have seen that

$$
T\left(B_{1}\right)-T(\Omega) \geq \tau_{N}\|\varphi\|_{H^{1 / 2}\left(\partial B_{1}\right)}^{2}
$$

then we said

$$
\|\varphi\|_{H^{1 / 2}\left(\partial B_{1}\right)}^{2} \geq\|\varphi\|_{L^{2}\left(\partial B_{1}\right)}^{2} \geq c\|\varphi\|_{L^{1}\left(\partial B_{1}\right)}^{2} \simeq \mathcal{A}(\Omega)^{2}
$$

Remark
The L^{2} norm squared is much more regular than $\mathcal{A}(\Omega)^{2} \ldots$ And this is exactly what we are estimating for an almost spherical!

Yes! A new asymmetry

For a bounded set, we introduce

$$
\alpha(\Omega):=\int_{\Omega \Delta B_{1}\left(x_{\Omega}\right)}\left|1-\left|x-x_{\Omega}\right|\right| d x
$$

where $x_{\Omega}=\operatorname{barycenter}(\Omega)$
Properties of α
a. $\left|\Omega \Delta B_{1}\left(x_{\Omega}\right)\right|^{2} \lesssim \alpha(\Omega)$
b. if Ω is almost spherical, then

$$
\alpha(\Omega) \sim \int_{\partial B_{1}} \varphi^{2} \lesssim T\left(B_{1}\right)-T(\Omega)
$$

Conclusion: the Selection Principle

We use the scheme described above, with \mathcal{A} in place of α

Selection Principle

There exist $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}^{N}$ such that

- $\left|E_{n}\right|=\left|B_{1}\right| \quad$ and $\quad x_{E_{n}}=0$
- ∂E_{n} converges to ∂B_{1} in C^{k}, for every k
- $T\left(B_{1}\right)-T\left(E_{n}\right) \leq C \sigma \alpha\left(E_{n}\right)$

Every E_{n} is a scaled and translated copy of $U_{n}=\left\{u_{n}>0\right\}$, with u_{n} solution of the free boundary problem

$$
\min _{u} \frac{1}{2} \int|\nabla u|^{2}-\int u+\Lambda|\{u>0\}|+\sqrt[3]{\sigma}\left(\alpha(\{u>0\})-\varepsilon_{n}\right)^{2}
$$

The regularity is obtained with a careful adapation of Alt \& Caffarelli [J. Reine Angew. Math. (1981)] and Kinderlehrer \& Nirenberg [Ann. SNS. (1977)]

Further readings

Stability in Neumann case

- B., Pratelli, GAFA (2012)

Stability in Stekloff case

- B., De Philippis, Ruffini, J. Funct. Anal. (2012)

A "Selection Principle" for the isoperimetric inequality

- Cicalese, Leonardi, ARMA (2012)

Many thanks for your kind attention

"I knew it would take some time to get to that point. And I worked hard to get there"
C. Schuldiner

[^0]: ${ }^{1}$ M. Kac, "Can one hear the shape of a drum?", Amer. Math. Month. (1966)

