Spectre de grands graphes dilués mais touffus

Nathanaël Enriquez en collaboration avec Laurent Ménard Modal'X Université Paris Ouest

Graphes d'Erdős-Rényi

- n sommets $\{1 \cdots n\}$
- \bullet reliés indépendamment entre eux par une arête avec probabilité p

Graphes d'Erdős-Rényi

G(n,p)

- n sommets $\{1 \cdots n\}$
- reliés indépendamment entre eux par une arête avec probabilité p

- symétrique
- Matrice d'adjacence A si $i \neq j$, $A_{i,j} = 1$ ssi $i \sim j$
 - pour tout i, $A_{i,i} = 0$

Graphes d'Erdős-Rényi

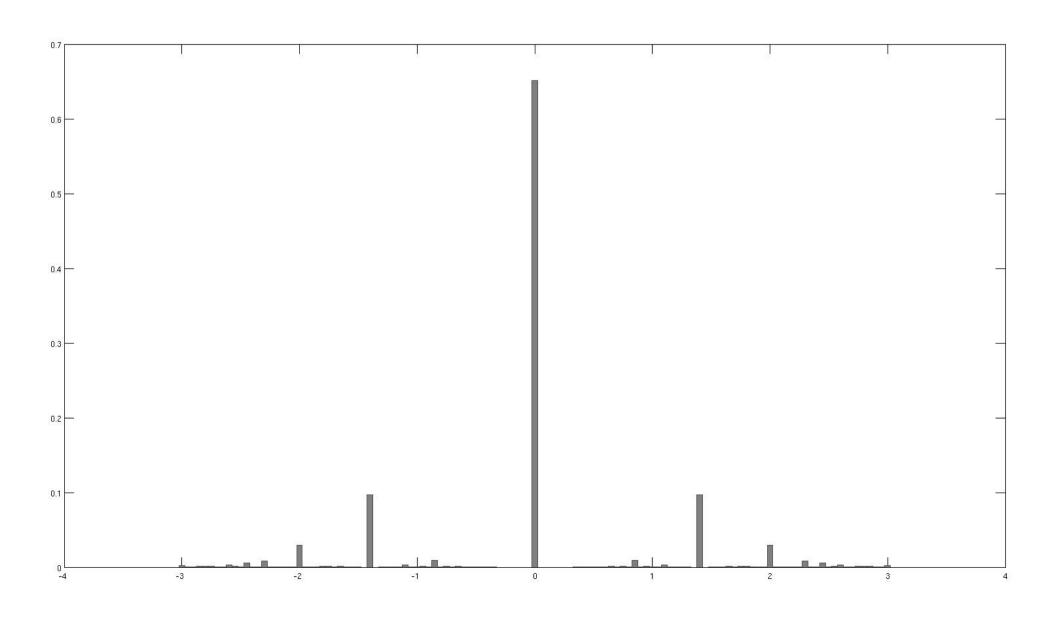
- n sommets $\{1 \cdots n\}$
- reliés indépendamment entre eux par une arête avec probabilité p

- symétrique
- Matrice d'adjacence $A \bullet \text{ si } i \neq j$, $A_{i,j} = 1$ ssi $i \sim j$
 - pour tout i, $A_{i,i} = 0$

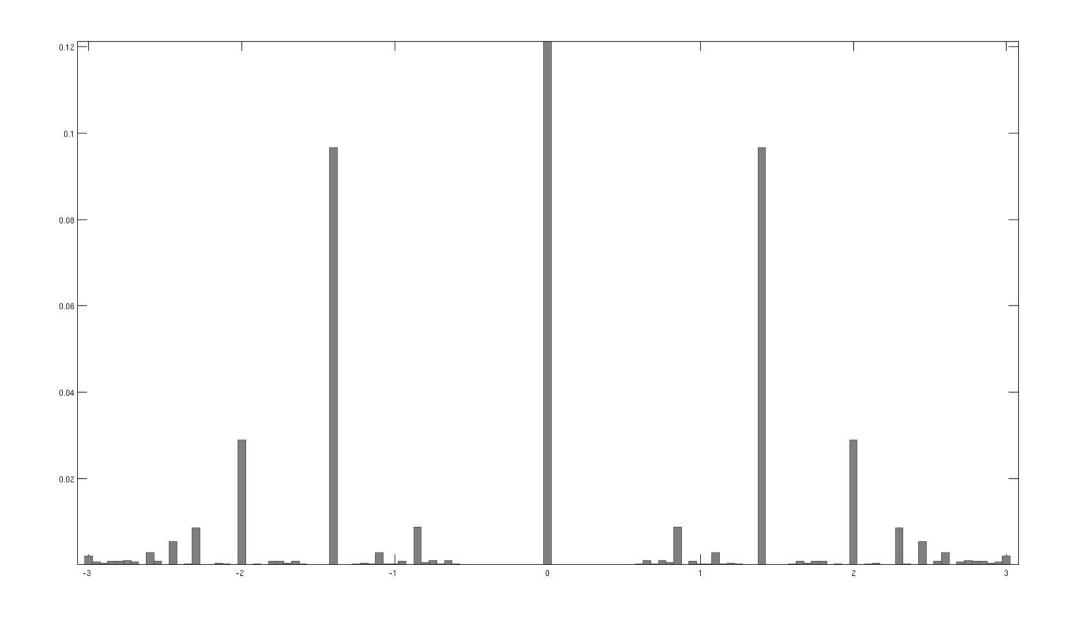
Question : allure de la limite de la mesure empirique du spectre de A lorsque n tend vers l'infini.

- si $np \to 0$, Dirac en 0
- si $np \to \infty$, loi du demi-cercle
- if $np \rightarrow c > 0$, Aïe!

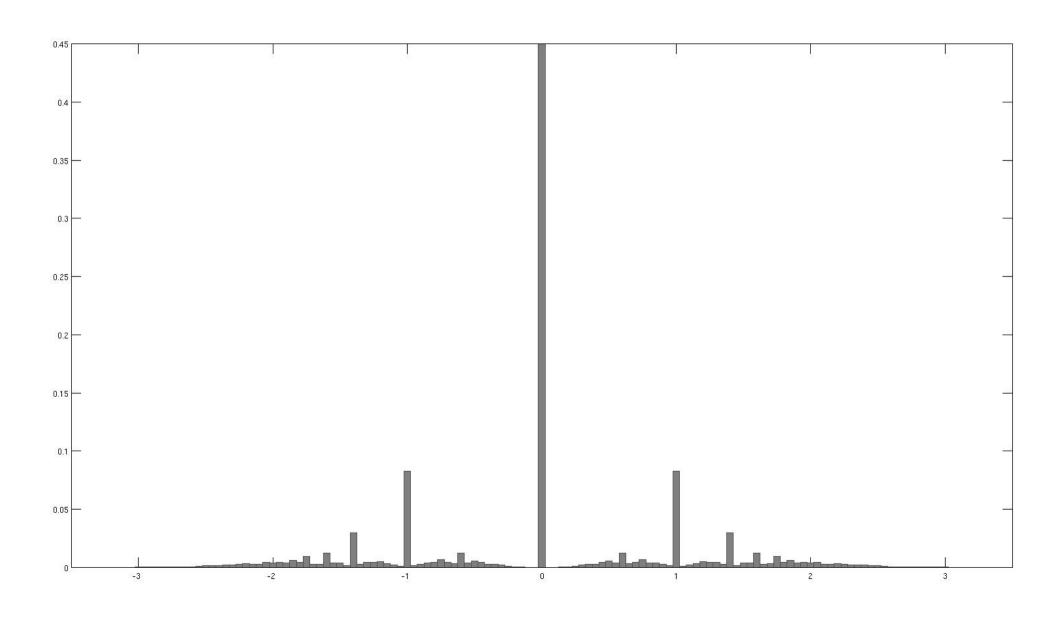
$$c = 0, 5$$



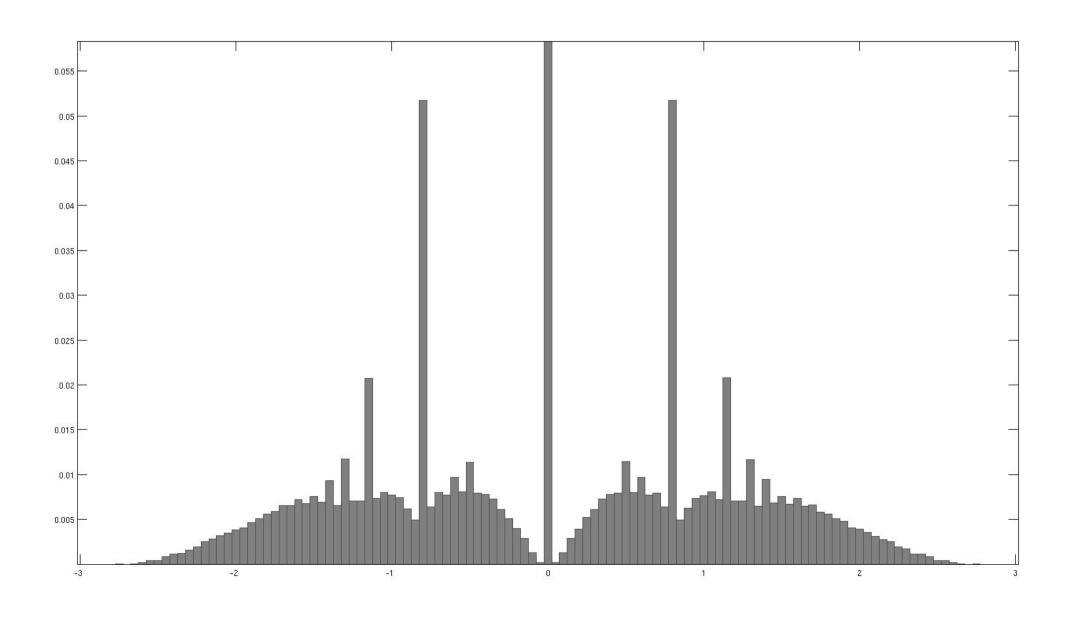
$$c = 0, 5 \text{ (Zoom)}$$



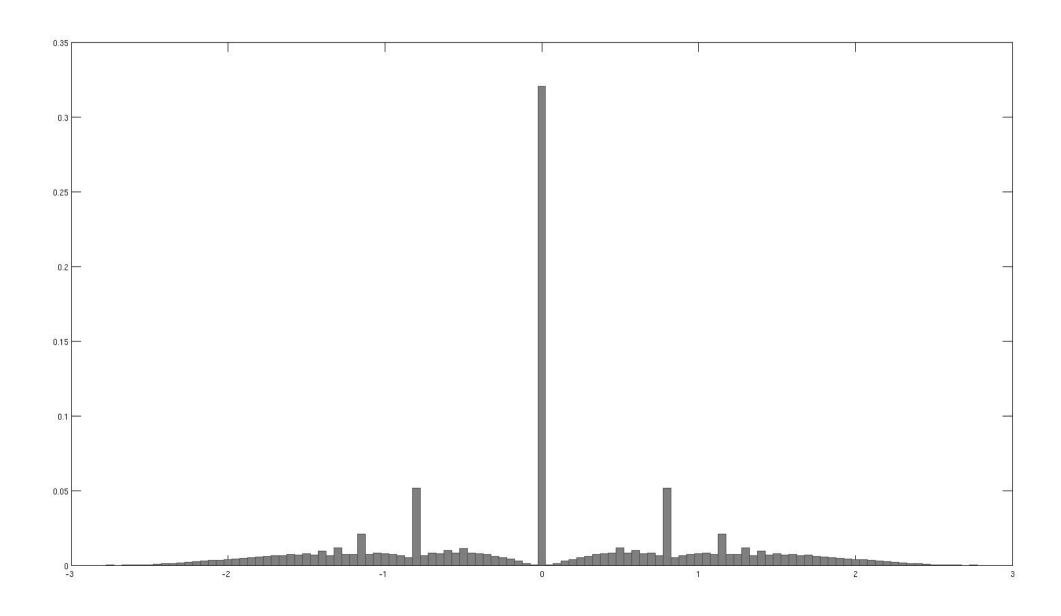
$$c = 1$$



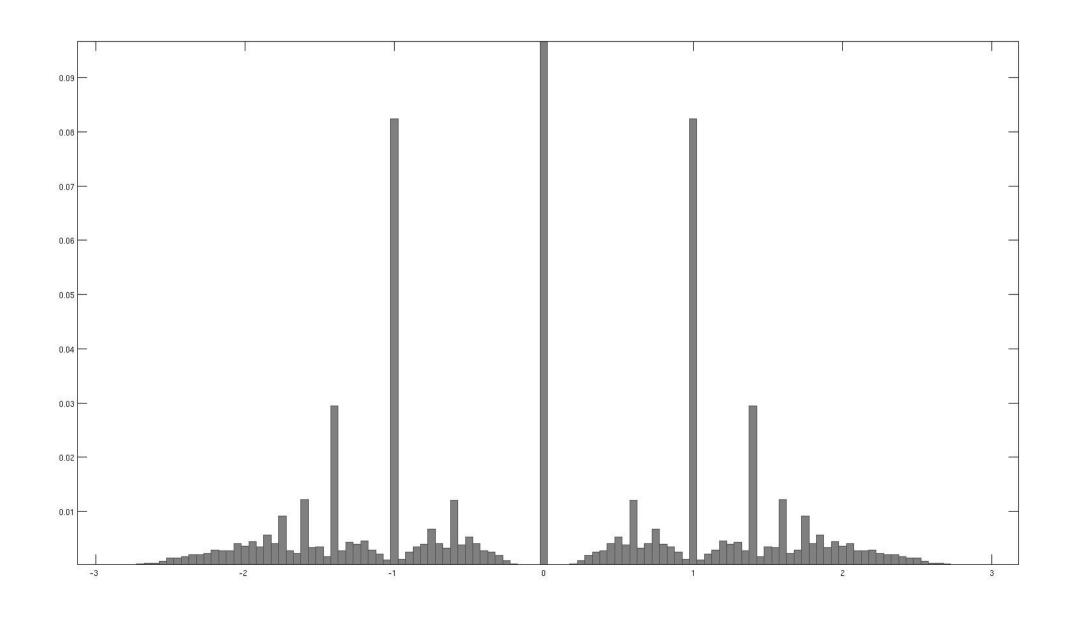
$$c = 1 \text{ (Zoom)}$$



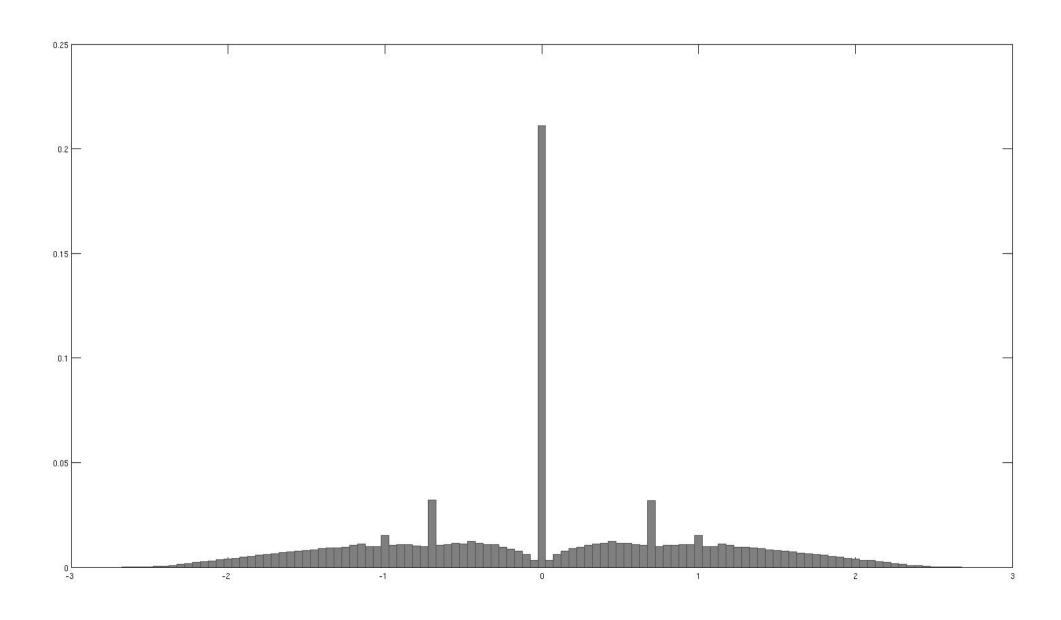
$$c = 1, 5$$



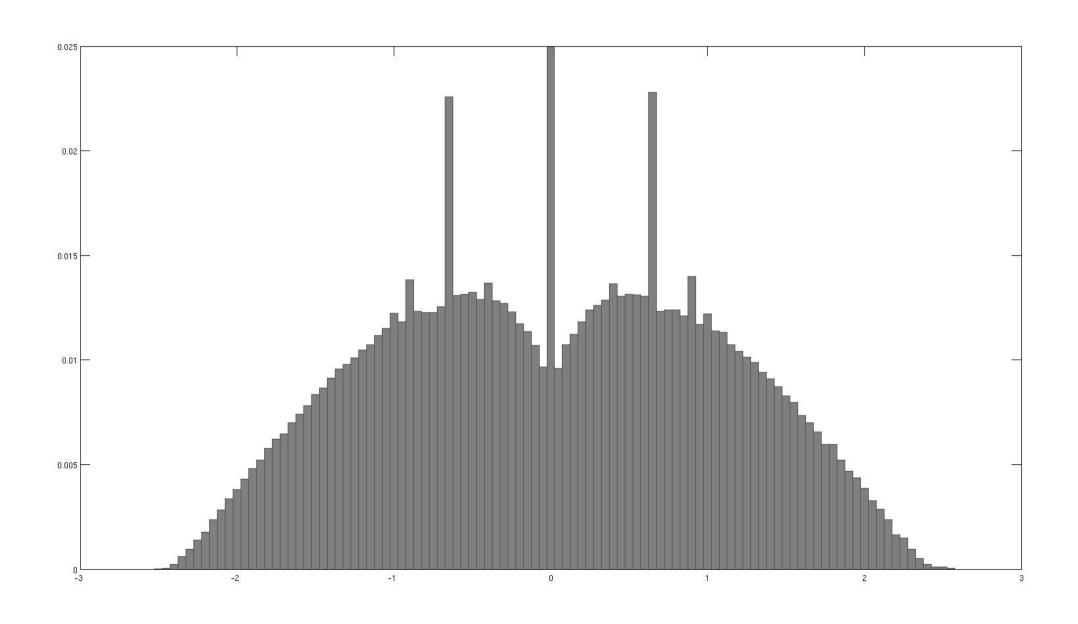
$$c = 1, 5 \text{ (Zoom)}$$



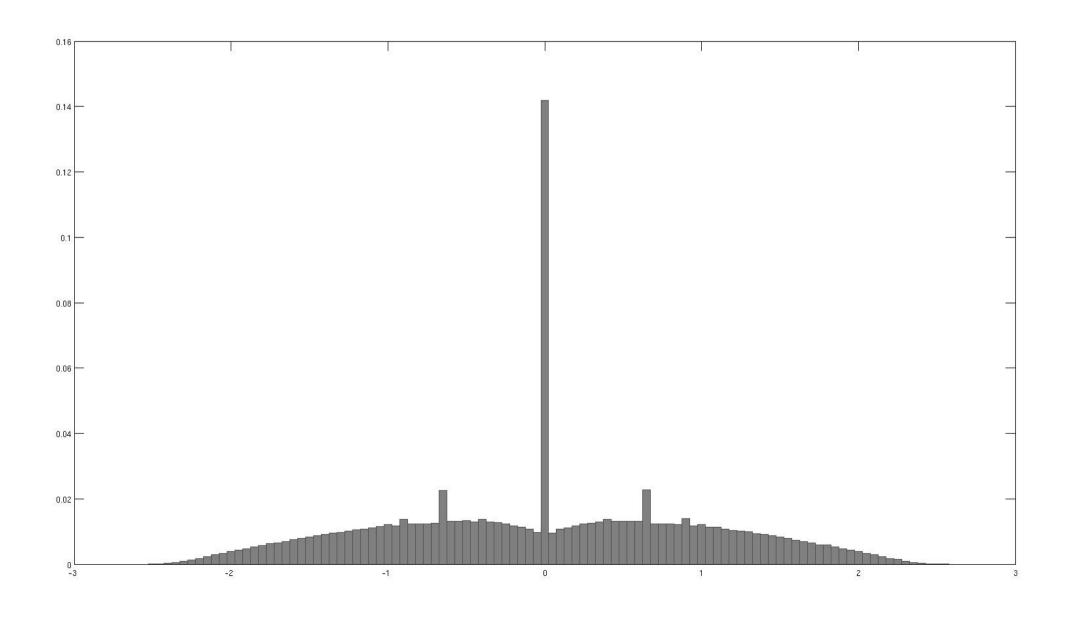
$$c = 2$$



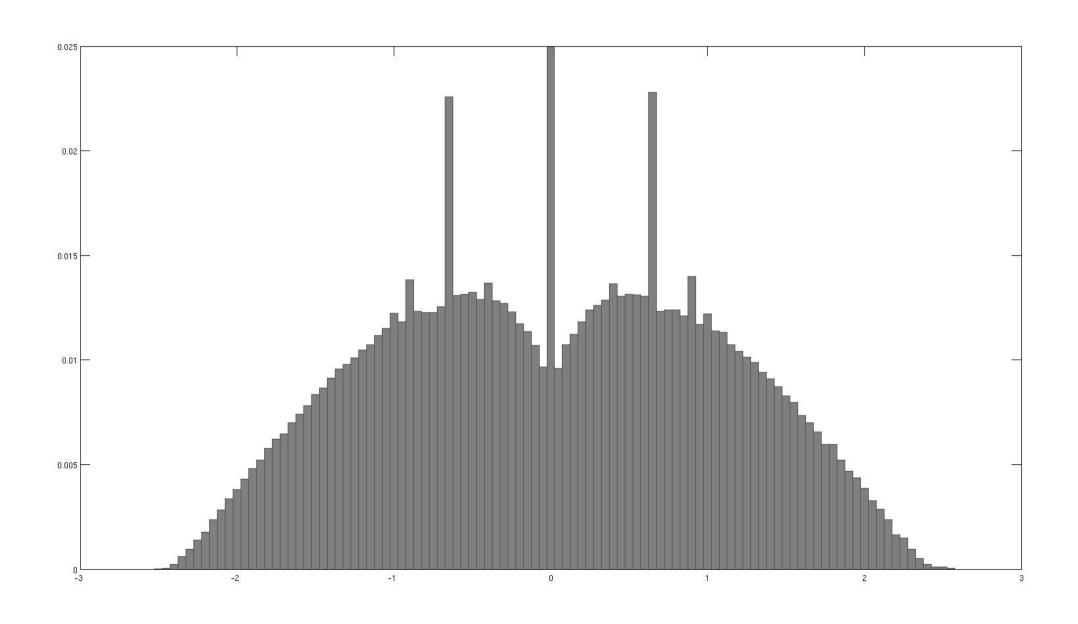
$$c=2$$
 (Zoom)



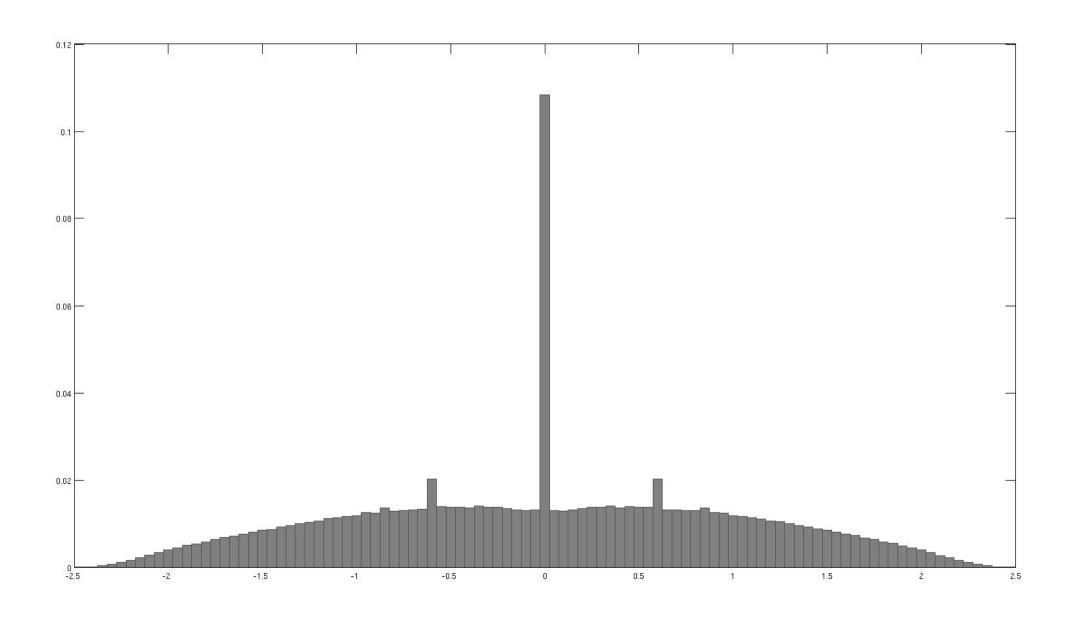
$$c = 2, 5$$



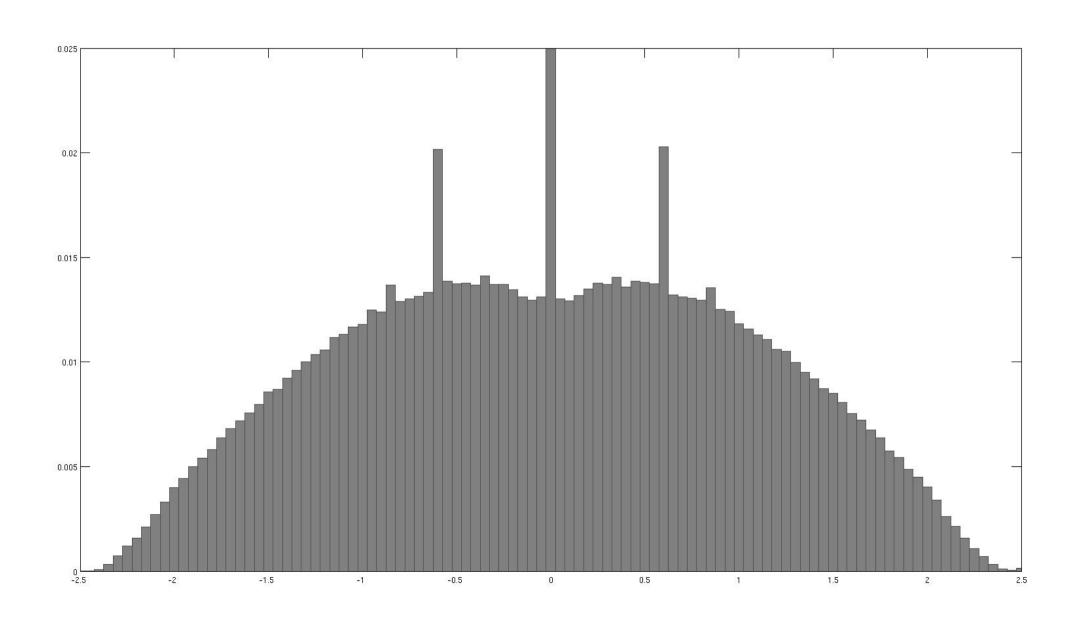
$$c=2,5$$
 (Zoom)



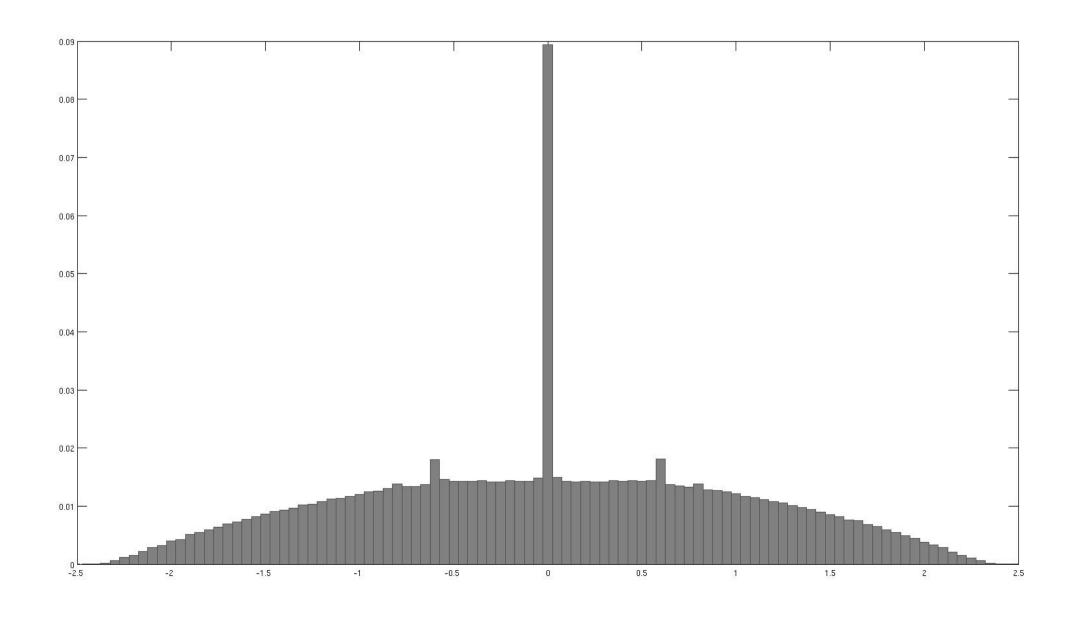
$$c = 2, 8$$



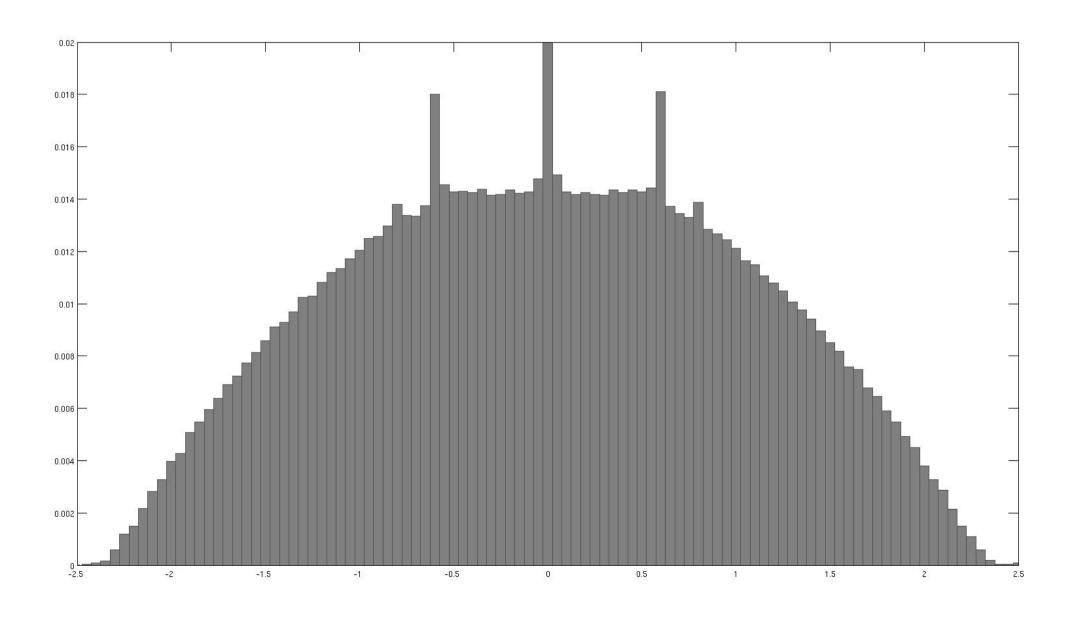
$$c=2,8$$
 (Zoom)



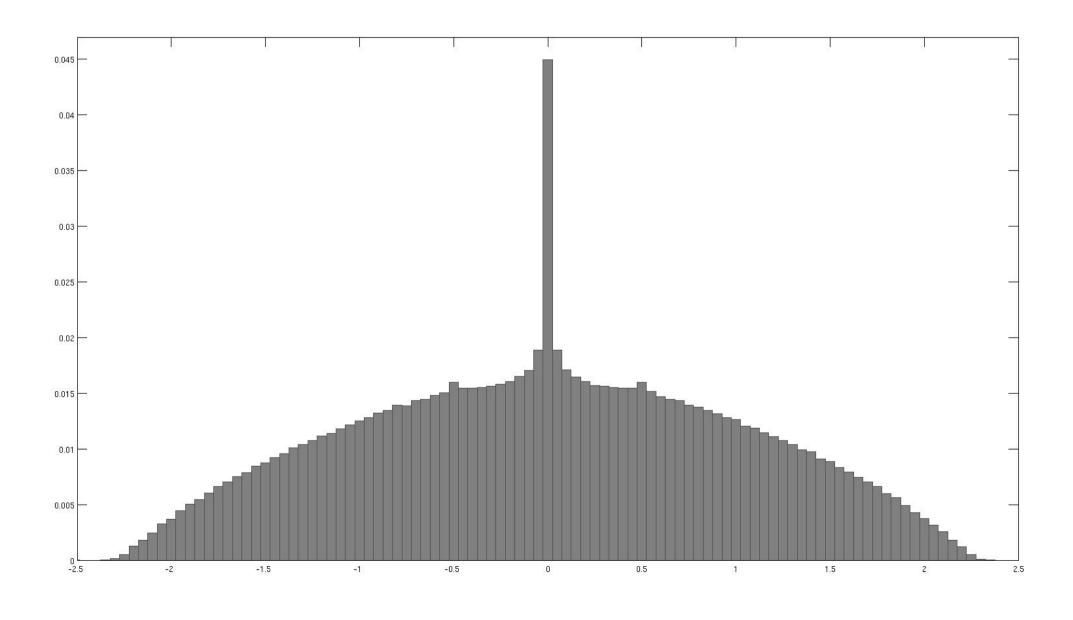
$$c = 3$$



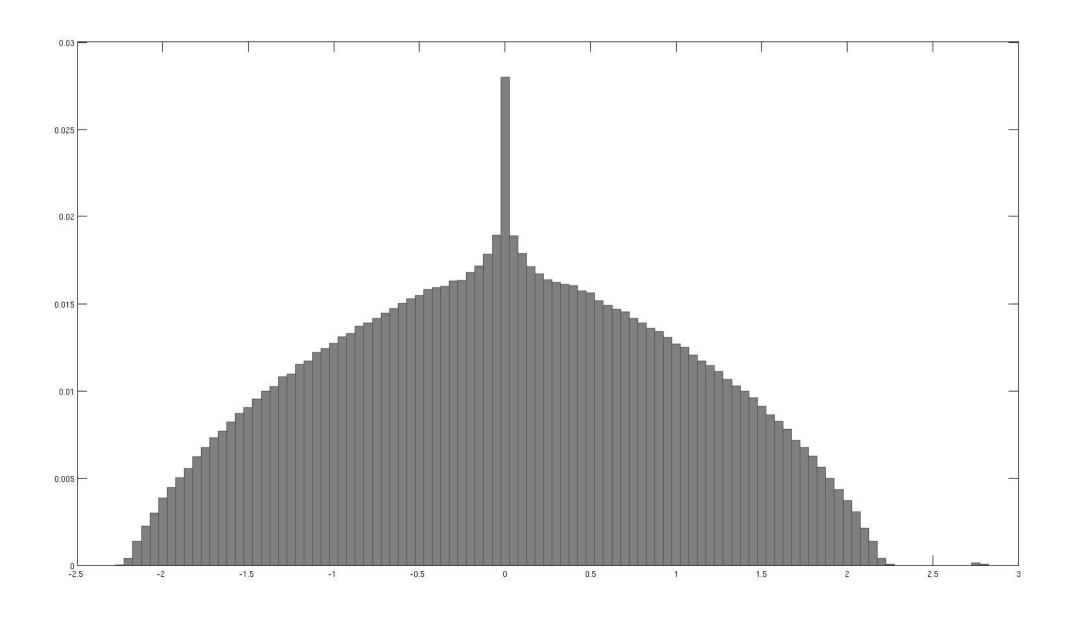
$$c = 3 \text{ (Zoom)}$$



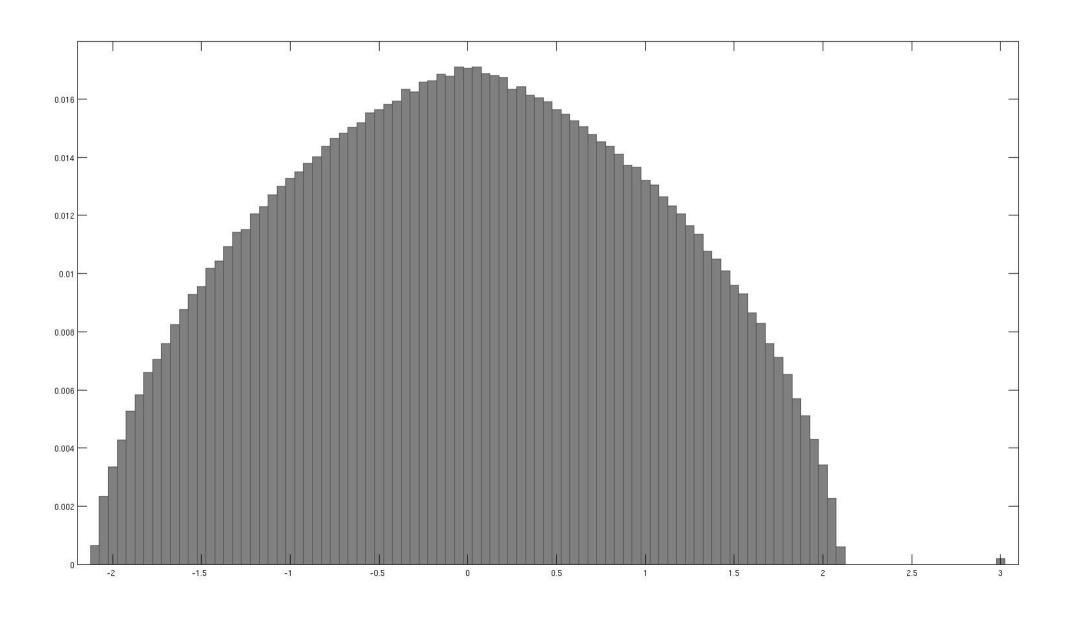
$$c = 4$$



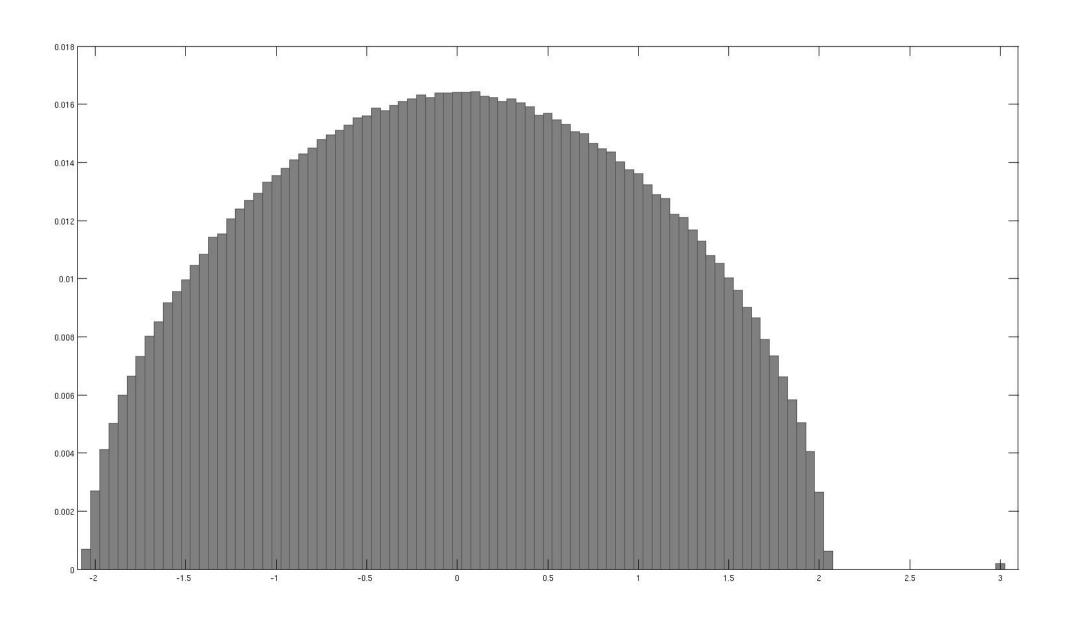
$$c = 5$$



$$c = 10$$



$$c = 20$$



$$\mu_n^c = rac{1}{n} \sum_{\lambda \in \mathrm{Sp}(c^{-1/2}A)} \delta_\lambda$$
 : mesure spectrale empirique de $G(n,c/n)$

$$\mu_n^c = rac{1}{n} \sum_{\lambda \in \mathrm{Sp}(c^{-1/2}A)} \delta_\lambda$$
 : mesure spectrale empirique de $G(n,c/n)$

Lorsque $n \to \infty$, μ_n^c converge faiblement vers une mesure de probabilité μ^c [Zakharevich, 2006]

$$\mu_n^c = rac{1}{n} \sum_{\lambda \in \mathrm{Sp}(c^{-1/2}A)} \delta_\lambda$$
 : mesure spectrale empirique de $G(n,c/n)$

Lorsque $n \to \infty$, μ_n^c converge faiblement vers une mesure de probabilité μ^c [Zakharevich, 2006]

Propriétés de μ^c :

- lorsque $c \to \infty$, μ^c converge faiblement vers la loi du demi-cercle de Wigner de densité $\frac{1}{2\pi}\sqrt{4-x^2}1_{[-2,2]}$.
- Support non borné
- Ensemble dense d'atomes

$$\mu_n^c = rac{1}{n} \sum_{\lambda \in \mathrm{Sp}(c^{-1/2}A)} \delta_\lambda$$
 : mesure spectrale empirique de $G(n,c/n)$

Lorsque $n \to \infty$, μ_n^c converge faiblement vers une mesure de probabilité μ^c [Zakharevich, 2006]

Propriétés de μ^c :

- lorsque $c \to \infty$, μ^c converge faiblement vers la loi du demi-cercle de Wigner de densité $\frac{1}{2\pi}\sqrt{4-x^2}1_{[-2,2]}$.
- Support non borné
- Ensemble dense d'atomes
- $\mu^{c}(\{0\})$ est explicite [Bordenave, Lelarge, Salez 2011]

$$\mu_n^c = rac{1}{n} \sum_{\lambda \in \mathrm{Sp}(c^{-1/2}A)} \delta_\lambda$$
 : mesure spectrale empirique de $G(n,c/n)$

Lorsque $n\to\infty$, μ_n^c converge faiblement vers une mesure de probabilité μ^c [Zakharevich, 2006]

Propriétés de μ^c :

- lorsque $c \to \infty$, μ^c converge faiblement vers la loi du demi-cercle de Wigner de densité $\frac{1}{2\pi}\sqrt{4-x^2}1_{[-2,2]}$.
- Support non borné
- Ensemble dense d'atomes
- $\mu^{c}(\{0\})$ est explicite [Bordenave, Lelarge, Salez 2011]
- μ^c n'est pas purement atomique ssi~c>1 [Bordenave, Sen, Virag 2013]

Développement asymptotique de la limite de la mesure empirique du spectre

Développement asymptotique de la limite de la mesure empirique du spectre

Si μ est une mesure signée t.q. $\int |x|^k |d\mu(x)| < \infty$, on note $m_k(\mu) = \int x^k d\mu(x)$

Développement asymptotique de la limite de la mesure empirique du spectre

Si μ est une mesure signée t.q. $\int |x|^k |d\mu(x)| < \infty$, on note $m_k(\mu) = \int x^k d\mu(x)$

Théorème: Pour tout $k \geq 0$, lorsque $c \to \infty$

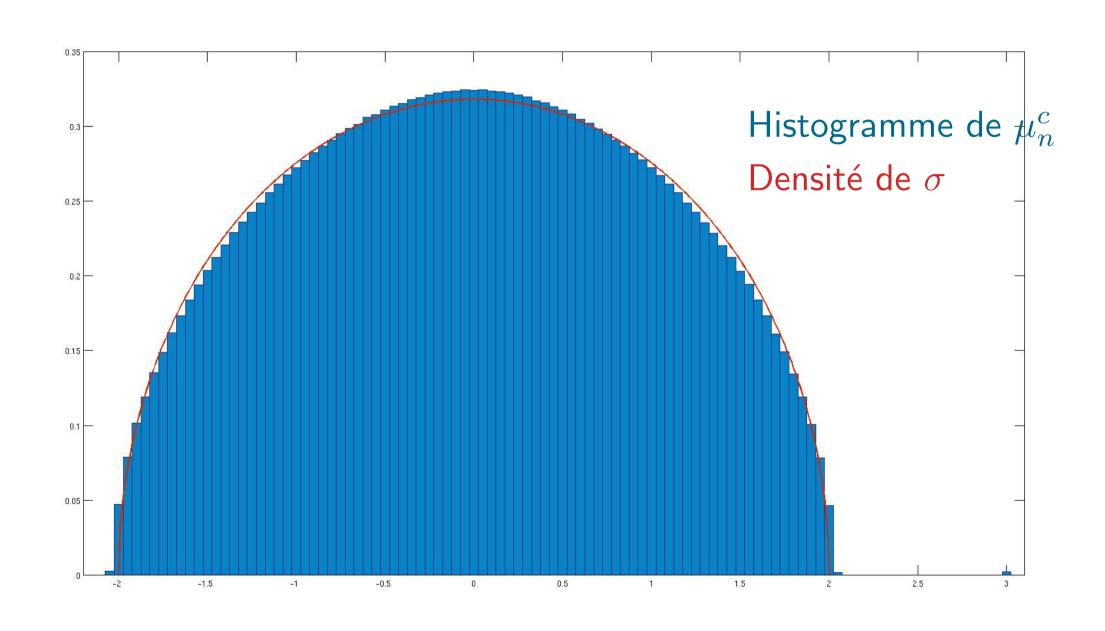
$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + o\left(\frac{1}{c}\right)$$

où σ désigne la loi du demi-cercle de densité $\frac{1}{2\pi}\sqrt{4-x^2}\mathbf{1}_{|x|<2}$ et $\sigma^{\{1\}}$ est la mesure de masse totale 0 et de densité

$$\frac{1}{2\pi} \frac{x^4 - 4x^2 + 2}{\sqrt{4 - x^2}} \, \mathbf{1}_{|x| < 2}.$$

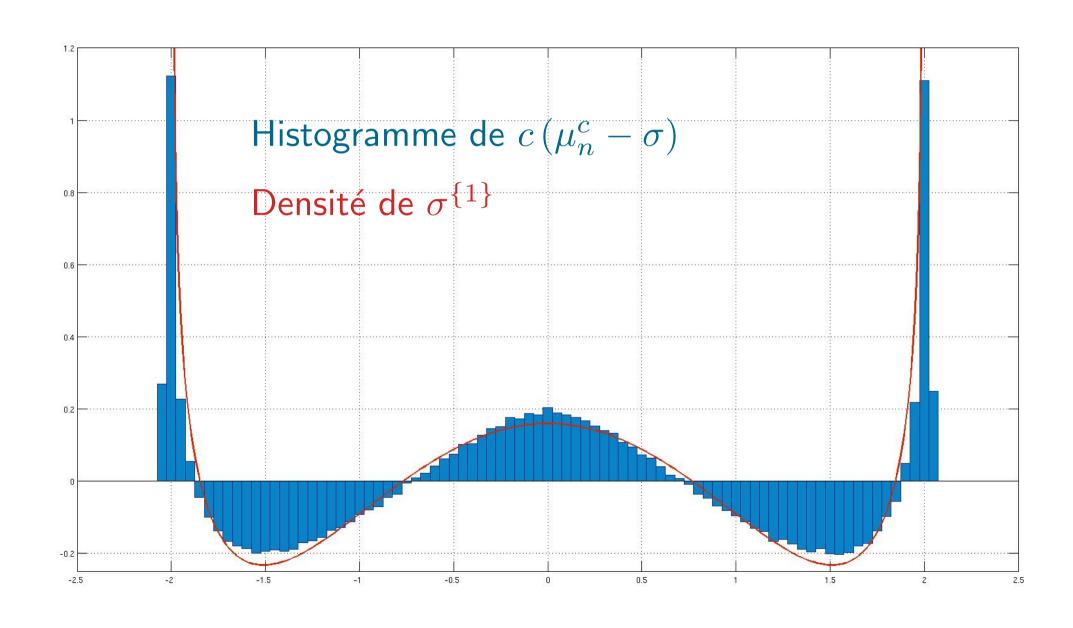
Simulations

100 matrices de taille 10000 avec c=20



Simulations

100 matrices de taille 10000 avec c=20



HIC: Pour tout $k \geqslant 0$,

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + \frac{1}{c^2} d_k + o\left(\frac{1}{c^2}\right)$$

où les nombres d_k ne forment PAS la suite des moments d'une mesure !

HIC: Pour tout $k \geqslant 0$,

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + \frac{1}{c^2}d_k + o\left(\frac{1}{c^2}\right)$$

où les nombres d_k ne forment PAS la suite des moments d'une mesure !

Explication :

$$\mu^{c}\left(\mathbb{R}\setminus[-2;2]\right) = \mathcal{O}\left(\frac{1}{c^{2}}\right).$$

HIC: Pour tout $k \geqslant 0$,

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c}m_k(\sigma^{\{1\}}) + \frac{1}{c^2}d_k + o\left(\frac{1}{c^2}\right)$$

où les nombres d_k ne forment PAS la suite des moments d'une mesure !

Explication :

$$\mu^{c}\left(\mathbb{R}\setminus[-2;2]\right) = \mathcal{O}\left(\frac{1}{c^{2}}\right).$$

On définit un opérateur de dilatation Λ_{α} sur les mesures défini par $\Lambda_{\alpha}(\mu)(A) = \mu\left(A/\alpha\right)$ pour toute mesure μ et tout borélien A.

HIC: Pour tout $k \geqslant 0$,

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + \frac{1}{c^2} d_k + o\left(\frac{1}{c^2}\right)$$

où les nombres d_k ne forment PAS la suite des moments d'une mesure !

→ Explication :

$$\mu^{c}\left(\mathbb{R}\setminus[-2;2]\right)=\mathcal{O}\left(\frac{1}{c^{2}}\right).$$

On définit un opérateur de dilatation Λ_{α} sur les mesures défini par $\Lambda_{\alpha}(\mu)(A) = \mu\left(A/\alpha\right)$ pour toute mesure μ et tout borélien A.

Ainsi, $\Lambda_{\alpha}(\sigma)$ a pour support $[-2\alpha;2\alpha]$.

Théorème : Pour tout $k \geq 0$, lorsque $c \to \infty$

Theorem : Pour tout
$$k \geq 0$$
, for sque $c \to \infty$
$$m_k(\mu^c) = m_k \left(\Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} + \frac{1}{c^2} \hat{\sigma}^{\{2\}} \right) \right) + o\left(\frac{1}{c^2} \right)$$

où $\hat{\sigma}^{\{1\}}$ est une mesure de masse totale nulle de densité

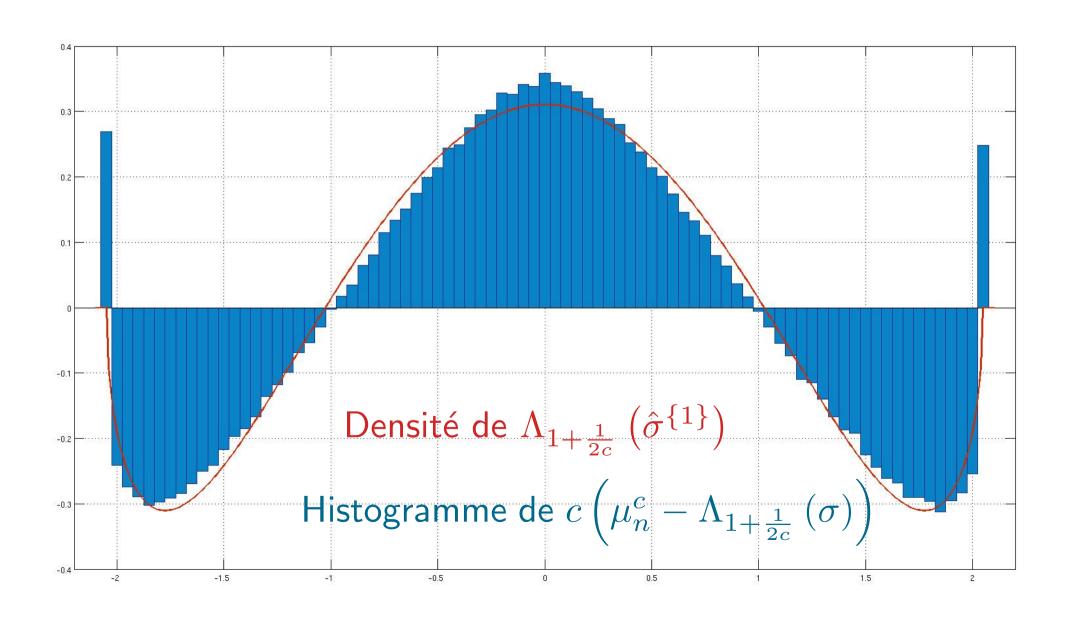
$$-\frac{x^4 - 5x^2 + 4}{2\pi\sqrt{4 - x^2}} \mathbf{1}_{|x| < 2}$$

et $\hat{\sigma}^{\{2\}}$ est une mesure de masse totale nulle de densité

$$-\frac{2x^8-17x^6+46x^4-\frac{325}{8}x^2+\frac{21}{4}}{\pi\sqrt{4-x^2}}\mathbf{1}_{|x|<2}.$$

Simulations

100 matrices de taille 10000 avec c=20



Simulations

100 matrices de taille 10000 avec c=20

$$\text{Histogramme de } c^2 \left(\mu_n^c - \Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} \right) \right) \qquad \text{Densit\'e de } \Lambda_{1+\frac{1}{2c}} \left(\hat{\sigma}^{\{2\}} \right)$$

