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The operator norm of matrix
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I We will mostly work with class of (random) matrices closed
under addition, *-operation and product. Since
||X ||2 = ||XX ∗||, it is enough to work with selfadjoint X .

I So far, nothing random...
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Long known results

I (Wigner’s Theorem): If XN is an N × N Wigner matrix (with
appropriate assumptions on the entries), its empirical measure
µXN = N−1

∑
i δλi converges to the semi-circle distribution.

I This implies that
lim inf

N
||XN || ≥ 2

(almost surely or in expectation).

I Similarly we can show lim infN ||f (XN)|| ≥ ||f (x)|| for any
continuous function (functional calculus), where x is a
semi-circular distributed rrv. Here, some kind of smoothness
for f is unavoidable.
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Long known results

I A similar result can be proved if f (XN) is replaced by
P(XN

1 , . . . ,X
N
d ), where P is a non-commuting polynomial in

d free abstract variables and XN
1 , . . . ,X

N
d are d iid copies of

of GUEs.

I Indeed, Voiculescu’s asymptotic freeness (1991) implies that
limN tr(P(XN

1 , . . . ,X
N
d )) converges to τ(P(x1, . . . , xd)) where

x1, . . . , xd are free semi-circular variables. Since P l is again a
polynomial for each l we can conclude (Weierstrass + Riesz).

I Similar results hold true with many other matrix models (more
general iid Wigner matrices, i.i.d random unitary matrices,
etc).
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Operator norm or spectrum convergence?

I A non obvious fact: Actually, all the above results actually
imply that if P is self-adjoint, the spectrum of P(XN

i )
converges to the spectrum of P(xi ) in the sense of Hausdorff
distance.

I The proof of this fact in the case of GUE ’s or random
unitaries is simple modulo a hard result in OA: the limiting
C ∗-algebra has no non-trival projection.
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I The proof of this fact in general relies on linearization –
namely, understanding the spectrum of any NC polynomial in
Xi is equivalent to understanding the spectrum of any linear
equation in 1N ,X
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i , . . . with matrix coefficients of arbitrary

size.

I The stability under addition, multiplication and conjugation of
our families of models is also important (folding trick).
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Motivation for our work: strong convergence sometimes
fails

I C-Male’s results imply ||UN
1 + . . .+ UN

d || → 2
√
d − 1 (here,

UN
i are iid random unitary matrices).

For d > 2, this is less than d (the trivial bound).

I However, although this estimate holds for ||SN
1 + . . .+ SN

d ||
(where SN

i are random permutations) when restricted to mean
zero vectors (Friedman, Bordenave), it fails when applied to
general vectors (Perron-Frobenius).
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I Likewise, ||ON
1 ⊗ ON
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(O i

N are iid random orthogonal) although the collection
ON

i ⊗ ON
i is asymptotically free.

I However, restricted to the ortogonal subspace of the
eigenvector of the eigenvalue d (the Bell state / Jones
projection), the operator norm tends to its usual candidate
2
√
d − 1 (Pisier, Hastings).

I Bottom line: there is a strong motivation to understand
better the norm situation for tensors, and this is hard.
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Initial motivation: so, when does it hold? (tensors and
Operator Algebras)

I Male, Pisier: strong convergence holds with coefficient whose
matrix dimension satisfies M << N1/4.

I Pisier: if one allows a relaxation by a constant, strong
convergence holds with coefficient whose matrix dimension
satisfies M ≤ exponential(N).

I Hayes: What happens when M = N and the coefficients are
random and independent from XN

i ? Remark: the example of
||ON

1 ⊗ ON
1 + . . .+ ON

d ⊗ ON
d || shows that M = N can be

tricky (although here, the coefficients and the matrices are
correlated).
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Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Ingredients:

I XN = (XN
1 , . . . ,X

N
d ) are iid GUE , x = (x1, . . . , xd) a system

of free semicircular variable,

I ZNM = (ZNM
1 , . . . ,ZNM

q ) are deterministic matrices in
MM ⊗MN ,

I P is a self-adjoint non-commuting polynomial in d + 2q
variables.

I Let f : R 7→ R smooth enough (in a Fourier sense):
[Technically, there exists µ = µ(f ) with∫

(1 + y4) d |µ|(y) < +∞ and f (x) =
∫
R e ixy dµ(y)].
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Main result (arXiv:1912.04588, C, Guionnet, Parraud)

Then: There exists a polynomial LP which only depends on P such
that for any N,M,

∣∣∣∣∣E
[

1

MN
Tr
(
f
(
P
(
XN ⊗ IM ,Z

NM ,ZNM∗
)))]

−

τN ⊗ τM
(
f
(
P
(
x ⊗ IM ,Z

NM ,ZNM∗
)))∣∣∣∣∣

6
M2

N2
LP

(∥∥∥ZNM
∥∥∥)∫

R
(|y |+ y4) d |µ|(y) .

Comments: The dependence P → LP is somewhat explicit. For
example it can be made uniform on a compact set of bounded
degree.
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Under the hood

I Techniques for norm convergence / largest eigenvalue so far:

I Moment methods: mainly for single matrix models (Füredi
Komlós, Soshnikov, etc)...

I More recently for some multimatrix models with
non-backtracking techniques.

I Analysis – matrix valued Stieltjes transform + master
equation / Schwinger-Dyson. (also: folding trick for the
unitary case, integrable systems (TW), etc).

I Important point: all multimatrix-type results so far basically
rely on linearization.



Under the hood

I Techniques for norm convergence / largest eigenvalue so far:

I Moment methods: mainly for single matrix models (Füredi
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I Idea: if f is an indicator function (taking values [0, 1]),
Tr(f ◦ P) is an integer (the number of eigenvalues in the set
where f takes the value 1).

I If f ◦ P is applied to a random matrix, it counts the random
number of eigenvalues in an interval.
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I Problem: we know how to study Tr(f ◦ P(XN
i )) if f is a
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limit is required).
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