STABILITY FOR FABER-KRAHN INEQUALITIES

Brasco

(Università degli Studi di Ferrara)

Toulouse 14 Juin 2018

References

The main result presented in this talk is contained in

B. - De Philippis - Velichkov, Duke Math. J., 164 (2015), 1777-1832

A summary of the proof (which is quite long) and a detailed account of similar problems can be found in

 B. - De Philippis, book chapter (2017), contained in "Shape Optimization and Spectral Theory" (edited by A. Henrot)

Both available at http://cvgmt.sns.it

Plan of the talk

The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp

Drums

Take a vibrating membrane fixed at the boundary of a set $\Omega \subset \mathbb{R}^2$ This is a superposition of a discrete set of stationary vibrations

$$U(x,t) = \sum_{k \in \mathbb{N}} u_k(x) \left(\alpha_k \cos(\sqrt{\lambda_k(\Omega)} t) + \beta_k \sin(\sqrt{\lambda_k(\Omega)} t) \right)$$

The **eigenpair** $(u_k, \lambda_k(\Omega))$ solves

$$-\Delta u_k = \lambda_k(\Omega) u_k$$
 in Ω , $u_k = 0$ on $\partial \Omega$

- $\lambda_k(\Omega)$ is k-the eigenvalue of the Dirichlet-Laplacian
- u_k is k-th eigenfunction
- $k \mapsto \sqrt{\lambda_k(\Omega)}$ increasing (it is the frequency of vibration)

The fundamental frequency or first eigenvalue

 $\sqrt{\lambda_1(\Omega)}$ is the fundamental frequency of the drum

Variational characterization

$$\lambda_1(\Omega) = \inf_{u \in C_0^\infty(\Omega)} \left\{ \int_{\Omega} |\nabla u|^2 : \int_{\Omega} |u|^2 = 1 \right\}$$

i.e. this is the sharp constant in the Poincaré inequality

$$\lambda_1(\Omega) \, \int_\Omega |u|^2 \leq \int_\Omega |
abla u|^2$$

Remark

These definitions make (mathematical) sense in every dimension N

A question raised by Lord Rayleigh

Among drums with given area, which one has the lowest fundamental frequency λ_1 ?

Faber (1923) and Krahn (1925) answer The disk

Scaling law We have that $\lambda_1(t \Omega) = t^{-2} \lambda_1(\Omega)$ thus $\lambda_1(\Omega) |\Omega|$ is invariant under dilations

In other words, this quantity only depends on the $\ensuremath{\textbf{shape}}$ of the set, not on its $\ensuremath{\textbf{size}}$

Faber-Krahn inequality in dimension N

 $\lambda_1(\Omega) \, |\Omega|^{2/N} \geq \lambda_1(\mathsf{ball}) \, |\mathsf{ball}|^{2/N}$

with equality $\text{if and only if }\Omega$ itself is a ball

Proof.

Use the variational characterization of $\lambda_1(\Omega)$, plus the properties of the **spherically symmetric decreasing rearrangement**

- let u be a first eigenfunction of Ω
- let u* be its spherically symmetric decreasing rearrangement

• by construction
$$1 = \int |u|^2 = \int |u^*|^2$$

moreover, by using <u>Pólya-Szegő principle</u> we have

$$\lambda_1(\Omega) = \int_{\Omega} |
abla u|^2 \geq \int_{\Omega^*} |
abla u^*|^2 \geq \lambda_1(\Omega^*)$$

A glimpse of Pólya-Szegő principle

If we set
$$\mu(t)=\Big|\{x\in\Omega\,:\,u(x)>t\}\Big|$$
 (distribution function)

$$\begin{split} \int_{\Omega} |\nabla u|^2 \stackrel{Coarea}{=} \int_{0}^{+\infty} \left(\int_{\{u=t\}} |\nabla u|^2 \frac{d\sigma}{|\nabla u|} \right) dt \\ \stackrel{Jensen}{\geq} \int_{0}^{+\infty} \left(\int_{\{u=t\}} |\nabla u| \frac{d\sigma}{|\nabla u|} \right)^2 \frac{dt}{\int_{\{u=t\}} |\nabla u|^{-1} d\sigma} \\ = \int_{0}^{+\infty} \frac{\operatorname{Perimeter}(\{u > t\})^2}{-\mu'(t)} dt \\ \stackrel{Isoperimetry}{\geq} \int_{0}^{+\infty} \frac{\operatorname{Perimeter}(\{u^* > t\})^2}{-\mu'(t)} dt = \int_{\Omega^*} |\nabla u^*|^2 \end{split}$$

If $\lambda_1(\Omega) = \lambda_1(\Omega^*)$, the superlevel sets of *u* are balls (by using the equality cases in the isoperimetric inequality)

Application I: hearing the shape of a drum¹

Let $\operatorname{spec}(\Omega) = \{\lambda_1(\Omega), \lambda_2(\Omega), \dots\}$ the collection of eigenvalues of the Dirichlet-Laplacian on Ω

Weyl's asymptotic

$$\lim_{t \to +\infty} \frac{\#\{\lambda_k(\Omega) : \lambda_k(\Omega) \le t\}}{t^{N/2}} = \frac{\omega_N}{(2\pi)^N} |\Omega|$$
(W)

Spectral rigidity

- if $\operatorname{spec}(\Omega) = \operatorname{spec}(\mathsf{ball})$, then $|\Omega| = |\mathsf{ball}|$ by (W)
- ...and obviously $\lambda_1(\Omega) = \lambda_1(\mathsf{ball})$
- thanks to equality cases in Faber-Krahn inequality, Ω is a ball

¹M. Kac, "*Can one hear the shape of a drum?*", Amer. Math. Month. (1966)

Application II: nodal domains

Theorem [Courant] Let $u_n = n-th$ eigenfunction of Ω $\mathcal{N}(n) = number$ of nodal domains of φ_n

then we have

$$\mathcal{N}(n) \leq n$$

Theorem [Pleijel] In dimension N = 2, we have $\lim_{n \to \infty} \frac{\mathcal{N}(n)}{n} \le \left(\frac{2}{j_{0,1}}\right)^2 \simeq 0.691$

Proof.

Denote by $\{\Omega_i\}$ the nodal domains

$$|\Omega| \lambda_n(\Omega) = \sum_{i=1}^{\mathcal{N}(n)} |\Omega_i| \lambda_1(\Omega_i) \stackrel{\mathcal{F}-\mathcal{K}}{\geq} \pi(j_{0,1})^2 \mathcal{N}(n)$$

Then we use Weyl's asymptotic

Application III: conformal mappings

Theorem [Pólya-Szegő]

 $\Omega \subset \mathbb{R}^2$ simply connected such that $|\Omega| = |D_1(0)| = \pi$. Let $x_0 \in \Omega$ and $f_{x_0} : \Omega \to D_1(0)$ the conformal mapping such that $f_{x_0}(x_0) = 0$. Then

 $|f_{x_0}'(x_0)| \geq 1$

Equality holds if and only if Ω is a disc

Proof.

Conformal transplantation technique and sub-harmonicity of $|(f_{x_0}^{-1})'|^2$ give

$$\frac{\lambda_1(\Omega)}{|f_{x_0}'(x_0)|^2} \le j_{0,1}^2 \qquad \text{ i. e. } \qquad \frac{\lambda_1(\Omega)}{j_{0,1}^2} \le |f_{x_0}'(x_0)|$$

Now use Faber-Krahn!

The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp

Quantitative stability of Faber-Krahn inequality

Question 1.

Add a remainder term in Faber-Krahn which measures how much Ω is far from being a ball?

In other words, one looks for

$$\lambda_1(\Omega) \, |\Omega|^{2/N} - \lambda_1(B) \, |B|^{2/N} \ge g(d(\Omega)) \qquad (\mathsf{FKquant})$$

where

- $t\mapsto g(t)$ is a modulus of continuity
- $\Omega\mapsto d(\Omega)$ is an asymmetry functional

Question 2. (harder)

Answer **Question 1.** in a sharp way? i.e. such that for a sequence $\{\Omega_n\}_n$ converging to a ball we have

$$\lambda_1(\Omega_n) \, |\Omega_n|^{2/N} - \lambda_1(B) \, |B|^{2/N} \sim g(d(\Omega_n)) \quad ext{ for } n o \infty$$

The pioneers: Melas and Hansen & Nadirashvili

Melas [J. Diff. Geom. (1992)]

For **convex sets** in every dimension, quantitative Faber-Krahn (FKquant) is valid with

$$g(t) = t^{2N}$$

 $d_{\mathcal{M}}(\Omega) = \min\left\{\max\left\{rac{|B_2 \setminus \Omega|}{|B_2|}, rac{|\Omega \setminus B_1|}{|\Omega|}
ight\} \ : \ B_1 \subset \Omega \subset B_2 \text{ balls}
ight\}$

Hansen & Nadirashvili [Potential Anal. (1994)]

For simply connected sets in dimension N = 2 or convex sets for $N \ge 3$, quantitative Faber-Krahn (FKquant) is valid with

$$g(t) = ext{a power}$$
 $d_{\mathcal{N}}(\Omega) = 1 - rac{ ext{inradius of }\Omega}{ ext{radius of }B_{\Omega}}$

where B_{Ω} is a ball such that $|B_{\Omega}| = |\Omega|$

Topological obstructions

The topological restrictions in the previous results **can not be removed**

Counter-example

Take B_{ε} a ball with a small hole of radius ε at the center. Then

$$\lambda_1(B_arepsilon) \, |B_arepsilon|^{2/N} o \lambda_1(B) \, |B|^{2/N} \quad ext{ but } \quad d_\mathcal{M} \geq d_\mathcal{N} o rac{1}{2}$$

Remark

The asymmetry functionals are **too rigid**. If we want to treat general open set, a weaker asymmetry functional is needed

Fraenkel asymmetry

For a general open set, it is better to use

$$\mathcal{A}(\Omega) = \inf \left\{ rac{|\Omega \Delta B|}{|\Omega|} \, : \, B \, \operatorname{\mathsf{ball}} \, \operatorname{\mathsf{with}} \, |B| = |\Omega|
ight\}$$

This is a L^1 distance from the "manifold" of balls Remarks

- ► $0 \le A < 2$ and $A(\Omega) = 0$ if and only if Ω is a ball (up to a set of measure zero)
- ▶ for a convex set with N orthogonal planes of symmetry, an optimal ball can be placed at the intersection of the planes

The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp

Towards sharpness

Nadirashvili – Bhattacharya & Weitsman conjecture

$$\lambda_1(\Omega) \, |\Omega|^{2/N} - \lambda_1(B) \, |B|^{2/N} \geq rac{1}{C_N} \, \mathcal{A}(\Omega)^2$$

Exponent 2 is best possible

Take an ellipse E_{ε} , then

$$\lambda_1(E_{arepsilon}) - \lambda_1(B_1) \sim arepsilon^2 \qquad \mathcal{A}(E_{arepsilon}) \sim arepsilon$$

Figure: Ellipse E_{ε} with semi-axes $1 + \varepsilon$ and $(1 + \varepsilon)^{-1}$

Previous results

Many contributions by Bhattacharya, Sznitman, Povel, Fusco-Maggi-Pratelli...All of them, based on **boosted Pólya-Szegő principle**

With these methods, the best result up to now

The Hansen-Nadirashvili method (B. - De Philippis)

 $\lambda_1(\Omega) |\Omega|^{2/N} - \lambda_1(B) |B|^{2/N} \ge c_N \mathcal{A}(\Omega)^3$

with $c_N > 0$ explicit dimensional constant

Proof.

Idea: go back to Pólya-Szegő inequality. In place of *isoperimetric inequality* for $\{u > t\}$, use the **the sharp quantitative isoperimetric inequality**

Perimeter (E) – Perimeter $(B) \ge \beta_N \mathcal{A}(E)^2$

Key point: link the asymmetry of $\{u > t\}$ to that of the zero-level set, i.e. Ω .

Quantitative and sharp

The conjecture by Nadirashvili & Bhattacharya-Weitsman is true More generally, at the same price, we get for free...

Main Theorem [B. - De Philippis - Velichkov] For $1 \le q < 2^*$, we define

$$\lambda_{1,q}(\Omega) = \min_{u \in W_0^{1,2}(\Omega)} \left\{ \int_{\Omega} |\nabla u|^2 : \|u\|_{L^q(\Omega)} = 1 \right\}$$

we have

$$\lambda_{1,q}(\Omega) \, |\Omega|^{eta} - \lambda_{1,q}(B) \, |B|^{eta} \geq c_{N,q} \, \mathcal{A}(\Omega)^2$$

Remarks

- The exponent β is given by scale invariance
- The original conjecture is for q = 2
- $c_{N,q}$ is not explicit, we know his behaviour as $q \nearrow 2^*$

1st step : "just prove the result for q = 1"

Remark

For q = 1, the quantity $1/\lambda_{1,1}(\Omega)$ coincides with the **torsional** rigidity $T(\Omega)$

$$T(B) \ge T(\Omega)$$
 if $|B| = |\Omega|$

Kohler-Jobin inequality

"The ball minimizes $\lambda_{1,q}$ among sets with given torsional rigidity" that is

$$\lambda_{1,q}(\Omega) \ T(\Omega)^{\vartheta} - \lambda_{1,q}(B) \ T(B)^{\vartheta} \ge 0$$

this implies

$$rac{\lambda_{1,q}(\Omega)}{\lambda_{1,q}(B)} - 1 \geq \left(rac{T(B)}{T(\Omega)}
ight)^artual - 1$$

1st step : "just prove the result for q = 1"

We thus have

Proposition [the Faber-Krahn hierarchy]

If one can prove

 $T(B_1) - T(\Omega) \ge c_N \mathcal{A}(\Omega)^2$ for $|\Omega| = |B_1|$

then the Main Theorem is true for q > 1, with a constant $\tilde{c}_{N,q}$ only depending on q and c_N above

"Why the torsional rigidity should be better?" Working with $T(\Omega)$ has the following advantage

$$-\frac{1}{2} T(\Omega) = \min_{u \in W_0^{1,2}(\Omega)} \left\{ \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} u \right\}$$

and this is a ${\bf convex\ problem\ without\ constraint},$ with a linear Euler-Lagrange equation

2nd step: "Main Theorem is true for almost spherical sets" We say that Ω is almost spherical if

$$\partial \Omega = \{ x : x = (1 + \varphi(y)) y \text{ with } y \in \partial B_1 \},$$

for a (smooth) function $\varphi : \partial B_1 \to [-\frac{1}{2}, \frac{1}{2}]$

Figure: Here it is an almost spherical set!

Proposition

Let Ω be $C^{2,\gamma}$ almost spherical with $\|\varphi\|_{C^{2,\gamma}} \ll 1$ such that $|\Omega| = |B_1|$ and $x_{\Omega} := barycenter(\Omega) = 0$ then

$$\mathcal{T}(\mathcal{B}_1) - \mathcal{T}(\Omega) \geq au_{\mathcal{N}} \, \|arphi\|_{H^{1/2}(\partial \mathcal{B}_1)}^2$$

Proof.

We use the 2nd order Taylor expansion (Dambrine, 2002)

$$\mathcal{T}(B_1) - \mathcal{T}(\Omega) \geq rac{1}{2} \partial^2 \mathcal{T}(B_1)[arphi, arphi] - o(\|arphi\|_{H^{1/2}}^2)$$

The quadratic form $\partial^2 T(B_1)$ is **coercive** on a suitable subspace of $H^{1/2}$

Remark

$$\|\varphi\|_{H^{1/2}(\partial B_1)}^2 \ge \int_{\partial B_1} \varphi^2 \gtrsim \left(\int_{\partial B_1} |\varphi|\right)^2 \simeq |\Omega \Delta B_1|^2 \ge \mathcal{A}(\Omega)^2$$

3rd step : "contradict the result!"

1. We suppose that there can not exist a constant c > 0 such that

$$\mathcal{T}(B_1) - \mathcal{T}(\Omega) \geq c \, \mathcal{A}(\Omega)^2 \qquad ext{for every } |\Omega| = |B_1|$$

- 2. there is a **nasty sequence** $\{\Omega_n\}_{n\in\mathbb{N}}$ such that $|\Omega_n| = |B_1|$ and $\frac{T(B_1) - T(\Omega_n)}{\varepsilon_n^2} \to 0$ where $0 < \varepsilon_n := \mathcal{A}(\Omega_n) \to 0$
- 3. The sequence $\{\Omega_n\}$ converges to a ball...but for sets close to a ball, we know by the 2nd step that

$$0 < \tau_N \leq \frac{T(B_1) - T(\Omega_n)}{\varepsilon_n^2}$$

contradiction! <u>NOT AT ALL</u>, of course there is a **problem** of topology

4th step : "contradict in a smart way"

Remark

The sequence $\{\Omega_n\}_{n\in\mathbb{N}}$ does not converge in $C^{2,\gamma}$...but only in L^1 ! For Ω_n , we can not use 2nd step

Idea

Replace the nasty sequence $\{\Omega_n\}_{n\in\mathbb{N}}$ by a **smoother one**, still contradicting the stability, for example take U_n solving

$$\min\{T(B_1) - T(\Omega) : |\Omega| = |B_1| \quad \text{et} \quad \mathcal{A}(\Omega) = \varepsilon_n\}$$

By construction, we still have

$$\frac{T(B_1) - T(U_n)}{\varepsilon_n^2} \le \frac{T(B_1) - T(\Omega_n)}{\varepsilon_n^2} \to 0 \quad \text{and} \quad \varepsilon_n = \mathcal{A}(U_n) \to 0$$

 U_n is the best way to contradict the stability

More precisely: penalized problem

We can suppose that

$$T(B_1) - T(\Omega_n) \leq \sigma \, \varepsilon_n^2$$

for a given 0 < $\sigma \ll 1$

New problem

$$\min\left(T(B_1) - T(\Omega)\right) + \Lambda |\Omega| + \sqrt[3]{\sigma} \left(\mathcal{A}(\Omega) - \varepsilon_n\right)^2$$

1. A is a Lagrange multiplier such that for $\sigma = 0$ the ball B_1 is a solution

2. 0 < $\sigma \ll 1$ is the parameter above, so that any solution U_n satisfies

$$|\mathcal{A}(U_n) - \varepsilon_n| \lesssim \sqrt[3]{\sigma} \varepsilon_n$$

$$||U_n| - |B_1|| \lesssim \sqrt[3]{\sigma} \varepsilon_n$$

•
$$T(B_1) - T(U_n) \lesssim \sigma \varepsilon_n^2$$

Free boundaries appear...

Memento

 $-\mathcal{T}(\Omega)$ as well is defined as a minimization problem over functions

Our penalized problem can be written as a **free boundary problem**

$$\min_{u} \frac{1}{2} \int |\nabla u|^2 - \int u + \Lambda |\{u > 0\}| + \sqrt[3]{\sigma} \left(\mathcal{A}(\{u > 0\}) - \varepsilon_n\right)^2$$

Relation with the previous problem If u_n is a soluton, then $U_n = \{u_n > 0\}$ Then the **key point** is the **regularity of the free boundary** $\partial \{u_n > 0\}$

– We really hope for
$$\mathcal{C}^{2,\gamma}$$
 regularity –

Optimality conditions and regularity

What is the best we can hope for?

Suppose that B_1 is optimal for $\mathcal{A}(\{u_n > 0\})$

The optimality condition for the free boundary problem is

$$\left|\frac{\partial u_n}{\partial \nu}\right|^2 = \Lambda + 2\sqrt[3]{\sigma} \left(\mathcal{A}(\{u_n > 0\}) - \varepsilon_n\right) \left(\mathbf{1}_{\mathbb{R}^N \setminus B_1} - \mathbf{1}_{B_1}\right)$$

Problem

The term in red is not continuous

The free boundary ∂U_n is not even $C^{1,\gamma}$

Indeed by Elliptic Regularity, ∂U_n of class $C^{1,\gamma}$ forces the normal derivative of u_n to be continuous

We get stuck!

We needed to show that U_n converges $C^{2,\gamma}$ to a ball, but this is not possible

SO WHAT ?

A new asymmetry?

Of course, the problem is due to *lack of regularity of Fraenkel* asymmetry...what if we replace $\mathcal{A}(\Omega)$ by a "smoother" asymmetry?

Back to almost spherical sets

We have seen that

$$T(B_1) - T(\Omega) \geq \tau_N \|\varphi\|_{H^{1/2}(\partial B_1)}^2$$

then we said

$$\|arphi\|_{H^{1/2}(\partial B_1)}^2 \ge \|arphi\|_{L^2(\partial B_1)}^2 \ge c \, \|arphi\|_{L^1(\partial B_1)}^2 \simeq \mathcal{A}(\Omega)^2$$

Remark

The L^2 norm squared is **much more regular** than $\mathcal{A}(\Omega)^2$...And this is exactly what we are estimating for an almost spherical!

Yes! A new asymmetry

For a bounded set, we introduce

$$lpha(\Omega) := \int_{\Omega \Delta B_1(x_\Omega)} \left| 1 - |x - x_\Omega| \right| dx$$

where $x_{\Omega} = \text{barycenter}(\Omega)$

Properties of α

a. $|\Omega \Delta B_1(x_\Omega)|^2 \lesssim \alpha(\Omega)$

b. if Ω is almost spherical, then

$$lpha(\Omega) \sim \int_{\partial B_1} \varphi^2 \lesssim \mathcal{T}(B_1) - \mathcal{T}(\Omega)$$

Conclusion: the Selection Principle

We use the scheme described above, with ${\cal A}$ in place of α

Selection Principle

There exist $\{E_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^N$ such that

- $|E_n| = |B_1|$ and $x_{E_n} = 0$
- ∂E_n converges to ∂B_1 in C^k , for every k

$$T(B_1) - T(E_n) \leq C \sigma \alpha(E_n)$$

Every E_n is a scaled and translated copy of $U_n = \{u_n > 0\}$, with u_n solution of the free boundary problem

$$\min_{u} \frac{1}{2} \int |\nabla u|^2 - \int u + \Lambda |\{u > 0\}| + \sqrt[3]{\sigma} \left(\alpha(\{u > 0\}) - \varepsilon_n\right)^2$$

The regularity is obtained with a careful adapation of Alt & Caffarelli [J. Reine Angew. Math. (1981)] and Kinderlehrer & Nirenberg [Ann. SNS. (1977)]

Further readings

Stability in Neumann case

B., Pratelli, GAFA (2012)

Stability in Stekloff case

- B., De Philippis, Ruffini, J. Funct. Anal. (2012)
- A "Selection Principle" for the isoperimetric inequality
 - Cicalese, Leonardi, ARMA (2012)

Many thanks for your kind attention

"I knew it would take some time to get to that point. And I worked hard to get there" C. Schuldiner