Norm estimates for polynomials in random matrices: new results

Benoît Collins

Kyoto University

Online RMTA – 29 May 2020
Overview

Joint work with Alice Guionnet (ENS Lyon) and Felix Parraud (ENS Lyon & Kyoto)
Overview

Joint work with Alice Guionnet (ENS Lyon) and Felix Parraud (ENS Lyon & Kyoto)

Plan:

1. Motivation.
2. Results (GUE).
3. Further results and applications.
The operator norm of matrix $X \in M_{\mathbb{C}}^{N \times N}$. Its operator norm is $||X|| = \sup_{v \neq 0} \frac{||Xv||}{||v||^2}$.

If X is selfadjoint with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_N$, then $||X||_{\infty} = \sup_i |\lambda_i|$.

We will mostly work with class of (random) matrices closed under addition, *-operation and product. Since $||X||_2 = ||XX^*||$, it is enough to work with selfadjoint X. So far, nothing random...
The operator norm of matrix

Let $X \in M_N(\mathbb{C})$. Its operator norm is $\|X\| = \sup_{\nu \neq 0} \frac{\|X\nu\|_2}{\|\nu\|_2}$.

We will mostly work with class of (random) matrices closed under addition, \ast-operation and product. Since $\|X\|_2 = \|XX^\ast\|$, it is enough to work with selfadjoint X.

So far, nothing random...
The operator norm of matrix

- Let $X \in M_N(\mathbb{C})$. Its operator norm is $\|X\| = \sup_{v \neq 0} \frac{\|Xv\|_2}{\|v\|_2}$.
- If X is selfadjoint with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_N$, then $\|X\|_\infty = \sup_i |\lambda_i|$.
The operator norm of matrix

- Let $X \in M_N(\mathbb{C})$. Its operator norm is $\|X\| = \sup_{v \neq 0} \frac{\|Xv\|_2}{\|v\|_2}$.
- If X is selfadjoint with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_N$, then $\|X\|_\infty = \sup_i |\lambda_i|$.
- We will mostly work with class of (random) matrices closed under addition, *-operation and product. Since $\|X\|^2 = \|XX^*\|$, it is enough to work with selfadjoint X.

So far, nothing random...
The operator norm of matrix

- Let $X \in M_N(\mathbb{C})$. Its operator norm is $||X|| = \sup_{v \neq 0} \frac{||Xv||_2}{||v||_2}$.
- If X is selfadjoint with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_N$, then $||X||_\infty = \sup_i |\lambda_i|$.
- We will mostly work with class of (random) matrices closed under addition, *-operation and product. Since $||X||^2 = ||XX^*||$, it is enough to work with selfadjoint X.
- So far, nothing random...
Long known results

- (Wigner’s Theorem): If X^N is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure $\mu_{X^N} = N^{-1} \sum_i \delta_{\lambda_i}$ converges to the semi-circle distribution.

This implies that $\lim \inf N \|X^N\| \geq 2$ (almost surely or in expectation).

Similarly we can show $\lim \inf N \|f(X^N)\| \geq \|f(x)\|$ for any continuous function (functional calculus), where x is a semi-circular distributed rrv.

Here, some kind of smoothness for f is unavoidable.
Long known results

- (Wigner’s Theorem): If X^N is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure
 $\mu_{X^N} = N^{-1} \sum_i \delta_{\lambda_i}$ converges to the semi-circle distribution.
- This implies that
 \[\liminf_N \|X^N\| \geq 2 \]
 (almost surely or in expectation).
(Wigner’s Theorem): If X^N is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure
\[\mu_{X^N} = N^{-1} \sum_i \delta_{\lambda_i} \]
converges to the semi-circle distribution.

This implies that
\[\liminf_N \| X^N \| \geq 2 \]
(almost surely or in expectation).

Similarly we can show \(\liminf_N \| f(X^N) \| \geq \| f(x) \| \) for any continuous function (functional calculus), where x is a semi-circular distributed rrv.
Long known results

- (Wigner’s Theorem): If X^N is an $N \times N$ Wigner matrix (with appropriate assumptions on the entries), its empirical measure $\mu_{X^N} = N^{-1} \sum_i \delta_{\lambda_i}$ converges to the semi-circle distribution.
- This implies that
 \[
 \liminf_N \|X^N\| \geq 2
 \]
 (almost surely or in expectation).
- Similarly we can show $\liminf_N \|f(X^N)\| \geq \|f(x)\|$ for any continuous function (functional calculus), where x is a semi-circular distributed rrv. Here, some kind of smoothness for f is unavoidable.
Long known results

- A similar result can be proved if $f(X^N)$ is replaced by $P(X_1^N, \ldots, X_d^N)$, where P is a non-commuting polynomial in d free abstract variables and X_1^N, \ldots, X_d^N are d iid copies of GUEs.
A similar result can be proved if $f(X^N)$ is replaced by $P(X_1^N, \ldots, X_d^N)$, where P is a non-commuting polynomial in d free abstract variables and X_1^N, \ldots, X_d^N are d iid copies of GUEs.

Indeed, Voiculescu’s *asymptotic freeness* (1991) implies that $\lim_N tr(P(X_1^N, \ldots, X_d^N))$ converges to $\tau(P(x_1, \ldots, x_d))$ where x_1, \ldots, x_d are free semi-circular variables.
A similar result can be proved if $f(X^N)$ is replaced by $P(X_1^N, \ldots, X_d^N)$, where P is a non-commuting polynomial in d free abstract variables and X_1^N, \ldots, X_d^N are d iid copies of GUEs.

Indeed, Voiculescu’s asymptotic freeness (1991) implies that $\lim_N \text{tr}(P(X_1^N, \ldots, X_d^N))$ converges to $\tau(P(x_1, \ldots, x_d))$ where x_1, \ldots, x_d are free semi-circular variables. Since P^l is again a polynomial for each l we can conclude (Weierstrass + Riesz).
Long known results

- A similar result can be proved if $f(X^N)$ is replaced by $P(X_1^N, \ldots, X_d^N)$, where P is a non-commuting polynomial in d free abstract variables and X_1^N, \ldots, X_d^N are d iid copies of GUEs.

- Indeed, Voiculescu’s asymptotic freeness (1991) implies that $\lim_N \text{tr}(P(X_1^N, \ldots, X_d^N))$ converges to $\tau(P(x_1, \ldots, x_d))$ where x_1, \ldots, x_d are free semi-circular variables. Since P^l is again a polynomial for each l we can conclude (Weierstrass + Riesz).

- Similar results hold true with many other matrix models (more general iid Wigner matrices, i.i.d random unitary matrices, etc).
Less trivial bounds

- **Fundamental problem**: can we replace \(\liminf_N \|X^N\| \geq XXX\) by \(\limsup_N \|X^N\| \leq XXX??\) (i.e. can we get \(\lim_N \|X^N\| = XXX??\)).

- **Yes** for Wigner (under appropriate assumptions). Cf Füredi Komlós, etc.
Less trivial bounds

- **Fundamental problem**: can we replace
 \(\lim \inf_N \| X^N \| \geq XXX \) by \(\lim \sup_N \| X^N \| \leq XXX \)?? (i.e. can we get \(\lim_N \| X^N \| = XXX \)?)

- **Yes** for Wigner (under appropriate assumptions). Cf Füredi Komlós, etc

- (big breakthrough – Haagerup-Thorbjørnsen 2005): **Yes** for a NC polynomial \(P \) in iid copies \(X_1^N, \ldots, X_d^N \) of GUEs.
Less trivial bounds

- **Fundamental problem**: can we replace
 \[\liminf_N \|X^N\| \geq XXX \] by \[\limsup_N \|X^N\| \leq XXX \]?
Less trivial bounds

- **Fundamental problem**: can we replace
 \[\liminf_N \|X^N\| \geq XXX \text{ by } \limsup_N \|X^N\| \leq XXX? \]

- Many generalizations of Haagerup-Thorbjørnsen to more general Wigner setups (Anderson, Capitaine...)
Fundamental problem: can we replace
\[\liminf_N \| X^N \| \geq XXX \text{ by } \limsup_N \| X^N \| \leq XXX? \]

Many generalizations of Haagerup-Thorbjørnsen to more general Wigner setups (Anderson, Capitaine...)

(Male, Pisier): **Yes** if one adds *tame* constant matrices & tensors to the models.
Less trivial bounds

- **Fundamental problem**: can we replace \(\liminf_N ||X^N|| \geq XXX \) by \(\limsup_N ||X^N|| \leq XXX \)?
- Many generalizations of Haagerup-Thorbjørnsen to more general Wigner setups (Anderson, Capitaine...)
- (Male, Pisier): **Yes** if one adds *tame* constant matrices & tensors to the models.
- (C & Male): Same as above if one replaces iid GUEs by iid unitaries.
Less trivial bounds

- Fundamental problem: can we replace \(\lim \inf \| X^N \| \geq XXX \) by \(\lim \sup \| X^N \| \leq XXX \)?
- (C, Bordenave): \textbf{Yes} for a polynomial in iid copies of random permutations or involutions without fixed points (acting on mean zero vectors).
Less trivial bounds

- Fundamental problem: can we replace \(\lim \inf \|X^N\| \geq XXX \) by \(\lim \sup \|X^N\| \leq XXX \)?

- (C, Bordenave): **Yes** for a polynomial in iid copies of random permutations or involutions without fixed points (acting on mean zero vectors).

- (C, Bordenave – in preparation): **Yes** for finite tensors of random unitaries.
A non obvious fact: Actually, all the above results actually imply that if P is self-adjoint, the spectrum of $P(X_i^N)$ converges to the spectrum of $P(x_i)$ in the sense of Hausdorff distance.
A non obvious fact: Actually, all the above results actually imply that if P is self-adjoint, the spectrum of $P(X_i^N)$ converges to the spectrum of $P(x_i)$ in the sense of Hausdorff distance.

The proof of this fact in the case of GUE’s or random unitaries is simple modulo a hard result in OA: the limiting C^*-algebra has no non-trival projection.
The proof of this fact in general relies on linearization – namely, understanding the spectrum of any \textit{NC polynomial} in X_i is equivalent to understanding the spectrum of any \textit{linear equation} in $1_N, X_i^N, \ldots$ with matrix coefficients of arbitrary size.
The proof of this fact in general relies on linearization – namely, understanding the spectrum of any \textit{NC polynomial} in X_i is equivalent to understanding the spectrum of any \textit{linear equation} in $1_N, X_i^N, \ldots$ with matrix coefficients of arbitrary size.

The stability under addition, multiplication and conjugation of our families of models is also important (folding trick).
Strong convergence

Definition: a d-tuple of $n \times n$ matrices X_1^N, \ldots, X_d^N converges strongly to $x_1, \ldots, x_d \in (A, \tau)$ (τ faithful tracial state) iff, for any NC $*$-polynomial w,
Strong convergence

- **Definition:** a \(d \)-tuple of \(n \times n \) matrices \(X_1^N, \ldots, X_d^N \) converges strongly to \(x_1, \ldots, x_d \in (A, \tau) \) (\(\tau \) faithful tracial state) iff, for any NC \(\ast \)-polynomial \(w \),

\[
tr(w(X_i^N)) \rightarrow \tau(w(x_i))
\]

(weak convergence) and \(\|w(X_i^N)\| \rightarrow \|w(x_i)\| \)
Strong convergence

Definition: a d-tuple of $n \times n$ matrices X_1^N, \ldots, X_d^N converges strongly to $x_1, \ldots, x_d \in (A, \tau)$ (τ faithful tracial state) iff, for any NC $*$-polynomial w,

$$\text{tr}(w(X_i^N)) \to \tau(w(x_i))$$

(weak convergence) and $\|w(X_i^N)\| \to \|w(x_i)\|$

All the previously quoted results (HT, M, CM, BC, etc...) can be restated as strong convergence results. All proofs start by proving weak convergence...
An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of $\|P(X_n^i)\|$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P(X_n^i)$.

Question: Could this be used directly in RMT...?
An intriguing remark: sometimes, norm convergence implies strong convergence

A priori, knowing the asymptotic behavior of $||P(X_n^i)||$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P(X_n^i)$.

But surprisingly, quite often, it does.
An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of \(\| P(X_n^i) \| \) for all \(P \) does not imply knowing the asymptotic behavior of the eigenvalue counting measure of \(P(X_n^i) \).
- But surprisingly, quite often, it does.
- It relies on the uniqueness of trace on the limiting object (reduced \(C^* \)-algebra).
An intriguing remark: sometimes, norm convergence implies strong convergence

- A priori, knowing the asymptotic behavior of $\|P(X_n^i)\|$ for all P does not imply knowing the asymptotic behavior of the eigenvalue counting measure of $P(X_n^i)$.
- But surprisingly, quite often, it does.
- It relies on the uniqueness of trace on the limiting object (reduced C^*-algebra).
- Question: Could this be used directly in RMT...?
Motivation for our work: strong convergence sometimes fails

C-Male’s results imply $\|U_1^N + \ldots + U_d^N\| \to 2\sqrt{d - 1}$ (here, U_i^N are iid random unitary matrices).
For $d > 2$, this is less than d (the trivial bound).
Motivation for our work: strong convergence sometimes fails

- C-Male’s results imply $\|U_1^N + \ldots + U_d^N\| \to 2\sqrt{d-1}$ (here, U_i^N are iid random unitary matrices). For $d > 2$, this is less than d (the trivial bound).
- However, although this estimate holds for $\|S_1^N + \ldots + S_d^N\|$ (where S_i^N are random permutations) when restricted to mean zero vectors (Friedman, Bordenave), it fails when applied to general vectors (Perron-Frobenius).
Initial motivation: strong convergence sometimes fails.

- Likewise, \(\|O_1^N \otimes O_1^N + \ldots + O_d^N \otimes O_d^N\| \) has an eigenvalue \(d \) (\(O_i^N \) are iid random orthogonal) although the collection \(O_i^N \otimes O_i^N \) is asymptotically free.

Bottom line: there is a strong motivation to understand better the norm situation for tensors, and this is hard.
Initial motivation: strong convergence sometimes fails.

- Likewise, $\|O_1^N \otimes O_1^N + \ldots + O_d^N \otimes O_d^N\|$ has an eigenvalue d (O^N_i are iid random orthogonal) although the collection $O_i^N \otimes O_i^N$ is asymptotically free.

- However, restricted to the orthogonal subspace of the eigenvector of the eigenvalue d (the Bell state / Jones projection), the operator norm tends to its usual candidate $2\sqrt{d} - 1$ (Pisier, Hastings).

Bottom line: there is a strong motivation to understand better the norm situation for tensors, and this is hard.
Initial motivation: strong convergence sometimes fails.

- Likewise, $\|O_1^N \otimes O_1^N + \ldots + O_d^N \otimes O_d^N\|$ has an eigenvalue d (O_i^N are iid random orthogonal) although the collection $O_i^N \otimes O_i^N$ is asymptotically free.

- However, restricted to the orthogonal subspace of the eigenvector of the eigenvalue d (the Bell state / Jones projection), the operator norm tends to its usual candidate $2\sqrt{d-1}$ (Pisier, Hastings).

- **Bottom line**: there is a strong motivation to understand better the norm situation for tensors, and this is hard.
Initial motivation: so, when does it hold? (tensors and Operator Algebras)
Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1/4}$.

- Hayes: What happens when $M = N$ and the coefficients are random and independent from X_N?

Remark: the example of $||O_{N_1} \otimes O_{N_1} + ... + O_{N_d} \otimes O_{N_d}||$ shows that $M = N$ can be tricky (although here, the coefficients and the matrices are correlated).
Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1/4}$.
- Pisier: if one allows a relaxation by a constant, strong convergence holds with coefficient whose matrix dimension satisfies $M \leq \text{exponential}(N)$.

Remark: the example of $\|O_N^1 \otimes O_N^1 + \ldots + O_N^d \otimes O_N^d\|$ shows that $M = N$ can be tricky (although here, the coefficients and the matrices are correlated).
Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1/4}$.
- Pisier: if one allows a relaxation by a constant, strong convergence holds with coefficient whose matrix dimension satisfies $M \leq \text{exponential}(N)$.
- Hayes: What happens when $M = N$ and the coefficients are random and independent from X_i^N?
Initial motivation: so, when does it hold? (tensors and Operator Algebras)

- Male, Pisier: strong convergence holds with coefficient whose matrix dimension satisfies $M \ll N^{1/4}$.
- Pisier: if one allows a relaxation by a constant, strong convergence holds with coefficient whose matrix dimension satisfies $M \leq \text{exponential}(N)$.
- Hayes: What happens when $M = N$ and the coefficients are random and independent from X_i^N? Remark: the example of $\|O_1^N \otimes O_1^N + \ldots + O_d^N \otimes O_d^N\|$ shows that $M = N$ can be tricky (although here, the coefficients and the matrices are correlated).
Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Ingredients:

- $X^N = (X_1^N, \ldots, X_d^N)$ are iid GUE, $x = (x_1, \ldots, x_d)$ a system of free semicircular variable,
- $Z^{NM} = (Z_1^{NM}, \ldots, Z_q^{NM})$ are deterministic matrices in $M_M \otimes M_N$,
- P is a self-adjoint non-commuting polynomial in $d + 2q$ variables.
Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Ingredients:

- $X^N = (X_1^N, \ldots, X_d^N)$ are iid GUE, $x = (x_1, \ldots, x_d)$ a system of free semicircular variable,

- $Z^{NM} = (Z_1^{NM}, \ldots, Z_q^{NM})$ are deterministic matrices in $M_M \otimes M_N$,

- P is a self-adjoint non-commuting polynomial in $d + 2q$ variables.

- Let $f : \mathbb{R} \mapsto \mathbb{R}$ smooth enough (in a Fourier sense):
 [Technically, there exists $\mu = \mu(f)$ with $\int (1 + y^4) \; d|\mu|(y) < +\infty$ and $f(x) = \int_{\mathbb{R}} e^{i xy} \; d\mu(y)$].
Then there exists a polynomial L_P which only depends on P such that for any N, M,
\[\left| \left| E \left[1_{MN} \text{Tr} \left(f \left(P \left(X_N \otimes I_M, Z_{NM}, Z_{NM}^* \right) \right) \right) - \tau_N \otimes \tau_M \left(f \left(P \left(x \otimes I_M, Z_{NM}, Z_{NM}^* \right) \right) \right) \right] \right| \leq M^2 N^2 L_P \left(\left\| Z_{NM} \right\| \int R \left(|y| + y^4 \right) d|\mu|(y) \right). \]

Comments: The dependence $P \rightarrow L_P$ is somewhat explicit. For example it can be made uniform on a compact set of bounded degree.
Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Then: There exists a polynomial \(L_P \) which only depends on \(P \) such that for any \(N, M, \)

\[
\left| \mathbb{E} \left[\frac{1}{MN} \text{Tr} \left(f \left(P \left(X^N \otimes I_M, Z^{NM}, Z^{NM*} \right) \right) \right) \right] - \tau_N \otimes \tau_M \left(f \left(P \left(x \otimes I_M, Z^{NM}, Z^{NM*} \right) \right) \right) \right| \leq \frac{M^2}{N^2} L_P \left(\| Z^{NM} \| \right) \int_{\mathbb{R}} (|y| + y^4) \, d|\mu|(y).
\]
Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Then: There exists a polynomial L_P which only depends on P such that for any $N, M,$

$$
\left| \mathbb{E} \left[\frac{1}{MN} \operatorname{Tr} \left(f \left(P \left(X^N \otimes I_M, Z^{NM}, Z^{NM^*} \right) \right) \right) \right] - \tau_N \otimes \tau_M \left(f \left(P \left(x \otimes I_M, Z^{NM}, Z^{NM^*} \right) \right) \right) \right| \\
\leq \frac{M^2}{N^2} L_P \left(\| Z^{NM} \| \right) \int_{\mathbb{R}} (|y| + y^4) \, d|m|(y).
$$

Comments: The dependence $P \rightarrow L_P$ is somewhat explicit. For example it can be made uniform on a compact set of bounded degree.
Under the hood

- Techniques for norm convergence / largest eigenvalue so far:

 - Moment methods: mainly for single matrix models (Füredi, Komlós, Soshnikov, etc)...
 - More recently for some multimatrix models with non-backtracking techniques.
 - Analysis – matrix valued Stieltjes transform + master equation / Schwinger-Dyson. (also: folding trick for the unitary case, integrable systems (TW), etc).
 - Important point: all multimatrix-type results so far basically rely on linearization.
Under the hood

- Techniques for norm convergence / largest eigenvalue so far:
 - **Moment methods**: mainly for single matrix models (Füredi Komlós, Soshnikov, etc)...
 - More recently for some multimatrix models with non-backtracking techniques.
Under the hood

- Techniques for norm convergence / largest eigenvalue so far:
- **Moment methods**: mainly for single matrix models (Füredi Komlós, Soshnikov, etc)...
- More recently for some multimatrix models with non-backtracking techniques.
- **Analysis** – matrix valued Stieltjes transform + master equation / Schwinger-Dyson. (also: folding trick for the unitary case, integrable systems (TW), etc).
Under the hood

- Techniques for norm convergence / largest eigenvalue so far:
 - **Moment methods**: mainly for single matrix models (Füredi Komlós, Soshnikov, etc)...
 - More recently for some multimatrix models with non-backtracking techniques.

- **Analysis** – matrix valued Stieltjes transform + master equation / Schwinger-Dyson. (also: folding trick for the unitary case, integrable systems (TW), etc).

- **Important point**: all multimatrix-type results so far basically rely on linearization.
Under the hood

Our method does not rely on linearization.

Idea: if \(f \) is an indicator function (taking values \([0, 1]\)), \(\text{Tr}(f \circ P) \) is an integer (the number of eigenvalues in the set where \(f \) takes the value 1).

If \(f \circ P \) is applied to a random matrix, it counts the random number of eigenvalues in an interval.

Idea: take \(f \) with support away from the support of \(P(X_N) \).

Problem: we know how to study \(\text{Tr}(f \circ P(X_N)) \) if \(f \) is a polynomial (with, e.g. second order freeness) but not if \(f \) is an indicator function.
Under the hood

- Our method does *not rely* on linearization.
Under the hood

- Our method does *not rely* on linearization.
- **Idea:** if f is an indicator function (taking values $[0, 1]$), $\text{Tr}(f \circ P)$ is an integer (the number of eigenvalues in the set where f takes the value 1).
Under the hood

- Our method does *not rely* on linearization.

- **Idea:** if f is an indicator function (taking values $[0, 1]$), $Tr(f \circ P)$ is an integer (the number of eigenvalues in the set where f takes the value 1).

- If $f \circ P$ is applied to a random matrix, it counts the random number of eigenvalues in an interval.

- **Idea:** take f with support away from the support of $P(x)$.
Under the hood

- Our method does *not rely* on linearization.
- **Idea:** if f is an indicator function (taking values $[0, 1]$), $\text{Tr}(f \circ P)$ is an integer (the number of eigenvalues in the set where f takes the value 1).
- If $f \circ P$ is applied to a random matrix, it counts the random number of eigenvalues in an interval.
- **Idea:** take f with support away from the support of $P(x)$.
- **Problem:** we know how to study $\text{Tr}(f \circ P(X_i^N))$ if f is a polynomial (with, e.g. second order freeness) but not if f is an indicator function.
Under the hood

- **Solution:** (1) extend the study of $\text{Tr}(f \circ P(X_i^N))$ to smooth functions, and (2) estimate indicator functions with smooth functions.
Solution: (1) extend the study of $Tr(f \circ P(X_i^N))$ to smooth functions, and (2) estimate indicator functions with smooth functions.

Problem: how to estimate without combinatorics?
Under the hood

- **Solution:** (1) extend the study of $\text{Tr}(f \circ P(X_i^N))$ to smooth functions, and (2) estimate indicator functions with smooth functions.

- **Problem:** how to estimate without combinatorics?

- **Solution:** expand in a “neighborhood of $N = \infty$”.
Under the hood

- **Solution:** (1) extend the study of $Tr(f \circ P(X_i^N))$ to smooth functions, and (2) estimate indicator functions with smooth functions.

- **Problem:** how to estimate without combinatorics?

- **Solution:** expand in a “neighborhood of $N = \infty$”.

- In practice, work on a free product of matrices X_i^N and free semi-circulars x_i. Interpolate between matrices and their limit by writing $X_t^N = e^{-t/2}X_0^N + (1 - e^{-t})^{1/2}x$ (for each X_i^N).
Under the hood

- Recall that $X_t^N = e^{-t/2}X_0^N + (1 - e^{-t})^{1/2}x$, ...and write

$$
\mathbb{E} \left[\frac{1}{N} tr_N \left(Q \left(X^N_t \right) \right) \right] - \tau \left(Q(x) \right) = - \int_0^\infty \mathbb{E} \left[\frac{d}{dt} \left(\tau_N \left(Q(X_t^N) \right) \right) \right] dt
$$

Then, show that $\frac{d}{dt} \tau_N(Q(X_t^N))$ is small.
Recall that $X_t^N = e^{-t/2}X_0^N + (1 - e^{-t})^{1/2}x$, ...and write

$$
\mathbb{E} \left[\frac{1}{N} tr_N \left(Q \left(X^N \right) \right) \right] - \tau \left(Q (x) \right) = - \int_0^\infty \mathbb{E} \left[\frac{d}{dt} \left(\tau_N \left(Q(X_t^N) \right) \right) \right] dt
$$

Then, show that $\frac{d}{dt} \tau_N(Q(X_t^N))$ is small.

This is to be expected because X_t^N interpolates between our model and the limit (so, a priori, little knowledge about the limit is required).
Under the hood

Recall that $X_t^N = e^{-t/2}X_0^N + (1 - e^{-t})^{1/2}x$, ...and write

$$\mathbb{E} \left[\frac{1}{N} \text{tr}_N(Q(X^N)) \right] - \tau(Q(x)) = - \int_0^\infty \mathbb{E} \left[\frac{d}{dt}(\tau_N(Q(X_t^N))) \right] dt.$$

Then, show that $\frac{d}{dt}\tau_N(Q(X_t^N))$ is small.

This is to be expected because X_t^N interpolates between our model and the limit (so, a priori, little knowledge about the limit is required).

This can be done with free and classical stochastic calculus, Schwinger-Dyson type equations and semigroup theory.
Perspective and further reading

For the GUE we improve on known bounds, whereas in the unitary case, there were no bounds at all.

Application of Parraud’s unitary results to QIT (work in progress)

Thank you for your attention!
Perspective and further reading

Perspective and further reading

- For the *GUE* we improve on known bounds, whereas in the unitary case, there were no bounds at all.
Perspective and further reading

- For the GUE we improve on known bounds, whereas in the unitary case, there were no bounds at all.
- Application of Parraud’s unitary results to QIT (work in progress)
Perspective and further reading

- For the \textit{GUE} we improve on known bounds, whereas in the unitary case, there were no bounds at all.
- Application of Parraud’s unitary results to QIT (work in progress)
- Thank you for your attention!