Localization of the continuous Anderson Hamiltonian in 1-d and its transition towards delocalization

Laure Dumaz

CNRS, Université Paris-Dauphine

Online conference Random matrices and Applications, May 2020

Works in collaboration with Cyril Labbé

Schrödinger operators

Schrödinger operator in 1-d For $u : [0, L] \rightarrow \mathbb{R}$

$$u\mapsto -u''+\mathbf{V}\cdot u$$
.

 $V : [0, L] \rightarrow \mathbb{R}$: potential, self-adjoint operator with Dirichlet boundary conditions.

Models disordered solids in physics where disorder = V.

Schrödinger operator in 1-d For $u : [0, L] \rightarrow \mathbb{R}$

$$u\mapsto -u''+\mathbf{V}\cdot u$$
.

 $V : [0, L] \rightarrow \mathbb{R}$: potential, self-adjoint operator with Dirichlet boundary conditions.

Models disordered solids in physics where disorder = V.

Interpolation between the Laplacian:

 $u\mapsto -u''$,

and the multiplication by the potential V:

 $u\mapsto V\cdot u$.

Schrödinger operator in 1-d For $u : [0, L] \rightarrow \mathbb{R}$

$$u\mapsto -u''+\mathbf{V}\cdot u$$
.

 $V : [0, L] \rightarrow \mathbb{R}$: potential, self-adjoint operator with Dirichlet boundary conditions.

Models disordered solids in physics where disorder = V.

Interpolation between the Laplacian:

 $u\mapsto -u''$,

and the multiplication by the potential V:

 $u\mapsto V\cdot u$.

Discrete analog: tridiagonal matrix

$$\begin{pmatrix} V_1 & 1 & & \\ 1 & V_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & V_N \end{pmatrix}$$

Case V = 0: Laplacian on [0, L] with Dirichlet b.c.

$$-u''(x) = \lambda u(x)$$
$$u(0) = u(L) = 0.$$

Case V = 0: Laplacian on [0, L] with Dirichlet b.c.

$$-u''(x) = \lambda u(x)$$
$$u(0) = u(L) = 0.$$

Eigenvalues $\lambda_1 < \lambda_2 < \cdots$ satisfy:

$$\lambda_k = (\pi k/L)^2.$$

And the associated eigenvectors are:

$$x \in [0, L] \mapsto \sin(\frac{\pi k}{L}x).$$

Case V = 0: Laplacian on [0, L] with Dirichlet b.c.

$$-u''(x) = \lambda u(x)$$
$$u(0) = u(L) = 0.$$

Eigenvalues $\lambda_1 < \lambda_2 < \cdots$ satisfy:

$$\lambda_k = (\pi k/L)^2.$$

And the associated eigenvectors are:

$$x \in [0, L] \mapsto \sin(\frac{\pi k}{L}x).$$

Eigenvectors are completely delocalized!

Continuous Anderson Hamiltonian in 1-d

We choose $V = \xi$: white noise. For $u : [0, L] \to \mathbb{R}$,

$$\mathcal{H}_L$$
 : $u\mapsto -u''+\boldsymbol{\xi}\cdot u$.

Continuous Anderson Hamiltonian in 1-d

We choose $V = \xi$: white noise. For $u : [0, L] \to \mathbb{R}$,

$$\mathcal{H}_L$$
 : $u \mapsto -u'' + \boldsymbol{\xi} \cdot u$.

Be careful: Multiplication by the white noise does not make sense!

Continuous Anderson Hamiltonian in 1-d

We choose $V = \xi$: white noise. For $u : [0, L] \to \mathbb{R}$,

$$\mathcal{H}_L$$
 : $u \mapsto -u'' + \boldsymbol{\xi} \cdot u$.

Be careful: Multiplication by the white noise does not make sense!

Fukushima, Nakao ('77) proved:

- Well-defined self-adjoint operator,
- ▶ discrete simple spectrum bounded from below: $\lambda_1 < \lambda_2 < \cdots$,
- ► associated eigenvectors (\(\varphi_k\))_k\) form an orthonormal basis of L²([0, L]) and are C^{3/2-}.

Goal

Study the **spectrum** of this operator when $L \rightarrow \infty$.

L

Study the **spectrum** of this operator when $L \rightarrow \infty$.

Usually for random operators, there is a dichotomy:

 Localization of the eigenvectors and Poisson distribution of eigenvalues. Study the **spectrum** of this operator when $L \rightarrow \infty$.

Eigenvectors

Random real function on [0, L] delocalized

Usually for random operators, there is a dichotomy:

Delocalization of the eigenvectors and repulsion of the eigenvalues.

Previous results on \mathcal{H}_L

Density of states

Density of states:

$$n : E \mapsto \frac{d}{dE} \lim_{L \to \infty} \frac{1}{L} \# \{ \text{eigenvalues } \leq E \}.$$

Density of states

Density of states:

$$n : E \mapsto \frac{d}{dE} \lim_{L \to \infty} \frac{1}{L} \# \{ \text{eigenvalues } \leq E \}.$$

For the Laplacian, its eigenvalues are:

$$\lambda_k = (\pi k/L)^2.$$

 \rightarrow Density of states:

$$E \in \mathbb{R}_+ \mapsto rac{1}{2\pi\sqrt{E}}.$$

Density of states for \mathcal{H}_L

Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao ('77): Explicit integral formula for the density of states of H_L :

$$n(E) = \frac{d}{dE} \left(\sqrt{2\pi} \int_0^\infty u^{-1/2} e^{-\frac{1}{6}u^3 - 2Eu} du \right)^{-1}$$

11/36

McKean ('94) : Convergence of the smallest eigenvalue λ_1 (recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

$$-4\sqrt{a_L}(\lambda_1 + a_L) \Rightarrow_{L \to \infty} e^{-e^{-x}} dx,$$

where $a_L \sim \left(\frac{3}{8} \ln L\right)^{2/3}$

Our results on \mathcal{H}_L

Localization of the smallest eigenvectors

- /-

Recall
$$a_L \sim \left(\frac{3}{8} \ln L\right)^{2/3}$$
. Denote by
 $Q_L := \sum_{k \ge 1} \delta_4 \sqrt{a_L} (\lambda_k + a_L), \qquad m_L(dt) := (L \varphi_k (L t)^2 dt)_{k \ge 1}.$

Localization of the smallest eigenvectors Recall $a_L \sim \left(\frac{3}{8} \ln L\right)^{2/3}$. Denote by $Q_L := \sum_{k \ge 1} \delta_4 \sqrt{a_L} (\lambda_k + a_L), \qquad m_L(dt) := (L \varphi_k (L t)^2 dt)_{k \ge 1}.$

Theorem (D., Labbé ('17))

 $(\mathcal{Q}_L, m_{L,k}(dt))$ converges in distribution towards $(\mathcal{Q}_\infty, m_\infty)$ where:

Q_∞: Poisson point process of intensity e^x dx,
 m_∞ = (δ_{uk})_{k≥1} : (u_k)_{k≥1} i.i.d, uniform on [0, 1], independent of Q_∞.

Simulation of the first eigenvectors

The first 5 eigenvectors φ_k^2 in order: black, blue, purple, red, green (L = 300).

Shape of the first eigenvectors

Theorem (D., Labbé ('17))

For all fixed k, φ_k decays exponentially at rate $\sqrt{a_L}$.

Shape of the first eigenvectors

Theorem (D., Labbé ('17))

- For all fixed k, φ_k decays exponentially at rate $\sqrt{a_L}$.
- Let U_k be the point where φ_k reaches its maximum.

$$h_k(t) := \sqrt{a_L} \ arphi_k^2 (U_k + \sqrt{a_L} \ t)
ightarrow_{L
ightarrow \infty} \ 1/\cosh(t)^2$$

uniformly over compact subsets of \mathbb{R} .

Zoom around the maximum of φ_k^2

Schematic shape of the fifth eigenvector

Note that we know for example precisely the position of the k-1 zeros of φ_k

Localization and transition towards delocalization

Localization and transition towards delocalization

Size of localization

Localization for $E \ll L$

Let E = E(L) be the re-centering of the eigenvalues and define

 $\mathcal{Q}_E(dx) := \sum_{i \ge 1} \delta_{Ln(E)(\lambda_i - E)}(dx) \;, \quad \text{where } n(E) = \text{density of states}.$

Localization for $E \ll L$

Let E = E(L) be the re-centering of the eigenvalues and define

 $\mathcal{Q}_E(dx) := \sum_{i \ge 1} \delta_{Ln(E)(\lambda_i - E)}(dx) \;, \quad \text{where } n(E) = \text{density of states}.$

Theorem (D., Labbé ('20+))

Bulk regime: E fixed (independent of L) Q_E converges to a Poisson point process of intensity dx. Eigenvectors: exponentially decreasing at constant speed c(E) (not depending on L).

Localization for $E \ll L$

Let E = E(L) be the re-centering of the eigenvalues and define

 $\mathcal{Q}_E(dx) := \sum_{i \ge 1} \delta_{Ln(E)(\lambda_i - E)}(dx)$, where n(E) = density of states.

Theorem (D., Labbé ('20+))

- Bulk regime: E fixed (independent of L)
 Q_E converges to a Poisson point process of intensity dx.
 Eigenvectors: exponentially decreasing at constant speed c(E) (not depending on L).
- ► Crossover regime: 1 ≪ E ≪ L Q_E converges to a Poisson point process of intensity dx. Eigenvectors: exponentially decreasing at speed c(E) = O(1/E). Moreover, a "typical" eigenvector chosen w.r.t. the "spectral measure" looks like the exponential of a Brownian motion plus a drift on a region of size E.

Transition towards delocalization

Let E = E(L) be the re-centering of the eigenvalues and define

 $\mathcal{Q}_E(dx) := \sum_{i \ge 1} \delta_{Ln(E)(\lambda_i - E)}(dx)$, where n(E) = density of states.

Theorem (D., Labbé ('20+))

If E ~ αL with α ∈ (0,∞) Q_E - ((2√αL^{3/2}) mod 2π) converges towards a point process with repulsion between the points. It corresponds to the point process Sch_{1/α}. Eigenvectors: exponential of a Brownian motion plus a drift (as conjectured by Rifking and Virág).

Transition towards delocalization

Let E = E(L) be the re-centering of the eigenvalues and define

 $\mathcal{Q}_E(dx) := \sum_{i \ge 1} \delta_{Ln(E)(\lambda_i - E)}(dx)$, where n(E) = density of states.

Theorem (D., Labbé ('20+))

- If E ~ αL with α ∈ (0,∞) Q_E ((2√αL^{3/2}) mod 2π) converges towards a point process with repulsion between the points. It corresponds to the point process Sch_{1/α}. Eigenvectors: exponential of a Brownian motion plus a drift (as conjectured by Rifking and Virág).
- If E ≫ L then Q_E converges to the deterministic process of eigenvalues of −d²/dx².

Limiting operator

For this slide, let us define \mathcal{H}_L on $L^2[-L, L]$ instead of $L^2[0, L]$, so that [-L, L] converges to the whole line \mathbb{R} . We denote φ_i^L and λ_i^L its eigenvectors and eigenvalues.

Limiting operator

For this slide, let us define \mathcal{H}_L on $L^2[-L, L]$ instead of $L^2[0, L]$, so that [-L, L] converges to the whole line \mathbb{R} . We denote φ_i^L and λ_i^L its eigenvectors and eigenvalues.

Define $\mathcal{H}f := -f'' + \xi f$ on a domain $\mathcal{D} := \{f \in L^2(\mathbb{R}), f \text{ AC}, f' - Bf \text{ AC}, \mathcal{H}f \in L^2(\mathbb{R})\} \text{ of } L^2(\mathbb{R}).$ It is a self-adjoint operator, which is limit point at both sides.

Limiting operator

For this slide, let us define \mathcal{H}_L on $L^2[-L, L]$ instead of $L^2[0, L]$, so that [-L, L] converges to the whole line \mathbb{R} . We denote φ_i^L and λ_i^L its eigenvectors and eigenvalues.

Define $\mathcal{H}f := -f'' + \xi f$ on a domain $\mathcal{D} := \{f \in L^2(\mathbb{R}), f \text{ AC}, f' - Bf \text{ AC}, \mathcal{H}f \in L^2(\mathbb{R})\} \text{ of } L^2(\mathbb{R}).$ It is a self-adjoint operator, which is limit point at both sides.

It is easy to see that the operator \mathcal{H}_L converges in the strong resolvent sense towards \mathcal{H} .

Limiting operator

For this slide, let us define \mathcal{H}_L on $L^2[-L, L]$ instead of $L^2[0, L]$, so that [-L, L] converges to the whole line \mathbb{R} . We denote φ_i^L and λ_i^L its eigenvectors and eigenvalues.

Define $\mathcal{H}f := -f'' + \xi f$ on a domain $\mathcal{D} := \{f \in L^2(\mathbb{R}), f \text{ AC}, f' - Bf \text{ AC}, \mathcal{H}f \in L^2(\mathbb{R})\} \text{ of } L^2(\mathbb{R}).$ It is a self-adjoint operator, which is limit point at both sides.

It is easy to see that the operator \mathcal{H}_L converges in the strong resolvent sense towards \mathcal{H} .

Theorem (D., Labbé ('20+))

The spectral measures $\sum_{i} (\varphi_{i}^{L}(0)^{2} + \varphi_{i}^{\prime L}(0)^{2}) \delta_{\lambda_{i}^{L}}$ converge a.s. (for the topology of the vague convergence) towards the spectral measure of \mathcal{H} . This spectral measure is pure point: the operator \mathcal{H} is a **pure point operator**.

Some ideas for the proofs

Eigenvalue equation for \mathcal{H}_L defined on [0, L]:

$$-\varphi'' + \mathbf{\xi} \cdot \varphi = \lambda \varphi$$

with $\varphi(0) = 0$ (without any condition on $\varphi(L)$).

Eigenvalue equation for \mathcal{H}_L defined on [0, L]:

$$-\varphi'' + \mathbf{\xi} \cdot \varphi = \lambda \varphi$$

with $\varphi(0) = 0$ (without any condition on $\varphi(L)$).

For all $\lambda \in \mathbb{R}$, there is an **unique solution** φ_{λ} (up to a scaling).

Eigenvalue equation for \mathcal{H}_L defined on [0, L]:

$$-\varphi'' + \mathbf{\xi} \cdot \varphi = \lambda \varphi$$

with $\varphi(0) = 0$ (without any condition on $\varphi(L)$). For all $\lambda \in \mathbb{R}$, there is an **unique solution** φ_{λ} (up to a scaling). The couple $(\lambda, \varphi_{\lambda})$ is an eigenvalue/eigenvector when

 $\varphi_{\lambda}(L)=0.$

One can also impose first $\hat{\varphi}(L) = 0$ and solve

$$-\hat{\varphi}'' + \boldsymbol{\xi} \cdot \hat{\varphi} = \lambda \hat{\varphi}$$

One can also impose first $\hat{\varphi}(L) = 0$ and solve

$$-\hat{\varphi}'' + \boldsymbol{\xi} \cdot \hat{\varphi} = \lambda \hat{\varphi}$$

For all $\lambda \in \mathbb{R}$, there is an **unique solution** $\hat{\varphi}_{\lambda}$ (up to a scaling).

One can also impose first $\hat{\varphi}(L) = 0$ and solve

$$-\hat{\varphi}'' + \frac{\xi}{\xi} \cdot \hat{\varphi} = \lambda \hat{\varphi}$$

For all $\lambda \in \mathbb{R}$, there is an **unique solution** $\hat{\varphi}_{\lambda}$ (up to a scaling). The couple $(\lambda, \hat{\varphi}_{\lambda})$ is an eigenvalue/eigenvector when

 $\hat{\varphi}_{\lambda}(0) = 0.$

Key idea: Use forward solution φ_{λ} on the time-interval [0, u] and then backward solution $\hat{\varphi}_{\lambda}$ on [u, L] for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

Key idea: Use forward solution φ_{λ} on the time-interval [0, u] and then backward solution $\hat{\varphi}_{\lambda}$ on [u, L] for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

• If λ eigenvalue \rightarrow changes nothing.

Key idea: Use forward solution φ_{λ} on the time-interval [0, u] and then backward solution $\hat{\varphi}_{\lambda}$ on [u, L] for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.
- FACT: If λ close to an eigenvalue → close to eigenvector if u = argmax of eigenvector.

Key idea: Use forward solution φ_{λ} on the time-interval [0, u] and then backward solution $\hat{\varphi}_{\lambda}$ on [u, L] for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.
- FACT: If λ close to an eigenvalue → close to eigenvector if u = argmax of eigenvector.

It helps A LOT because it is **much easier** to analyze the forward or backward solution of the ODE than the eigenvalue equation (when λ eigenvalue, λ is random and depends on the whole potential ξ !).

Localization of the first eigenvector

Simulation of $\varphi'_{\lambda_1}/\varphi_{\lambda_1}$:

30 / 36

Localization of the first eigenvector

One can approximate $\varphi'_{\lambda_1}/\varphi_{\lambda_1}$ by $\varphi'_{\lambda}/\varphi_{\lambda}$ on [0, u] and then by $\hat{\varphi}'_{\lambda}/\hat{\varphi}_{\lambda}$ on [u, L] for λ close to λ_1

$$\frac{\varphi_{\lambda_1}(t)}{\varphi_{\lambda_1}(t_0)} = \exp\Big(\int_{t_0}^t \frac{\varphi_{\lambda_1}'(s)}{\varphi_{\lambda_1}(s)} ds\Big)$$

Localization of the first eigenvector

One can approximate $\varphi'_{\lambda_1}/\varphi_{\lambda_1}$ by $\varphi'_{\lambda}/\varphi_{\lambda}$ on [0, u] and then by $\hat{\varphi}'_{\lambda}/\hat{\varphi}_{\lambda}$ on [u, L] for λ close to λ_1

Localization in the bulk: A key formula

Proposition (Goldsheid Molchanov Pastur formula)

For all continuous and bounded G:

$$\begin{split} & \mathbb{E}\Big[\sum_{\lambda \text{ eigenvalue}} G(\lambda,\varphi_{\lambda})\Big] \\ &= \int_{\lambda \in \mathbb{R}} \int_{0}^{L} \int_{0}^{\pi} \sin^{2}(\theta) p_{\lambda}(\theta) p_{\lambda}(\pi-\theta) \mathbb{E}\Big[G\Big(\lambda,\frac{\varphi_{\lambda}^{(u)}}{||\varphi_{\lambda}^{(u)}||_{2}}\Big)\Big] d\lambda du d\theta, \end{split}$$

where

- φ^(u) is the concatenation of the forward process and backward process at time u.
- ▶ $p_{\lambda}(\theta)$ transition probability of θ_{λ} "phase function" (argument of $\varphi'_{\lambda} + i\varphi_{\lambda}$).

Let $\Delta = [E - h/(Ln(E)), E + h/(Ln(E))]$ (*E* fixed) and denote $N(\Delta) = \#$ eigenvalues in Δ .

Let $\Delta = [E - h/(Ln(E)), E + h/(Ln(E))]$ (*E* fixed) and denote $N(\Delta) = \#$ eigenvalues in Δ .

Divide [0, L] into small boxes B_i , $i = 1, \dots, N$ of same length.

Let $\Delta = [E - h/(Ln(E)), E + h/(Ln(E))]$ (*E* fixed) and denote $N(\Delta) = \#$ eigenvalues in Δ .

Divide [0, L] into small boxes B_i , $i = 1, \dots N$ of same length.

(A) $N(\Delta) \simeq \sum_i N_i(\Delta)$ where $N_i(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_i} := (-d^2/dx^2 + B'(x))_{|B_i}$.

Let $\Delta = [E - h/(Ln(E)), E + h/(Ln(E))]$ (*E* fixed) and denote $N(\Delta) = \#$ eigenvalues in Δ .

Divide [0, L] into small boxes B_i , $i = 1, \dots N$ of same length.

(A) $N(\Delta) \simeq \sum_i N_i(\Delta)$ where $N_i(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_i} := (-d^2/dx^2 + B'(x))_{|B_i}$.

(B) $\mathbb{E}[N(\Delta)] \sim 2h$

Let $\Delta = [E - h/(Ln(E)), E + h/(Ln(E))]$ (*E* fixed) and denote $N(\Delta) = \#$ eigenvalues in Δ .

Divide [0, L] into small boxes B_i , $i = 1, \dots N$ of same length.

(A) $N(\Delta) \simeq \sum_i N_i(\Delta)$ where $N_i(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_i} := (-d^2/dx^2 + B'(x))_{|B_i}$.

(B) $\mathbb{E}[N(\Delta)] \sim 2h \rightarrow$ much stronger than the density of states!

Let $\Delta = [E - h/(Ln(E)), E + h/(Ln(E))]$ (*E* fixed) and denote $N(\Delta) = \#$ eigenvalues in Δ .

Divide [0, L] into small boxes B_i , $i = 1, \dots N$ of same length.

(A) $N(\Delta) \simeq \sum_i N_i(\Delta)$ where $N_i(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_i} := (-d^2/dx^2 + B'(x))_{|B_i}$.

(B) $\mathbb{E}[N(\Delta)] \sim 2h \rightarrow$ much stronger than the density of states! (C) $\sum_{i} \mathbb{P}[N_i(\Delta) \ge 2] \rightarrow 0.$

THANK YOU!