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Concentration of measure

P(|Zy — EZy| > r) < 2¢T(N:1)

B Sub-Gaussian concentration (Z Gaussian, F Lipschitz)
B Dependence with respect to N

B Examples
» Standard: Zy = X1 + -+ Xy
» BRMT: Zy = f(M(X)) + - - + F(An(X))
» TSP: Zy = inf,ex, Zf; Xo(i41) — Xo ()|
» High dimensional phenomena, combinatorial optimization

B Talagrand principle
B Erdds complete convergence to deterministic object
B Books: Steele, Ledoux, Boucheron-Lugosi-Massart
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B Ginibre G = (Gjx)1<j«<n iid C Gaussian of variance
B The matrix G has density on CN°

o« @ Nt 1GKI? — g—NTH(GG")

B Change of variable: G = UTU* «» (U, T =D + N)
B Tr(GG*) = Tr(TT*) = Tr(DD*) + Tr(NN*)
B ()\(G),..., \w(G)) has density

QON(Z‘I""? O(eXp< NZ|ZI”2) H |Zjizk2-

1<j<k<N

B Neither product nor log-concave
B Determinantal (Pemantle-Peres, Breuer-Duits)
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Sub-Gaussian concentration of measure

B Gaussian Unitary Ensemble (GUE) H = (H!'k)1<j Py

2
o e—NTH(H?)

X e_NZQﬂ Ai H ()‘j — )\k)z
1<j<k<N
B Hoffman-Wielandt inequality for H, H' € Hermp,

N
min > " (Ak(H) = Aoy (H))? < > (Hi — Hip ).
k=1 jik=1
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Sub-Gaussian concentration of measure
B Gaussian Unitary Ensemble (GUE) H = (Hj),; , .y
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x f:_Nzg:1 X H ()\j — )\k)z
1<j<k<N
B Hoffman-Wielandt inequality for H, H' € Hermpy n

NWajuss, i )? < [H = H'[[5-

B Sub-Gaussian concentration inequality for GUE

_ 2,2
P(|Wa(uh, Epm) — EW2(un, Eun)| > r) < 2¢OV

B Maida-Maurel-Segala: P(W1(un, pe) = r) < e Nr°
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Coulomb kernel in mathematical physics

B Coulomb kernelinR9, d > 2,

Iogl ifd=2
xeR? = g(x) := X |
if d > 3.

|X‘d_2

B Fundamental solution of Poisson’s equation

2 ifd =2,

Ag=—cqdy Where cq4:= {(d—2)|Sd_1| o> 3.

Q/32



10/32

Concentration for Coulomb gases
L Electrostatics

Coulomb energy and metric

B Probability measures on RY with compact support



10/32

Concentration for Coulomb gases
L Electrostatics

Coulomb energy and metric

B Probability measures on RY with compact support
B Coulomb energy:

E(n) = / 9(x — y)u(dx)u(dy) € RU {+o0}.



Concentration for Coulomb gases
L Electrostatics

Coulomb energy and metric

B Probability measures on RY with compact support
B Coulomb energy:
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B Coulomb metric:

(1, v) = VE(u—v).
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L Electrostatics

Confinement and equilibrium measure

B External potential V : RY — R U {+oc} growing at infinity
B Coulomb energy with confining potential

/ V(x)p(dx) + E (1) = /<V<x)+(g*u><x)>u(dx).

B External and internal electric fields: VV + Vg * i
B Equilibrium probability measure

wy = arginf&y
W .y is compactly supported and has density

1
AV
2¢cy
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Examples of equilibrium measures

dlg| VvV | 1y

1 | 2| oolintervarc(X) arcsine

1 |2 x? semicircle

2 |2 x| uniform on a disc
>3|d [ x]/? uniform on a ball
>2|d radial radial in a ring

=] 5
12/32
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N
HN(X15 . aXN) = NZ V(Xi) +
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Coulomb gas or one component plasma

B Interaction energy of N Coulomb charges in RY:

N
Hy(xt, o) = N V) + > g% — x).

i=1 i
B Boltzmann-Gibbs probability measure on (R9)N

dP,\\/I’B(Xh .. ,XN)
dxq ---dxn
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LCoulomb gas model

Coulomb gas or one component plasma

B Interaction energy of N Coulomb charges in RY:

N
Hy(x, . oxn) = NDY_V(x)+ > g(xi — x).

i=1 i
B Boltzmann-Gibbs probability measure on (R9)N

dIP’%B(xh e ,XN)

p
dX1“'dXN o<exp< 2HN(X15"'7XN)>

B V must be strong enough at infinity to ensure integrability.
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BN — MV
N— oo
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LCoulomb gas model

Empirical measure and equilibrium measure

B Random empirical measure under IP@B:

1N
,l/)/N = N 121: 6)(1'
B Under mild assumptions on V, with probability one,
UN N:Zo By

B Large Deviation Principle (BAG, HP, BAZ, CGZ, S, B)

|09Pl\\/’/3<d(MN,Mv) > r) 3
: Pt - .
N2 ot 2 g, (Ev(m)=Ev(nvy))

15/32



16/32

Concentration for Coulomb gases
I—Coulomb gas model

Quantitative or non asymptotic estimates
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LCoulomb gas model

Quantitative or non asymptotic estimates

B The LDP gives forany r > 0 and any N > Np,
e—Cf‘N2 < PI\\/I’5<d(MN7MV) Z r) g e_Cer_

B Sub-Gaussian concentration of measure: C quadratic in r?
B Other distances such as W,?

B Yes for one-dimensional log-gas: Maida-Maurel-Segala

B Nothing known otherwise (nothing for Ginibre ensemble!)
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Key observation

W Write Py ; with

dPY J(x1, ..., Xn) _ P (—‘%Nzﬁf(w))
dxy ---dxy
where

N
ZV,E

L (i) = / V(x)un(dx) + / / 90— Vn(@mnay)
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where
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LCoulomb gas model

Key observation

W Write Py ; with

dP’yﬁ(Xh e ,XN) B exp <_§N255(NN))

dxq---dxy ZOIB

where
&) = [ Voam(an + [[ 90 V)n(x)n(ay).

W Serfaty et al: rewrite £ (un) — Ev(uy) with L2 norm of
electric field of uy — py. Leads to renormalized energy.

B Alternative: compare Sf(u,v) — Ev(py) with Wy (un, py)-
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Probability metrics

B Coulomb divergence

Ev(p) — Ev(ny)

B Coulomb metric
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B Bounded-Lipschitz or Fortet-Mourier distance
dpr(s,v) = sup | F(x)(u — v)(dx),

[IfllLip<1
1]l oo <1
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Probability metrics
B Coulomb divergence

Ev(p) — Ev(ny)

B Coulomb metric
E(p—v)
B Bounded-Lipschitz or Fortet-Mourier distance
dp (i, v) = sup [ F(x)(u — v)(dx),
[1[|Lip<1
1]l <1

B (Monge-Kantorovich-)Wasserstein distance
' = inf  E(X - YP)'/P.
plasv)i= inf E(X = YP)

)

X~w, Y~
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Probability metrics
B Coulomb divergence

Ev(p) = Ev(py)

B Coulomb metric
E(p—v)
B Bounded-Lipschitz or Fortet—-Mourier distance
dp(u,v) == sup | F(x)(u —v)(dx),
[l fllLip<1

[lloo <1

B (Monge-Kantorovich-)Wasserstein distance

Wp(u,v) :=(__inf /|x—y|p7r(dx,dy))1/p.

meM(p,v)
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Probability metrics
B Coulomb divergence

Evp) = Ev(ny)

B Coulomb metric
E(p—v)
B Bounded-Lipschitz or Fortet—-Mourier distance

dpu(p.v) = sup | F(x)(u - v)(dx),

B Kantorovich-Rubinstein duality

Wi(mv) = sup | F(x)(n - v)(dx).

llfllLip<1
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L Probability metrics and Coulomb transport inequality

Probability metrics
B Coulomb divergence

Ev(p) — Ev(pv)
B Coulomb metric
E(p—v)
B Bounded-Lipschitz or Fortet—-Mourier distance
dpr(p,v) == sup [ f(x)(n—v)(dx),
[1fllLip<1
1l o<1
B Kantorovich-Rubinstein duality
dpr (1) < Wi(p,v) = sup [ F(x)(u— v)(dx).
[IfllLip<1

B Topologies
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Local Coulomb transport inequality

Theorem (Transport type inequality — CHM 2016)

D c RY compact, supp(u + ) C D, (1) < oo and E(v) < oo,

Wi(p,v)? < Cp&(u —v).

| Optlmal CD is VO](B4V01(D))
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Local Coulomb transport inequality

Theorem (Transport type inequality — CHM 2016)

D c RY compact, supp(u + ) C D, (1) < oo and E(v) < oo,

Wi(p,v)? < Cp&(u —v).

| Optimal Cpis VO](B4V01(D))
B Extends Popescu local free transport inequality to any d
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L Probability metrics and Coulomb transport inequality

Coulomb transport inequality for equilibrium measures
Theorem (Transport type inequality — CHM 2016)

We have for any probability measure u

dor (11, 1 )? < Cor (Ev() = Ev(uy) ).
Moreover if V is superquadratic then

Wi, pv)? < Cw, (Ev(k) — Evipy))-

B Free transport inequalities for d = 2 and V = +o00 on R°
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Coulomb transport inequality for equilibrium measures
Theorem (Transport type inequality — CHM 2016)

We have for any probability measure u

dor (11, 1 )? < Cor (Ev() = Ev(uy) ).
Moreover if V is superquadratic then

Wi, pv)? < Cw, (Ev(k) — Evipy))-

B Free transport inequalities for d = 2 and V = +o00 on R°
B Extends Maida-Maurel-Segala, Popescu
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Coulomb transport inequality for equilibrium measures
Theorem (Transport type inequality — CHM 2016)

We have for any probability measure u

dor (11, 1 )? < Cor (Ev() = Ev(uy) ).
Moreover if V is superquadratic then

Wi, pv)? < Cw, (Ev(k) — Evipy))-

B Free transport inequalities for d = 2 and V = +o00 on R°
B Extends Maida-Maurel-Segala, Popescu
B Growth condition is optimal for W
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L Concentration of measure for Coulomb gases

Concentration of measure for Coulomb gases
Theorem (Concentration inequality — CHM 2016)

If V does not grows too fast then

_ 2 2
Pg,g (dBL(NN7MV) > f) < e N
Moreover if V superquadratic then W instead of dg; .

B LDP shows that order in N is optimal
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Concentration of measure for Coulomb gases
Theorem (Concentration inequality — CHM 2016)

If V does not grows too fast then

PV (dBL(MNan) > r) < e~ @NPriH14-5(G Nlog N)+bEN"2/9 (AN

Moreover if V superquadratic then W instead of dg; .

B LDP shows that order in N is optimal
B Explicit constants a, b, ¢ if V sub-quadratic
B Extends Maida-Maurel-Segala bound to any dimension:

gV jf g =2
PY o (Wi, py) > 1) <e N7 r> N '
V’B< ) N-19  ifd> 3.
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L Concentration of measure for Coulomb gases

Convergence in Wasserstein distance

Corollary (Wasserstein convergence — CHM 2016)

If V superquadratic and By > ﬁv% then under IP’Q gy @S-

lim Wiy (up, py) = 0.
N— oo
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L Concentration of measure for Coulomb gases

Convergence at mesoscopic scale

Corollary (Mesoscopic convergence — CHM 2016)

W /fd =2 then

s s log N _
IP’“B (dBL(T)I(g ,MN,T!%I HV) > CNSH) <e cNIogN’

B Test functions are global, not local as in Rougerie-Serfaty
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W /fd =2 then

s s log N _
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L Concentration of measure for Coulomb gases

Convergence at mesoscopic scale

Corollary (Mesoscopic convergence — CHM 2016)

W /fd =2 then

s s log N _
IP’“B (dBL(T)I(g ,MN,T!%I MV) > CNSH) <e cNIogN’

W /fd > 3 then

P“g (dBL(T)’(XSuN,TgSMV) > CNS—1/d) < o CNZ2/d.

B /f V superquadratic then dgy, can be replaced by W.

B Test functions are global, not local as in Rougerie-Serfaty
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L Concentration of measure for Coulomb gases

Concentration for spectrum of Ginibre matrices

Corollary (Concentration for Ginibre — CHM 2016)

IfG is N x N with iid Gaussian entries of variance 5 then

P<W1 (1Gs He) = r) < e~ acN?r*+5Nlog N+ N[{+5 —log ]

B Open problem: universality, even for +1
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L Concentration of measure for Coulomb gases

Concentration for spectrum of Ginibre matrices

Corollary (Concentration for Ginibre — CHM 2016)

IfG is N x N with iid Gaussian entries of variance 5 then

P<W1 (1Gs He) = r) < e~ acN?r*+5Nlog N+ N[{+5 —log ]

B Open problem: universality, even for +1
B Provides W convergence
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L Concentration of measure for Coulomb gases

Exponential tightness
Theorem (Tightness — CHM 2016)

Foranyr>rnry

N N —cNV.
PY.5(supp(n) ¢ Br) =P 5 (max [xi| > r) < e M-,
where V.(r) := miny >, V(x).

B Follows by using an argument by Borot and Guionnet
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Exponential tightness
Theorem (Tightness — CHM 2016)

Foranyr>rnry

Py B,)="PY .( m | >r) <e oV«
v,ﬁ(SUPP(MN) Z Br) v,5(1S%>§\I’XI| = ) <¢ 5

where V.(r) := miny >, V(x).

B Follows by using an argument by Borot and Guionnet
B Gives that almost surely limy_, ., maxq<j<n |Xi| < oc.
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L Concentration of measure for Coulomb gases

Exponential tightness
Theorem (Tightness — CHM 2016)

Foranyr>rnry

N N —cNV,
B s(supp(un) ¢ By) = B 5 max [x| > r) <=M,

where V.(r) := miny >, V(x).

B Follows by using an argument by Borot and Guionnet

B Gives that almost surely limy_, ., maxq<j<n |Xi| < oc.
B Gives W, versions of convergence and concentration

W(1,v) < (2M)P~"W1 (1, v) < M2M)P~dp (1, ).

_AN3/2,2
For p = 2 we get P ;(Wa(un, ) > 1) < 2¢= N7,
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B W, versions? Popescu free transport inequalities

B Hardy-Littlewood-Sobolev inequalities (Keller-Segel PDE)
B Classical transport inequalities with Coulomb distance

B Varying V and conditional gases. Pﬁﬁ(- | Xn) = Pg;; with

~ N 2
Uni= gVt —790n =)

[covered by our work since g is superharmonic]
B Usage for CLT with GFF in all dimensions (VR, M+, LS, B+)
B Weakly confining potentials and heavy-tailed py
B Universality of concentration for random matrices
B Crossover and Sanov regime (Allez-Bouchaud-Guionnet)
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:

That’s all folks!

Thank you for your attention
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LConcemration of measure for Coulomb gases

Idea of proof of Coulomb transport inequality

B Potential: if U*(x) := g * u(x) then AUH(x) = —cq p
B Electric field: VU*(x). “Carré du champ”: [V U#|?
B Integration by parts + Schwarz’s inequality in R? and L2

Cd/f( p— v)(dx) /fx)AUM Y(x)dx
< [ I9F60Iv U () jax
< HfHLip/D VU™ (x)|dx

. 1/2
< Iflun(1D:] [ 19U 00fax)
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LConcen'rration of measure for Coulomb gases

Idea... Continued

Again by integration by parts

/|VU“_”(X)|2dx: —/U“‘”(x)AU“‘”(x)dx

~ ¢4 / R~ (X) (1 — v)(dx)

= Cq g(u - l/).
Finally

Wi (11, )? < | Dy |ca€ (1 — )
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LConcen'rration of measure for Coulomb gases

Idea of proof of concentration

1
dPY 5(Wi(pn, pv) > r) =

~ ZN
Zy

/ o= SE4mm) g
8 Y Wilpn,pv)=r
B Normalizing constant

B
—— < exp {NZ—SV
Z\IXB 2

() = N em) = s }.
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LConcen'rration of measure for Coulomb gases

Idea of proof of concentration

.1

_8
dPI\\/l,ﬁ(w1 (MN:MV) P I’) = ZT/ e 28¢(MN)dX.
V.8 I Wilun,py)=r

B Normalizing constant

s s
—— < 22 - — -S .
zZy, < exp{N sEviny) =N (zg(uv) (Mv))}
B Regularization: g superharmonic, Mﬁ) = UN K A,

N
—E4 () < =NPEY () + NEQL) + N D (V5 h. = V) (x).

i=1
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L Concentration of measure for Coulomb gases

|dea of proof of concentration

.1

_B
dpl\\//,ﬁ(w1 (MNaMV) P I') = N/ e 28#(NN)dX_
ZV,B Wi (un,my)=r

B Normalizing constant
- <epdNDey(uy) = N (Le(uy) - sun)) b
Z()’B 2 2

B Regularization: g superharmonic, Mﬁ) = UN * Ae,

N
—E4 () < =NPEY () + NEQL) + N D (V5 h. = V) (x).

i=1

B Coulomb transport —SV(Mﬁ))ﬂLEv(uv) < - W (uﬁ),uv)
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