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Drums

Take a vibrating membrane fixed at the boundary of a set Ω ⊂ R2

This is a superposition of a discrete set of stationary vibrations

U(x , t) =
∑
k∈N

uk(x)
(
αk cos(

√
λk(Ω) t) + βk sin(

√
λk(Ω) t)

)
The eigenpair (uk , λk(Ω)) solves

−∆uk = λk(Ω) uk in Ω, uk = 0 on ∂Ω

I λk(Ω) is k−the eigenvalue of the Dirichlet-Laplacian

I uk is k−th eigenfunction

I k 7→
√
λk(Ω) increasing (it is the frequency of vibration)



The fundamental frequency or first eigenvalue

√
λ1(Ω) is the fundamental frequency of the drum

Variational characterization

λ1(Ω) = inf
u∈C∞0 (Ω)

{∫
Ω
|∇u|2 :

∫
Ω
|u|2 = 1

}
i.e. this is the sharp constant in the Poincaré inequality

λ1(Ω)

∫
Ω
|u|2 ≤

∫
Ω
|∇u|2

Remark
These definitions make (mathematical) sense in every dimension N



A question raised by Lord Rayleigh

Among drums with given area, which one has the lowest
fundamental frequency λ1?

Faber (1923) and Krahn (1925) answer

The disk

Scaling law

We have that λ1(t Ω) = t−2 λ1(Ω) thus

λ1(Ω) |Ω| is invariant under dilations

In other words, this quantity only depends on the shape of the set,
not on its size



Faber-Krahn inequality in dimension N

λ1(Ω) |Ω|2/N ≥ λ1(ball) |ball|2/N

with equality if and only if Ω itself is a ball

Proof.
Use the variational characterization of λ1(Ω), plus the properties of
the spherically symmetric decreasing rearrangement

I let u be a first eigenfunction of Ω

I let u∗ be its spherically symmetric decreasing
rearrangement

I by construction 1 =

∫
|u|2 =

∫
|u∗|2

I moreover, by using Pólya-Szegő principle we have

λ1(Ω) =

∫
Ω
|∇u|2 ≥

∫
Ω∗
|∇u∗|2 ≥ λ1(Ω∗)



A glimpse of Pólya-Szegő principle

If we set µ(t) =
∣∣∣{x ∈ Ω : u(x) > t}

∣∣∣ (distribution function)

∫
Ω
|∇u|2 Coarea

=

∫ +∞

0

(∫
{u=t}

|∇u|2 dσ

|∇u|

)
dt

Jensen
≥

∫ +∞

0

(∫
{u=t}

|∇u| dσ

|∇u|

)2
dt∫

{u=t}
|∇u|−1 dσ

=

∫ +∞

0

Perimeter({u > t})2

−µ′(t)
dt

Isoperimetry
≥

∫ +∞

0

Perimeter({u∗ > t})2

−µ′(t)
dt =

∫
Ω∗
|∇u∗|2

If λ1(Ω) = λ1(Ω∗), the superlevel sets of u are balls (by using the
equality cases in the isoperimetric inequality)



Application I: hearing the shape of a drum1

Let spec(Ω) = {λ1(Ω), λ2(Ω), . . . } the collection of eigenvalues of
the Dirichlet-Laplacian on Ω

Weyl’s asymptotic

lim
t→+∞

#{λk(Ω) : λk(Ω) ≤ t}
tN/2

=
ωN

(2π)N
|Ω| (W)

Spectral rigidity

I if spec(Ω) = spec(ball), then |Ω| = |ball| by (W)

I ...and obviously λ1(Ω) = λ1(ball)

I thanks to equality cases in Faber-Krahn inequality, Ω is a ball

1M. Kac, “Can one hear the shape of a drum? ”, Amer. Math. Month.
(1966)



Application II: nodal domains

Theorem [Courant]

Let
un = n−th eigenfunction of Ω

N (n) = number of nodal domains of ϕn

then we have
N (n) ≤ n

Theorem [Pleijel]

In dimension N = 2, we have

lim
n→∞

N (n)

n
≤
(

2

j0,1

)2

' 0.691

Proof.
Denote by {Ωi} the nodal domains

|Ω|λn(Ω) =
∑N (n)

i=1 |Ωi |λ1(Ωi )
F−K
≥ π (j0,1)2N (n)

Then we use Weyl’s asymptotic



Application III: conformal mappings

Theorem [Pólya-Szegő]

Ω ⊂ R2 simply connected such that |Ω| = |D1(0)| = π. Let x0 ∈ Ω
and fx0 : Ω→ D1(0) the conformal mapping such that fx0(x0) = 0.
Then

|f ′x0
(x0)| ≥ 1

Equality holds if and only if Ω is a disc

Proof.
Conformal transplantation technique and sub-harmonicity of
|(f −1

x0
)′|2 give

λ1(Ω)

|f ′x0
(x0)|2 ≤ j2

0,1 i. e.
λ1(Ω)

j2
0,1

≤ |f ′x0
(x0)|

Now use Faber-Krahn!



The Faber-Krahn inequality

Some pioneering quantitative versions

Quantitative and sharp



Quantitative stability of Faber-Krahn inequality

Question 1.
Add a remainder term in Faber-Krahn which measures how
much Ω is far from being a ball?

In other words, one looks for

λ1(Ω) |Ω|2/N − λ1(B) |B|2/N ≥ g(d(Ω)) (FKquant)

where

I t 7→ g(t) is a modulus of continuity

I Ω 7→ d(Ω) is an asymmetry functional

Question 2. (harder)

Answer Question 1. in a sharp way? i.e. such that for a sequence
{Ωn}n converging to a ball we have

λ1(Ωn) |Ωn|2/N − λ1(B) |B|2/N ∼ g(d(Ωn)) for n→∞



The pioneers: Melas and Hansen & Nadirashvili

Melas [J. Diff. Geom. (1992)]

For convex sets in every dimension, quantitative Faber-Krahn
(FKquant) is valid with

g(t) = t2N

dM(Ω) = min

{
max

{ |B2 \ Ω|
|B2|

,
|Ω \ B1|
|Ω|

}
: B1 ⊂ Ω ⊂ B2 balls

}

Hansen & Nadirashvili [Potential Anal. (1994)]

For simply connected sets in dimension N = 2 or convex sets
for N ≥ 3, quantitative Faber-Krahn (FKquant) is valid with

g(t) = a power dN (Ω) = 1− inradius of Ω
radius of BΩ

where BΩ is a ball such that |BΩ| = |Ω|



Topological obstructions

The topological restrictions in the previous results can not be
removed

Counter-example

Take Bε a ball with a small hole of radius ε at the center. Then

λ1(Bε) |Bε|2/N → λ1(B) |B|2/N but dM ≥ dN →
1

2

Remark
The asymmetry functionals are too rigid. If we want to treat
general open set, a weaker asymmetry functional is needed



Fraenkel asymmetry
For a general open set, it is better to use

A(Ω) = inf

{ |Ω∆B|
|Ω| : B ball with |B| = |Ω|

}
This is a L1 distance from the “manifold” of balls

Remarks

I 0 ≤ A < 2 and A(Ω) = 0 if and only if Ω is a ball (up to a
set of measure zero)

I for a convex set with N orthogonal planes of symmetry, an
optimal ball can be placed at the intersection of the planes
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Quantitative and sharp



Towards sharpness

Nadirashvili – Bhattacharya & Weitsman conjecture

λ1(Ω) |Ω|2/N − λ1(B) |B|2/N ≥ 1

CN
A(Ω)2

Exponent 2 is best possible

Take an ellipse Eε, then

λ1(Eε)− λ1(B1) ∼ ε2 A(Eε) ∼ ε

Figure: Ellipse Eε with semi-axes 1 + ε and (1 + ε)−1



Previous results

Many contributions by Bhattacharya, Sznitman, Povel,
Fusco-Maggi-Pratelli...All of them, based on boosted
Pólya-Szegő principle

With these methods, the best result up to now

The Hansen-Nadirashvili method (B. - De Philippis)

λ1(Ω) |Ω|2/N − λ1(B) |B|2/N ≥ cN A(Ω)3

with cN > 0 explicit dimensional constant

Proof.
Idea: go back to Pólya-Szegő inequality. In place of isoperimetric
inequality for {u > t}, use the the sharp quantitative
isoperimetric inequality

Perimeter (E )− Perimeter (B) ≥ βN A(E )2

Key point: link the asymmetry of {u > t} to that of the
zero-level set, i.e. Ω.



Quantitative and sharp
The conjecture by Nadirashvili & Bhattacharya-Weitsman is true

More generally, at the same price, we get for free...

Main Theorem [B. - De Philippis - Velichkov]

For 1 ≤ q < 2∗, we define

λ1,q(Ω) = min
u∈W 1,2

0 (Ω)

{∫
Ω
|∇u|2 : ‖u‖Lq(Ω) = 1

}
we have

λ1,q(Ω) |Ω|β − λ1,q(B) |B|β ≥ cN,q A(Ω)2

Remarks

I The exponent β is given by scale invariance

I The original conjecture is for q = 2

I cN,q is not explicit, we know his behaviour as q ↗ 2∗



1st step : “just prove the result for q = 1”

Remark
For q = 1, the quantity 1/λ1,1(Ω) coincides with the torsional
rigidity T (Ω)

T (B) ≥ T (Ω) if |B| = |Ω|

Kohler-Jobin inequality

“The ball minimizes λ1,q among sets with given torsional rigidity ”

that is

λ1,q(Ω)T (Ω)ϑ − λ1,q(B)T (B)ϑ ≥ 0

this implies

λ1,q(Ω)
λ1,q(B)

− 1 ≥
(
T (B)
T (Ω)

)ϑ
− 1



1st step : “just prove the result for q = 1”

We thus have

Proposition [the Faber-Krahn hierarchy]

If one can prove

T (B1)− T (Ω) ≥ cN A(Ω)2 for |Ω| = |B1|
then the Main Theorem is true for q > 1, with a constant c̃N,q
only depending on q and cN above

“Why the torsional rigidity should be better? ”

Working with T (Ω) has the following advantage

−1

2
T (Ω) = min

u∈W 1,2
0 (Ω)

{
1

2

∫
Ω
|∇u|2 −

∫
Ω
u

}
and this is a convex problem without constraint, with a linear
Euler-Lagrange equation



2nd step: “Main Theorem is true for almost spherical sets”
We say that Ω is almost spherical if

∂Ω = {x : x = (1 + ϕ(y)) y with y ∈ ∂B1},

for a (smooth) funcion ϕ : ∂B1 → [−1
2 ,

1
2 ]

Figure: Here it is an almost spherical set!



Proposition

Let Ω be C 2,γ almost spherical with ‖ϕ‖C2,γ � 1 such that

|Ω| = |B1| and xΩ := barycenter (Ω) = 0
then

T (B1)− T (Ω) ≥ τN ‖ϕ‖2
H1/2(∂B1)

Proof.
We use the 2nd order Taylor expansion (Dambrine, 2002)

T (B1)− T (Ω) ≥ 1

2
∂2T (B1)[ϕ,ϕ]− o(‖ϕ‖2

H1/2)

The quadratic form ∂2T (B1) is coercive on a suitable subspace of
H1/2

Remark

‖ϕ‖2
H1/2(∂B1)

≥
∫
∂B1

ϕ2 '

(∫
∂B1

|ϕ|
)2

' |Ω∆B1|2 ≥ A(Ω)2



3rd step : “contradict the result! ”

1. We suppose that there can not exist a constant c > 0 such
that

T (B1)− T (Ω) ≥ c A(Ω)2 for every |Ω| = |B1|

2. there is a nasty sequence {Ωn}n∈N such that |Ωn| = |B1| and

T (B1)− T (Ωn)

ε2
n

→ 0 where 0 < εn := A(Ωn)→ 0

3. The sequence {Ωn} converges to a ball...but for sets close to
a ball, we know by the 2nd step that

0 < τN ≤
T (B1)− T (Ωn)

ε2
n

contradiction! NOT AT ALL, of course there is a problem
of topology



4th step : “contradict in a smart way”

Remark
The sequence {Ωn}n∈N does not converge in C 2,γ ...but only in L1!
For Ωn, we can not use 2nd step

Idea
Replace the nasty sequence {Ωn}n∈N by a smoother one, still
contradicting the stability, for example take Un solving

min{T (B1)− T (Ω) : |Ω| = |B1| et A(Ω) = εn}

By construction, we still have

T (B1)− T (Un)

ε2
n

≤ T (B1)− T (Ωn)

ε2
n

→ 0 and εn = A(Un)→ 0

Un is the best way to contradict the stability



More precisely: penalized problem

We can suppose that

T (B1)− T (Ωn) ≤ σ ε2
n

for a given 0 < σ � 1

New problem

min
(
T (B1)− T (Ω)

)
+ Λ |Ω|+ 3

√
σ (A(Ω)− εn)2

1. Λ is a Lagrange multiplier such that for σ = 0 the ball B1 is a
solution

2. 0 < σ � 1 is the parameter above, so that any solution Un

satisfies

I |A(Un)− εn| . 3
√
σ εn

I

∣∣∣|Un| − |B1|
∣∣∣ . 3
√
σ εn

I T (B1)− T (Un) . σ ε2
n



Free boundaries appear...

Memento
−T (Ω) as well is defined as a minimization problem over functions

Our penalized problem can be written as a free boundary
problem

min
u

1

2

∫
|∇u|2 −

∫
u + Λ |{u > 0}|+ 3

√
σ (A({u > 0})− εn)2

Relation with the previous problem

If un is a soluton, then Un = {un > 0}
Then the key point is the regularity of the free boundary
∂{un > 0}

– We really hope for C 2,γ regularity –



Optimality conditions and regularity

What is the best we can hope for?

Suppose that B1 is optimal for A({un > 0})
The optimality condition for the free boundary problem is∣∣∣∣∂un∂ν

∣∣∣∣2 = Λ + 2 3
√
σ (A({un > 0})− εn)

(
1RN\B1

− 1B1

)

|Ω∆B1| increases

|Ω∆B1| decreases



Problem
The term in red is not continuous

The free boundary ∂Un is not even C 1,γ

Indeed by Elliptic Regularity, ∂Un of class C 1,γ forces the normal
derivative of un to be continuous

We get stuck!

We needed to show that Un converges C 2,γ to a ball, but this is
not possible

SO WHAT ?



A new asymmetry?

Of course, the problem is due to lack of regularity of Fraenkel
asymmetry...what if we replace A(Ω) by a “smoother” asymmetry?

Back to almost spherical sets

We have seen that

T (B1)− T (Ω) ≥ τN ‖ϕ‖2
H1/2(∂B1)

then we said

‖ϕ‖2
H1/2(∂B1)

≥ ‖ϕ‖2
L2(∂B1) ≥ c ‖ϕ‖2

L1(∂B1) ' A(Ω)2

Remark
The L2 norm squared is much more regular than A(Ω)2...And
this is exactly what we are estimating for an almost spherical!



Yes! A new asymmetry

For a bounded set, we introduce

α(Ω) :=

∫
Ω∆B1(xΩ)

∣∣∣1− |x − xΩ|
∣∣∣ dx

where xΩ = barycenter (Ω)

Properties of α

a. |Ω∆B1(xΩ)|2 . α(Ω)

b. if Ω is almost spherical, then

α(Ω) ∼
∫
∂B1

ϕ2 . T (B1)− T (Ω)



Conclusion: the Selection Principle

We use the scheme described above, with A in place of α

Selection Principle

There exist {En}n∈N ⊂ RN such that

I |En| = |B1| and xEn = 0

I ∂En converges to ∂B1 in C k , for every k

I T (B1)− T (En) ≤ C σ α(En)

Every En is a scaled and translated copy of Un = {un > 0}, with
un solution of the free boundary problem

min
u

1

2

∫
|∇u|2 −

∫
u + Λ |{u > 0}|+ 3

√
σ (α({u > 0})− εn)2

The regularity is obtained with a careful adapation of Alt &
Caffarelli [J. Reine Angew. Math. (1981)] and Kinderlehrer &
Nirenberg [Ann. SNS. (1977)]



Further readings

Stability in Neumann case

I B., Pratelli, GAFA (2012)

Stability in Stekloff case

I B., De Philippis, Ruffini, J. Funct. Anal. (2012)

A “Selection Principle” for the isoperimetric inequality

I Cicalese, Leonardi, ARMA (2012)



Many thanks for your kind attention

“I knew it would take some time to get to that point.

And I worked hard to get there ”

C. Schuldiner
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