Norm estimates for polynomials in random matrices: new results

Benoît Collins

Kyoto University
Online RMTA - 29 May 2020

Overview

Joint work with Alice Guionnet (ENS Lyon) and Felix Parraud
 (ENS Lyon \& Kyoto)

Overview

Joint work with Alice Guionnet (ENS Lyon) and Felix Parraud
(ENS Lyon \& Kyoto)
Plan:

1. Motivation.
2. Results (GUE).
3. Further results and applications.

The operator norm of matrix

The operator norm of matrix

- Let $X \in M_{N}(\mathbb{C})$. Its operator norm is $\|X\|=\sup _{v \neq 0} \frac{\left\|X_{v}\right\|_{2}}{\|v\|_{2}}$.

The operator norm of matrix

- Let $X \in M_{N}(\mathbb{C})$. Its operator norm is $\|X\|=\sup _{v \neq 0} \frac{\left\|X_{v}\right\|_{2}}{\|v\|_{2}}$.
- If X is selfadjoint with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{N}$, then $\|X\|_{\infty}=\sup _{i}\left|\lambda_{i}\right| .$.

The operator norm of matrix

- Let $X \in M_{N}(\mathbb{C})$. Its operator norm is $\|X\|=\sup _{v \neq 0} \frac{\left\|X_{v}\right\|_{2}}{\|v\|_{2}}$.
- If X is selfadjoint with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{N}$, then $\|X\|_{\infty}=\sup _{i}\left|\lambda_{i}\right| .$.
- We will mostly work with class of (random) matrices closed under addition, *-operation and product. Since $\|X\|^{2}=\left\|X X^{*}\right\|$, it is enough to work with selfadjoint X.

The operator norm of matrix

- Let $X \in M_{N}(\mathbb{C})$. Its operator norm is $\|X\|=\sup _{v \neq 0} \frac{\left\|X_{v}\right\|_{2}}{\|v\|_{2}}$.
- If X is selfadjoint with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{N}$, then $\|X\|_{\infty}=\sup _{i}\left|\lambda_{i}\right| .$.
- We will mostly work with class of (random) matrices closed under addition, *-operation and product. Since $\|X\|^{2}=\left\|X X^{*}\right\|$, it is enough to work with selfadjoint X.
- So far, nothing random...

Long known results

- (Wigner's Theorem): If X^{N} is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure $\mu_{X^{N}}=N^{-1} \sum_{i} \delta_{\lambda_{i}}$ converges to the semi-circle distribution.

Long known results

- (Wigner's Theorem): If X^{N} is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure $\mu_{X^{N}}=N^{-1} \sum_{i} \delta_{\lambda_{i}}$ converges to the semi-circle distribution.
- This implies that

$$
\liminf _{N}\left\|X^{N}\right\| \geq 2
$$

(almost surely or in expectation).

Long known results

- (Wigner's Theorem): If X^{N} is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure $\mu_{X^{N}}=N^{-1} \sum_{i} \delta_{\lambda_{i}}$ converges to the semi-circle distribution.
- This implies that

$$
\liminf _{N}\left\|X^{N}\right\| \geq 2
$$

(almost surely or in expectation).

- Similarly we can show $\liminf _{N}\left\|f\left(X^{N}\right)\right\| \geq\|f(x)\|$ for any continuous function (functional calculus), where x is a semi-circular distributed rrv.

Long known results

- (Wigner's Theorem): If X^{N} is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure $\mu_{X^{N}}=N^{-1} \sum_{i} \delta_{\lambda_{i}}$ converges to the semi-circle distribution.
- This implies that

$$
\liminf _{N}\left\|X^{N}\right\| \geq 2
$$

(almost surely or in expectation).

- Similarly we can show $\liminf _{N}\left\|f\left(X^{N}\right)\right\| \geq\|f(x)\|$ for any continuous function (functional calculus), where x is a semi-circular distributed rrv. Here, some kind of smoothness for f is unavoidable.

Long known results

- A similar result can be proved if $f\left(X^{N}\right)$ is replaced by $P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$, where P is a non-commuting polynomial in d free abstract variables and $X_{1}^{N}, \ldots, X_{d}^{N}$ are d iid copies of of GUEs.

Long known results

- A similar result can be proved if $f\left(X^{N}\right)$ is replaced by $P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$, where P is a non-commuting polynomial in d free abstract variables and $X_{1}^{N}, \ldots, X_{d}^{N}$ are d iid copies of of GUEs.
- Indeed, Voiculescu's asymptotic freeness (1991) implies that $\lim _{N} \operatorname{tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)$ converges to $\tau\left(P\left(x_{1}, \ldots, x_{d}\right)\right)$ where x_{1}, \ldots, x_{d} are free semi-circular variables.

Long known results

- A similar result can be proved if $f\left(X^{N}\right)$ is replaced by $P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$, where P is a non-commuting polynomial in d free abstract variables and $X_{1}^{N}, \ldots, X_{d}^{N}$ are d iid copies of of GUEs.
- Indeed, Voiculescu's asymptotic freeness (1991) implies that $\lim _{N} \operatorname{tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)$ converges to $\tau\left(P\left(x_{1}, \ldots, x_{d}\right)\right)$ where x_{1}, \ldots, x_{d} are free semi-circular variables. Since P^{\prime} is again a polynomial for each I we can conclude (Weierstrass + Riesz).

Long known results

- A similar result can be proved if $f\left(X^{N}\right)$ is replaced by $P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$, where P is a non-commuting polynomial in d free abstract variables and $X_{1}^{N}, \ldots, X_{d}^{N}$ are d iid copies of of GUEs.
- Indeed, Voiculescu's asymptotic freeness (1991) implies that $\lim _{N} \operatorname{tr}\left(P\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)\right)$ converges to $\tau\left(P\left(x_{1}, \ldots, x_{d}\right)\right)$ where x_{1}, \ldots, x_{d} are free semi-circular variables. Since P^{\prime} is again a polynomial for each I we can conclude (Weierstrass + Riesz).
- Similar results hold true with many other matrix models (more general iid Wigner matrices, i.i.d random unitary matrices, etc).

Less trivial bounds

- Fundamental problem: can we replace $\lim \inf _{N}\left\|X^{N}\right\| \geq X X X$ by $\lim \sup _{N}\left\|X^{N}\right\| \leq X X X$?? (i.e. can we get $\lim _{N}\left\|X^{N}\right\|=X X X$?).
- Yes for Wigner (under appropriate assumptions). Cf Füredi Komlós, etc

Less trivial bounds

- Fundamental problem: can we replace $\liminf _{N}\left\|X^{N}\right\| \geq X X X$ by $\lim \sup _{N}\left\|X^{N}\right\| \leq X X X$?? (i.e. can we get $\lim _{N}\left\|X^{N}\right\|=X X X$?).
- Yes for Wigner (under appropriate assumptions). Cf Füredi Komlós, etc
- (big breakthrough - Haagerup-Thorbjørnsen 2005): Yes for a NC polynomial P in iid copies $X_{1}^{N}, \ldots, X_{d}^{N}$ of GUEs.

Less trivial bounds

- Fundamental problem: can we replace $\lim \inf _{N}\left\|X^{N}\right\| \geq X X X$ by $\lim \sup _{N}\left\|X^{N}\right\| \leq X X X$??

Less trivial bounds

- Fundamental problem: can we replace $\lim \inf _{N}\left\|X^{N}\right\| \geq X X X$ by $\lim \sup _{N}\left\|X^{N}\right\| \leq X X X$??
- Many generalizations of Haagerup-Thorbjørnsen to more general Wigner setups (Anderson, Capitaine...)

Less trivial bounds

- Fundamental problem: can we replace $\lim \inf _{N}\left\|X^{N}\right\| \geq X X X$ by $\lim \sup _{N}\left\|X^{N}\right\| \leq X X X$??
- Many generalizations of Haagerup-Thorbjørnsen to more general Wigner setups (Anderson, Capitaine...)
- (Male, Pisier): Yes if one adds tame constant matrices \& tensors to the models.

Less trivial bounds

- Fundamental problem: can we replace $\lim \inf _{N}\left\|X^{N}\right\| \geq X X X$ by $\lim \sup _{N}\left\|X^{N}\right\| \leq X X X$??
- Many generalizations of Haagerup-Thorbjørnsen to more general Wigner setups (Anderson, Capitaine...)
- (Male, Pisier): Yes if one adds tame constant matrices \& tensors to the models.
- (C \& Male): Same as above if one replaces iid GUEs by iid unitaries.

Less trivial bounds

- Fundamental problem: can we replace liminf $\left\|X^{N}\right\| \geq X X X$ by $\lim \sup \left\|X^{N}\right\| \leq X X X$??
- (C, Bordenave): Yes for a polynomial in iid copies of random permutations or involutions without fixed points (acting on mean zero vectors).

Less trivial bounds

- Fundamental problem: can we replace $\lim \inf \left\|X^{N}\right\| \geq X X X$ by $\lim \sup \left\|X^{N}\right\| \leq X X X$??
- (C, Bordenave): Yes for a polynomial in iid copies of random permutations or involutions without fixed points (acting on mean zero vectors).
- (C, Bordenave - in preparation): Yes for finite tensors of random unitaries.

Operator norm or spectrum convergence?

- A non obvious fact: Actually, all the above results actually imply that if P is self-adjoint, the spectrum of $P\left(X_{i}^{N}\right)$ converges to the spectrum of $P\left(x_{i}\right)$ in the sense of Hausdorff distance.

Operator norm or spectrum convergence?

- A non obvious fact: Actually, all the above results actually imply that if P is self-adjoint, the spectrum of $P\left(X_{i}^{N}\right)$ converges to the spectrum of $P\left(x_{i}\right)$ in the sense of Hausdorff distance.
- The proof of this fact in the case of GUE's or random unitaries is simple modulo a hard result in OA: the limiting C^{*}-algebra has no non-trival projection.

Operator norm or spectrum convergence?

- The proof of this fact in general relies on linearization namely, understanding the spectrum of any NC polynomial in X_{i} is equivalent to understanding the spectrum of any linear equation in $1_{N}, X_{i}^{N}, \ldots$ with matrix coefficients of arbitrary size.

Operator norm or spectrum convergence?

- The proof of this fact in general relies on linearization namely, understanding the spectrum of any NC polynomial in X_{i} is equivalent to understanding the spectrum of any linear equation in $1_{N}, X_{i}^{N}, \ldots$ with matrix coefficients of arbitrary size.
- The stability under addition, multiplication and conjugation of our families of models is also important (folding trick).

Strong convergence

- Definition: a d-tuple of $n \times n$ matrices $X_{1}^{N}, \ldots, X_{d}^{N}$ converges strongly to $x_{1}, \ldots, x_{d} \in(A, \tau)(\tau$ faithful tracial state) iff, for any NC *-polynomial w,

Strong convergence

- Definition: a d-tuple of $n \times n$ matrices $X_{1}^{N}, \ldots, X_{d}^{N}$ converges strongly to $x_{1}, \ldots, x_{d} \in(A, \tau)(\tau$ faithful tracial state) iff, for any NC *-polynomial w,

$$
\operatorname{tr}\left(w\left(X_{i}^{N}\right)\right) \rightarrow \tau\left(w\left(x_{i}\right)\right)
$$

(weak convergence) and $\left\|w\left(X_{i}^{N}\right)\right\| \rightarrow\left\|w\left(x_{i}\right)\right\|$

Strong convergence

- Definition: a d-tuple of $n \times n$ matrices $X_{1}^{N}, \ldots, X_{d}^{N}$ converges strongly to $x_{1}, \ldots, x_{d} \in(A, \tau)(\tau$ faithful tracial state) iff, for any NC *-polynomial w,

$$
\operatorname{tr}\left(w\left(X_{i}^{N}\right)\right) \rightarrow \tau\left(w\left(x_{i}\right)\right)
$$

(weak convergence) and $\left\|w\left(X_{i}^{N}\right)\right\| \rightarrow\left\|w\left(x_{i}\right)\right\|$

- All the previously quoted results (HT, M, CM, BC, etc...) can be restated as strong convergence results. All proofs start by proving weak convergence...

An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of $\left\|P\left(X_{n}^{i}\right)\right\|$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P\left(X_{n}^{i}\right)$.

An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of $\left\|P\left(X_{n}^{i}\right)\right\|$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P\left(X_{n}^{i}\right)$.
- But surprisingly, quite often, it does.

An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of $\left\|P\left(X_{n}^{i}\right)\right\|$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P\left(X_{n}^{i}\right)$.
- But surprisingly, quite often, it does.
- It relies on the uniqueness of trace on the limiting object (reduced C^{*}-algebra).

An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of $\left\|P\left(X_{n}^{i}\right)\right\|$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P\left(X_{n}^{i}\right)$.
- But surprisingly, quite often, it does.
- It relies on the uniqueness of trace on the limiting object (reduced C^{*}-algebra).
- Question: Could this be used directly in RMT...?

Motivation for our work: strong convergence sometimes fails

- C-Male's results imply $\left\|U_{1}^{N}+\ldots+U_{d}^{N}\right\| \rightarrow 2 \sqrt{d-1}$ (here, U_{i}^{N} are iid random unitary matrices).
For $d>2$, this is less than d (the trivial bound).

Motivation for our work: strong convergence sometimes

 fails- C-Male's results imply $\left\|U_{1}^{N}+\ldots+U_{d}^{N}\right\| \rightarrow 2 \sqrt{d-1}$ (here, U_{i}^{N} are iid random unitary matrices).
For $d>2$, this is less than d (the trivial bound).
- However, although this estimate holds for $\left\|S_{1}^{N}+\ldots+S_{d}^{N}\right\|$ (where S_{i}^{N} are random permutations) when restricted to mean zero vectors (Friedman, Bordenave), it fails when applied to general vectors (Perron-Frobenius).

Initial motivation: strong convergence sometimes fails.

- Likewise, $\left\|O_{1}^{N} \otimes O_{1}^{N}+\ldots+O_{d}^{N} \otimes O_{d}^{N}\right\|$ has an eigenvalue d (O_{N}^{i} are iid random orthogonal) although the collection $O_{i}^{N} \otimes O_{i}^{N}$ is asymptotically free.

Initial motivation: strong convergence sometimes fails.

- Likewise, $\left\|O_{1}^{N} \otimes O_{1}^{N}+\ldots+O_{d}^{N} \otimes O_{d}^{N}\right\|$ has an eigenvalue d (O_{N}^{i} are iid random orthogonal) although the collection $O_{i}^{N} \otimes O_{i}^{N}$ is asymptotically free.
- However, restricted to the ortogonal subspace of the eigenvector of the eigenvalue d (the Bell state / Jones projection), the operator norm tends to its usual candidate $2 \sqrt{d-1}$ (Pisier, Hastings).

Initial motivation: strong convergence sometimes fails.

- Likewise, $\left\|O_{1}^{N} \otimes O_{1}^{N}+\ldots+O_{d}^{N} \otimes O_{d}^{N}\right\|$ has an eigenvalue d (O_{N}^{i} are iid random orthogonal) although the collection $O_{i}^{N} \otimes O_{i}^{N}$ is asymptotically free.
- However, restricted to the ortogonal subspace of the eigenvector of the eigenvalue d (the Bell state / Jones projection), the operator norm tends to its usual candidate $2 \sqrt{d-1}$ (Pisier, Hastings).
- Bottom line: there is a strong motivation to understand better the norm situation for tensors, and this is hard.

Initial motivation: so, when does it hold? (tensors and Operator Algebras)

Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1 / 4}$.

Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1 / 4}$.
- Pisier: if one allows a relaxation by a constant, strong convergence holds with coefficient whose matrix dimension satisfies $M \leq \operatorname{exponential}(N)$.

Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1 / 4}$.
- Pisier: if one allows a relaxation by a constant, strong convergence holds with coefficient whose matrix dimension satisfies $M \leq$ exponential (N).
- Hayes: What happens when $M=N$ and the coefficients are random and independent from X_{i}^{N} ?

Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1 / 4}$.
- Pisier: if one allows a relaxation by a constant, strong convergence holds with coefficient whose matrix dimension satisfies $M \leq$ exponential(N).
- Hayes: What happens when $M=N$ and the coefficients are random and independent from X_{i}^{N} ? Remark: the example of $\left\|O_{1}^{N} \otimes O_{1}^{N}+\ldots+O_{d}^{N} \otimes O_{d}^{N}\right\|$ shows that $M=N$ can be tricky (although here, the coefficients and the matrices are correlated).

Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Ingredients:

- $X^{N}=\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$ are iid $G U E, x=\left(x_{1}, \ldots, x_{d}\right)$ a system of free semicircular variable,
- $Z^{N M}=\left(Z_{1}^{N M}, \ldots, Z_{q}^{N M}\right)$ are deterministic matrices in $M_{M} \otimes M_{N}$,
- P is a self-adjoint non-commuting polynomial in $d+2 q$ variables.

Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Ingredients:

- $X^{N}=\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$ are iid $G U E, x=\left(x_{1}, \ldots, x_{d}\right)$ a system of free semicircular variable,
- $Z^{N M}=\left(Z_{1}^{N M}, \ldots, Z_{q}^{N M}\right)$ are deterministic matrices in $M_{M} \otimes M_{N}$,
- P is a self-adjoint non-commuting polynomial in $d+2 q$ variables.
- Let $f: \mathbb{R} \mapsto \mathbb{R}$ smooth enough (in a Fourier sense):
[Technically, there exists $\mu=\mu(f)$ with $\int\left(1+y^{4}\right) d|\mu|(y)<+\infty$ and $\left.f(x)=\int_{\mathbb{R}} e^{i x y} d \mu(y)\right]$.

Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Then: There exists a polynomial L_{P} which only depends on P such that for any N, M,

$$
\begin{aligned}
& \left\lvert\, \mathbb{E}\left[\frac{1}{M N} \operatorname{Tr}\left(f\left(P\left(X^{N} \otimes I_{M}, Z^{N M}, Z^{N M^{*}}\right)\right)\right)-\right.\right. \\
& \tau_{N} \otimes \tau_{M}\left(f\left(P\left(x \otimes I_{M}, Z^{N M}, Z^{N M^{*}}\right)\right)\right) \mid \\
& \leqslant \frac{M^{2}}{N^{2}} L_{P}\left(\left\|Z^{N M}\right\|\right) \int_{\mathbb{R}}\left(|y|+y^{4}\right) d|\mu|(y)
\end{aligned}
$$

Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Then: There exists a polynomial L_{P} which only depends on P such that for any N, M,

$$
\begin{aligned}
& \left\lvert\, \mathbb{E}\left[\frac{1}{M N} \operatorname{Tr}\left(f\left(P\left(X^{N} \otimes I_{M}, Z^{N M}, Z^{N M^{*}}\right)\right)\right)\right]-\right. \\
& \quad \tau_{N} \otimes \tau_{M}\left(f\left(P\left(x \otimes I_{M}, Z^{N M}, Z^{N M^{*}}\right)\right)\right) \mid \\
& \leqslant \frac{M^{2}}{N^{2}} L_{P}\left(\left\|Z^{N M}\right\|\right) \int_{\mathbb{R}}\left(|y|+y^{4}\right) d|\mu|(y)
\end{aligned}
$$

Comments: The dependence $P \rightarrow L_{P}$ is somewhat explicit. For example it can be made uniform on a compact set of bounded degree.

Under the hood

- Techniques for norm convergence / largest eigenvalue so far:

Under the hood

- Techniques for norm convergence / largest eigenvalue so far:
- Moment methods: mainly for single matrix models (Füredi Komlós, Soshnikov, etc)...
- More recently for some multimatrix models with non-backtracking techniques.

Under the hood

- Techniques for norm convergence / largest eigenvalue so far:
- Moment methods: mainly for single matrix models (Füredi Komlós, Soshnikov, etc)...
- More recently for some multimatrix models with non-backtracking techniques.
- Analysis - matrix valued Stieltjes transform + master equation / Schwinger-Dyson. (also: folding trick for the unitary case, integrable systems (TW), etc).

Under the hood

- Techniques for norm convergence / largest eigenvalue so far:
- Moment methods: mainly for single matrix models (Füredi Komlós, Soshnikov, etc)...
- More recently for some multimatrix models with non-backtracking techniques.
- Analysis - matrix valued Stieltjes transform + master equation / Schwinger-Dyson. (also: folding trick for the unitary case, integrable systems (TW), etc).
- Important point: all multimatrix-type results so far basically rely on linearization.

Under the hood

Under the hood

- Our method does not rely on linearization.

Under the hood

- Our method does not rely on linearization.
- Idea: if f is an indicator function (taking values $[0,1]$), $\operatorname{Tr}(f \circ P)$ is an integer (the number of eigenvalues in the set where f takes the value 1).

Under the hood

- Our method does not rely on linearization.
- Idea: if f is an indicator function (taking values $[0,1]$), $\operatorname{Tr}(f \circ P)$ is an integer (the number of eigenvalues in the set where f takes the value 1).
- If $f \circ P$ is applied to a random matrix, it counts the random number of eigenvalues in an interval.
- Idea: take f with support away from the support of $P(x)$.

Under the hood

- Our method does not rely on linearization.
- Idea: if f is an indicator function (taking values $[0,1]$), $\operatorname{Tr}(f \circ P)$ is an integer (the number of eigenvalues in the set where f takes the value 1).
- If $f \circ P$ is applied to a random matrix, it counts the random number of eigenvalues in an interval.
- Idea: take f with support away from the support of $P(x)$.
- Problem: we know how to study $\operatorname{Tr}\left(f \circ P\left(X_{i}^{N}\right)\right)$ if f is a polynomial (with, e.g. second order freeness) but not if f is an indicator function.

Under the hood

- Solution: (1) extend the study of $\operatorname{Tr}\left(f \circ P\left(X_{i}^{N}\right)\right)$ to smooth functions, and (2) estimate indicator functions with smooth functions.

Under the hood

- Solution: (1) extend the study of $\operatorname{Tr}\left(f \circ P\left(X_{i}^{N}\right)\right)$ to smooth functions, and (2) estimate indicator functions with smooth functions.
- Problem: how to estimate without combinatorics?

Under the hood

- Solution: (1) extend the study of $\operatorname{Tr}\left(f \circ P\left(X_{i}^{N}\right)\right)$ to smooth functions, and (2) estimate indicator functions with smooth functions.
- Problem: how to estimate without combinatorics?
- Solution: expand in a "neighborhood of $N=\infty$ ".

Under the hood

- Solution: (1) extend the study of $\operatorname{Tr}\left(f \circ P\left(X_{i}^{N}\right)\right)$ to smooth functions, and (2) estimate indicator functions with smooth functions.
- Problem: how to estimate without combinatorics?
- Solution: expand in a "neighborhood of $N=\infty$ ".
- In practice, work on a free product of matrices X_{i}^{N} and free semi-circulars x_{i}. Interpolate between matrices and their limit by writing $X_{t}^{N}=e^{-t / 2} X_{0}^{N}+\left(1-e^{-t}\right)^{1 / 2} x\left(\right.$ for each $\left.X_{i}^{N}\right)$.

Under the hood

- Recall that $X_{t}^{N}=e^{-t / 2} X_{0}^{N}+\left(1-e^{-t}\right)^{1 / 2} x$, ...and write

$$
\mathbb{E}\left[\frac{1}{N} \operatorname{tr}_{N}\left(Q\left(X^{N}\right)\right)\right]-\tau(Q(x))=-\int_{0}^{\infty} \mathbb{E}\left[\frac{d}{d t}\left(\tau_{N}\left(Q\left(X_{t}^{N}\right)\right)\right)\right]
$$

Then, show that $\frac{d}{d t} \tau_{N}\left(Q\left(X_{t}^{N}\right)\right)$ is small.

Under the hood

- Recall that $X_{t}^{N}=e^{-t / 2} X_{0}^{N}+\left(1-e^{-t}\right)^{1 / 2} x$, \ldots and write

$$
\mathbb{E}\left[\frac{1}{N} \operatorname{tr}_{N}\left(Q\left(X^{N}\right)\right)\right]-\tau(Q(x))=-\int_{0}^{\infty} \mathbb{E}\left[\frac{d}{d t}\left(\tau_{N}\left(Q\left(X_{t}^{N}\right)\right)\right)\right]
$$

Then, show that $\frac{d}{d t} \tau_{N}\left(Q\left(X_{t}^{N}\right)\right)$ is small.

- This is to be expected because X_{t}^{N} interpolates between our model and the limit (so, a priori, little knowledge about the limit is required).

Under the hood

- Recall that $X_{t}^{N}=e^{-t / 2} X_{0}^{N}+\left(1-e^{-t}\right)^{1 / 2} x$, \ldots and write

$$
\mathbb{E}\left[\frac{1}{N} \operatorname{tr}_{N}\left(Q\left(X^{N}\right)\right)\right]-\tau(Q(x))=-\int_{0}^{\infty} \mathbb{E}\left[\frac{d}{d t}\left(\tau_{N}\left(Q\left(X_{t}^{N}\right)\right)\right)\right]
$$

Then, show that $\frac{d}{d t} \tau_{N}\left(Q\left(X_{t}^{N}\right)\right)$ is small.

- This is to be expected because X_{t}^{N} interpolates between our model and the limit (so, a priori, little knowledge about the limit is required).
- This can be done with free and classical stochastic calculus, Schwinger-Dyson type equations and semigroup theory.

Perspective and further reading

Perspective and further reading

- Parraud: Unitary version of the above result (arXiv:2005.13834). Additive interpolation with a semi-circular system must be replaced by multiplicative interpolation with free Haar unitaries (Voiculescu's liberation).

Perspective and further reading

- Parraud: Unitary version of the above result (arXiv:2005.13834). Additive interpolation with a semi-circular system must be replaced by multiplicative interpolation with free Haar unitaries (Voiculescu's liberation).
- For the GUE we improve on known bounds, whereas in the unitary case, there were no bounds at all.

Perspective and further reading

- Parraud: Unitary version of the above result (arXiv:2005.13834). Additive interpolation with a semi-circular system must be replaced by multiplicative interpolation with free Haar unitaries (Voiculescu's liberation).
- For the GUE we improve on known bounds, whereas in the unitary case, there were no bounds at all.
- Application of Parraud's unitary results to QIT (work in progress)

Perspective and further reading

- Parraud: Unitary version of the above result (arXiv:2005.13834). Additive interpolation with a semi-circular system must be replaced by multiplicative interpolation with free Haar unitaries (Voiculescu's liberation).
- For the GUE we improve on known bounds, whereas in the unitary case, there were no bounds at all.
- Application of Parraud's unitary results to QIT (work in progress)
- Thank you for your attention!

