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MATRIX ESTIMATION

Let P € M, ,,(R) be a large rectangular matrix n = 0(m).

We observe each entry independently with probability d/n. The

other entries remain hidden.
d = average number of observed entries per row.

We assume that the matrix P is simple: notably small rank and

some spectral incoherence.
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Matrix completion: can we reconstruct exactly P thanks to this

observation?

Possible in the regime d > C'logn.



COMPLETION AND ESTIMATION

Matrix completion: can we reconstruct exactly P thanks to this

observation?

Possible in the regime d > C'logn.

Matrix estimation: we look for a matrix with a small mean

square error

MSE Z‘R] Z] = Hﬁ_PH%

Best bounds for d < logn: MSE(P) = O(mn/d).

Candes-Tao 09, Candés-Recht 10, Keshavan-Montanari-Oh 09 . ..



PRINCIPAL COMPONENT ANALYSIS

Singular value decomposition of P € M, »,(C) :

n
P=UDV* = Z SkUE V),
k=1

where D = diag(si,...,$n) € M;m(C) and 51 > ...

are the singular values de P.

S1U1

P
V] —
SoUy

1PIE = si-
k
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MATRIX DETECTION

* Above which value of d can we reconstruct a consistent

estimator of 5.7

* Fix 0 < v < 1. Find the smallest d such that there is with
high probability an estimator 4 of u; with

(i, ur)| = -
* Fix 0 < v < 1. Find the smallest d such that there is with

high probability an estimator P of P with

MSE(P) = ||P — P||% > 7| Pl



APPLICATIONS

Numerous applications in global positioning, remote sensing,
signal processing, computer vision, ...but the most famous is

collaborative filtering.



APPLICATIONS

Numerous applications in global positioning, remote sensing,
signal processing, computer vision, ...but the most famous is

collaborative filtering.

Guess what a user likes even before she knows it. The Netflix
prize launched in 2006 consisted in minimizing the MSE (on a

sample) with respect to the matrix:

P;; = mark given by user ¢ on movie j.
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ESTIMATION OF A SYMMETRIC MATRIX

Let P € M, (R) be a symmetric matrix.

Let M = (M;;) € My (R) with M;; € {0,1} iid Bernoulli with

parameter d/n.

The non-symmetric observed matrix A € M, (R) is

n

Aij:d

Py M;;.

The symmetric observed matrix H € M, (C) is

A+ A*
H = 5

We have EA =EH = P.
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ESTIMATION OF A SYMMETRIC MATRIX

We would like to compare the k-th largest eigenvalues of P and

A or H and their corresponding eigenspaces

It is smarter to consider the spectrum of A rather than the

spectrum of H.

Benefits of asymmetry: in some situations, the spectrum of a
matrix P is much less perturbed by a random asymmetric noise

than by a random symmetric noise.



DETECTION THRESHOLD

We set
Qi =nlP;> and  p=Ql|.

The detection threshold is defined as

0 = max <\/§’ Z),

L = nmax|Fj].
Z?.]

with



INCOHERENCE

We order the real eigenvalues of P,

1l = - 2 gl > 0 = |prgra] = -+ = |l

In a ON basis of eigenvectors of P, for all 1 < k < ryg,

(2 = max | X .
klloco i k ? \/ﬁ



STABLE NUMERICAL RANK

The stable numerical rank is

2
r= ZkaMk < rank(P).
H1

In this talk, we assume that r, b, L, d, o are O(n"(l)). All results

are quantitative but will be stated in an asymptotic way.
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ESTIMATION OF EIGENVALUES
Recall:

L
Aij - %PZ]MU and f = max <\/§’ d>

Eigenvalues of P :

il = = gl > 0 2= [prgr1] = -+ = |l

Theorem
With high probability, there exists an ordering of the
eigenvalues A1, ..., A\, of A such that

o — ] = o(1 d Mol < (1 4+ 0(1))6.
1g}ix0|k pr| =o(1)  an roﬂ2§<n|k| (1+0(1))
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Real part



SIMULATION

For n = 2000 and P = 3¢1¢] + 2p2¢5 + @3¢5 with ¢j, uniform.

Imaginary part

Real part



ESTIMATION OF EIGENVECTORS
Recall:

Aij = %-PijMij and 6 = max <\/§’ S)

We assume that the large eigenvalues of

P=>"juwerph
k
are well separated:
logd
1- P> 980 p 1<k £1< .
p |~ logn




ESTIMATION OF EIGENVECTORS
Recall:

Aij = %-PijMij and 6 = max <\/§’ 5)

We assume that the large eigenvalues of

P=>"juwerph
k
are well separated:
logd
1- P> 980 p 1<k £1< .
p |~ logn

Theorem
Let v, be a unit eigenvector associated to k-th eignevalue of A.
There exists v > 0 such that, with high probability, for

1 g k g To,
|(Whr, or)| = v+ o(1).



ESTIMATION OF EIGENVECTORS

The asymptotic scalar product v = | (g, ¢x)| + o(1) has an

explicit formula:

1
|y

)

V& =

with, for 1 < k,1 < ro,

Lo =Y wea()r(@)pii),

i=1
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ESTIMATION OF EIGENVECTORS

The asymptotic scalar product v = | (g, ¢x)| + o(1) has an

explicit formula:

1
|y

)

V& =

with, for 1 < k,1 < ro,

Lo =Y wea()r(@)pii),

i=1

wha(i) = Z (I - uijild>

j .7

and
—1

Remark: |(Yg, ¥1)| = |Tril/~/Tkxliy + o(1) is non-zero for k # 1

if 1 is not an eigenvector of Q).



RANK ONE PROJECTOR

If P = pp*, we find

) [P el

d

SN A TG




ESTIMATION OF EIGENVECTORS

It is also possible to compute the scalar between the left . and

right ¢ unit eigenvectors of the k-th eigenvalue of A:

(W tr) =22 + o(1) = —— +o(1),

Ry

We get an estimator

) e

k= o

[9n + g ll2

such that

. 29;

[{or> Pr)| = g +o(l).

1+~2



SIMULATION

For n = 6000 and P = p¢* avec ¢ uniform on the sphere.
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IMPROVED ESTIMATION WITH
NON-BACKTRACKING MATRICES



PUT SOME SYMMETRY BACK

We can improve the factor d in 2d in the detection threshold:

0 = max <\/§, 5)

We have not taken into account the information

Pij = Pj;.

There is in fact an average of 2d observed entries per row.



NON-BACKTRACKING MATRIX

The set of symmetric observed entries is
E ={(i,j) : (i,7) or (j,i) is observed}.

We have |E| ~ 2dn.



NON-BACKTRACKING MATRIX
The set of symmetric observed entries is
E ={(i,j) : (i,7) or (j,i) is observed}.

We have |E| ~ 2dn.

We consider the non-symmetric matrix B € Mg (C) defined for
all (¢,7), (k,l) in E by

nPy . ,
By ki) = 57 10 = kL #9).




NON-BACKTRACKING MATRIX

A vector ¢ € C" is lifted in CF as

¢ (1,9) = 9(5)-

Theorem
The preceding results on A are true for the matrix B (with

minor extra changes) with d replaced by 2d.



SIMULATION

For n = 5000 and P = p¢* with ¢ uniform on the sphere.
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THE DETECTION THRESHOLD

0 = max <\/§’ §>



LIFT OF A MATRIX

Fix jo € [n] = {1,...,n}. Let V be the set of finite integer
sequences in [n], (jo,j1,---,jk) starting with jo.

We build an infinite matrix P = (Pyy)uvev by setting
u = (jo,---,Jjx) €V and j € [n]

7Du,(uu’) = Pj ;.

Otherwise Py, = 0.

Jo o Lo
~ Joj s JoJ1J2




LIFT OF A MATRIX

Fix jo € [n] = {1,...,n}. Let V be the set of finite integer
sequences in [n], (jo,j1,---,jk) starting with jo.

We build an infinite matrix P = (Pyy)uvev by setting
u = (jo,---,Jjx) €V and j € [n]

73u,(uu’) = Pj ;.

Otherwise Py, = 0.

J0%< o= Lo
o< T —— o

This defines a non-symmetric bounded operator on ¢(V) build

on an infinite n-ary tree.



LIFT OF A MATRIX

If Py = pp then @ defined on V as

satisfies

Jo o= L
jom]o]ljz

=
ST

The function ® is not in £2(V).



PERCOLATION ON THE LIFT

We keep each edge with probability d/n.

Jo L
® JoJj1J2
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We denote by Ppere the corresponding operator and set

A= %Pperc.



PERCOLATION ON THE LIFT

We keep each edge with probability d/n.

Jo L
® JoJj1J2
L]
o

We denote by Ppere the corresponding operator and set

A= %Pperc.

The operator A is a local approximation of the matrix
A= (n/d)P o> M.



PERCOLATION ON THE LIFT

n
./4 - E,Pperc .

Since P® = \®, for all v € V, the process in t € N,
Uy(v) = p~ ' (A'®)(v)

is a discrete martingale for the filtration of the successive

generations in the tree.
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PERCOLATION ON THE LIFT

The bracket of the martingale can be computed and we find:

t( -2 v

Recall: Qi = n|Py|* and p = [|Q||.

Hence ¥, (v) = p~(A'®)(v) converges a.s. and in L? toward

U(v) if
> /%

This is called the Kesten-Stigum threshold.



PERCOLATION ON THE LIFT

If |u] > v/p/d, then W;(v) = p~t(A'®)(v) converges a.s. and in
L? toward ¥(v).

Since
AV = puWyq,

we can define a.s. a random eigenwave W on V' which satisfies

AV = p.
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if £ > 1 but not too large,
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BACK TO FINITE DIMENSION

This analysis and concentration inequalities allow to show that
if £ > 1 but not too large,

1A o1, — pA'kll2 = o([| ATr|2)-
Similarly ¢} A is an approximate left eigenvector.

We decompose A in

T0

Al = Z phugvi + Ry,
k=1

with ug, = Algy/pt and vy, = (A")*¢r/pl.. We have

(ug,v) = 01 + o(1).
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PROOF STRATEGY

For t = clnn/logd well chosen,

70

Al = Z phugvy + Ry
k=1

Compute the inner products between these 7’8 vectors;

%

* Show that the Gram matrix is well-conditioned;

Show that || R|| < (logn)<6?;

*

* Use an ad-hoc spectral perturbation theorem of a

non-symmetric matrix of Bauer-Fike type.

B-Lelarge-Massoulié 18.



RECTANGULAR MATRICES



LINEARIZATION TRICK

If P € My, ,(C), the matrix

]SZOP
P 0

is of size (m +n) x (m + n) and is Hermitian.

The singular value decomposition of P = )", SpuRvy, is

equivalent to the diagonalization of P:

P = Z spwy (W) = spwy (wy),
k

with wi" = (uy, £vi)/V2.



A RANDOMIZED ASYMMETRIC SVD

Recall
P= Z SEURV.
k

Consider Z = (Z;j) € My, »(R) with iid {0, 1}-Bernoulli entries
with parameter 1/2 and define

P1P2* with Pi=P0o0Z, Pb=P—P.



A RANDOMIZED ASYMMETRIC SVD

Recall
P= Z SEURV.
k

Consider Z = (Z;j) € My, »(R) with iid {0, 1}-Bernoulli entries
with parameter 1/2 and define

P1P2* with Pi=P0o0Z, Pb=P—P.

The k-th largest eigenvalue, say Ay, of PPy is a proxy for s% /4.

The average of the left and right eigenvectors associated to Ay is

a proxy for the left singular vector wy.
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MATRIX COMPLETION

Let M = (M;j) € My, »(R) with iid {0, 1}-Bernoulli entries with

parameter d/n.

The observed matrix is

n
A==-P0oO M.
] ©

We perform the randomized asymmetric SVD on A.

At a higher computational cost, we may also consider the

non-backtracking matrix associated to the linearized matrix A.

In either case, if n < m, we have explicit detection thresholds

and formulas for the asymptotic inner products.



MATRIX COMPLETION
Recall

pP= E SEURV.
k

Once we have estimators g, 0, of u; and vy, it is possible to

design an estimator of P:
o
P = Z xkﬁkﬁz
k=1
for some vector x = (1) € R™ which asymptotically minimizes
1P —Pllr
and compute an explicit asymptotic formula for

MSE(P) = | P - P|[%.
Nadakuditi 14.



SIMULATION

We take d = 9.7, (m,n) = (2000, 3000) and P = wv* with u,v

independent standard Gaussian vectors.

True Sub-Matrix SVD: nMSE = 1.0 avg. aSVD: nMSE = 0.54 wnb. SVD: nMSE = 0.39

00015 00015 00015 00015
° 00010 00010 00010 00010
0 10,0005 00005 00005 0.0005
= 0 o o 0
B —0.0005 —0.0005 —0.0005 —0.0005
» 00010 —~0.0010 ~0.0010 00010
0 —00015 —0.0015 —0.0015 —0.0015




CONCLUDING WORDS
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CONCLUSION

Spectral analysis methods on random non-symmetric matrices

can be very efficient, Chen-Cheng-Fan 18.
Numerous possible extensions, for example include some extra
noise, or models where the probability of observing an entry

depends on the entry, Stephan-Massoulié 20.

There is nowadays a lot of activities on tensor completion.
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