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Schrodinger operator in 1-d
Foru : [0,L] = R
u— —u"+V-u.

V . [0, L] — R: potential, self-adjoint operator with Dirichlet
boundary conditions.

Models disordered solids in physics where disorder = V.
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Schrodinger operator in 1-d
Foru : [0,L] = R
u— —u"+V-u.

V . [0, L] — R: potential, self-adjoint operator with Dirichlet
boundary conditions.

Models disordered solids in physics where disorder = V.
Interpolation between the Laplacian:
ur— —u”,
and the multiplication by the potential V:
u—V-u.
Discrete analog: tridiagonal matrix
Vi o1
1 W
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Case V = 0: Laplacian on [0, L] with Dirichlet b.c.

—u"(x) = du(x)
u(0) = u(L) =0.
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Case V = 0: Laplacian on [0, L] with Dirichlet b.c.

—u"(x) = du(x)
u(0) = u(L) =0.

Eigenvalues \; < A\ < --- satisfy:
M = (mk/L)%
And the associated eigenvectors are:

mk

x € [0, L] — sin( T x).
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Case V = 0: Laplacian on [0, L] with Dirichlet b.c.

Eigenvalues \; < A\ < --- satisfy:
M = (mk/L)%
And the associated eigenvectors are:

mk

x € [0, L] — sin( T x).

Eigenvectors are completely delocalized!

4 /36



Continuous Anderson Hamiltonian in 1-d

We choose V' = £: white noise. For u : [0,L] — R,

Hy :u— ="+ €60,
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Continuous Anderson Hamiltonian in 1-d

We choose V' = £: white noise. For u : [0,L] — R,

Hy :u— ="+ €60,

Be careful: Multiplication by the white noise does not make sense!
Fukushima, Nakao ('77) proved:

> Well-defined self-adjoint operator,

» discrete simple spectrum bounded from below: A\; < Ay < -,

» associated eigenvectors (¢k )k form an orthonormal basis of
L2([0, L]) and are C3/2—.
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Goal

Study the spectrum of this operator when L — co.

Eigenvalues

Random point process on the real line

Eigenvectors

Random real function on [0, L]



Study the spectrum of this operator when L — co.

Eigenvalues

Poisson point process

Eigenvectors

Random real function on [0, L] localized

Usually for random operators, there is a dichotomy:

» Localization of the eigenvectors and Poisson distribution of

eigenvalues.
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Study the spectrum of this operator when L — oo.

Eigenvalues

Random point process with repulsion

Eigenvectors

Random real function on [0, L] delocalized

Usually for random operators, there is a dichotomy:

» Delocalization of the eigenvectors and repulsion of the

eigenvalues.
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PREVIOUS RESULTS ON H;
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Density of states

Density of states:

d 1
: — lim — i < E}.
n: Ew IE LI|_>rr;O T #{eigenvalues < E}
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Density of states

Density of states:

d 1
n: E— — lim — #{eigenvalues < E}.

dE - L

For the Laplacian, its eigenvalues are:
Ak = (mk /L)%
— Density of states:

E€R+'—>

27r\/E.
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Density of states for H;
Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao
('77): Explicit integral formula for the density of states of H, :

d = -1
n(E) = ¢ (v27r/0 u’l/ze’%”txudu)
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First eigenvalue

McKean ('94) : Convergence of the smallest eigenvalue \;
(recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

—X

—4\/ap (M +aL) 10 € ¢ dx,

where a; ~ (% In L)2/3
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OUR RESULTS ON H;
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Localization of the smallest eigenvectors
2/3
Recall a; ~ (% In L) . Denote by

Q=>4 VAT (tar)s

k>1

O(1/var)

Spacing: -—

A A A3
XXX

~ —(InL)*?
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Localization of the smallest eigenvectors

2/3
Recall a; ~ (% In L) . Denote by

Q = Z 64@0\1&‘%)’ mL(dt) = (L (pk(L t)2dt)k21.
k>1

Eigenvalues Eigenvectors

\ ¥3 L@é(L)dt
Al /\xé A3 ' /\ | /\f\/\l

—ar I o !

~ —(InL)*3 0 L 0 1
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Localization of the smallest eigenvectors
2/3
Recall a; ~ (% In L) . Denote by

Q) = Z 54\/5(>\k+3L)’ mL(dt) = (L gOk(L t)Zdt)kz;l.
k>1

Theorem (D., Labbé ('17))

(Qr, my k(dt)) converges in distribution towards (Qs, Ma,) where:

» Q... Poisson point process of intensity e* dx,

> Moo = (0u, )k>1 © (Uk)k>1 ii.d, uniform on [0, 1], independent

of Q.
Eigenvalues Eigenvectors 1 3 @« (Lgo?(Iw)dt)
Mo Ag e | I ub

| | Uy us |
0 L 0 1
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36



Simulation of the first eigenvectors

0.05 0.10 0.15 0.20 0.25

0.00

T T T T T
100 150 200 250 300

The first 5 eigenvectors goﬁ in order: black, blue, purple, red, green

(L = 300).
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Shape of the first eigenvectors

$1 $3 P2
| ﬂ AWl |
| le U3 l/TQ |
0 L

Theorem (D., Labbé ('17))

> For all fixed k, @y decays exponentially at rate \/aj.
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Shape of the first eigenvectors

$1 $3 P2
| ﬂ AWl |
| (/‘71 l]3 (/VQ |
0 L

Theorem (D., Labbé ('17))

> For all fixed k, @y decays exponentially at rate \/aj.

> Let Uy be the point where py reaches its maximum.

hi(t) := v/aL 2 (Uk + v/aL t) =100 1/ cosh(t)?

uniformly over compact subsets of R.
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Zoom around the maximum of %

t 1/ cosh’(t)

O(In(L)~/3)
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Schematic shape of the fifth eigenvector

Note that we know for example precisely the position of the k — 1
zeros of @y
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Localization and transition towards delocalization

|
|
> -[)=

Localization + Poisson point process Delocalization

+
Repulsion

A
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Localization and transition towards delocalization

L
Localization Delocalization
+ +
Poisson point process Repulsion
Eigenvector located around E: | < > |
0l O(E) | L

Size of localization
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Localization for E < L
Let E = E(L) be the re-centering of the eigenvalues and define

Qfp(dx) = Z(SL n(E)(\—E)(dX) ,  where n(E) = density of states.
i>1
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i>1
Theorem (D., Labbé ("20+))

» Bulk regime: E fixed (independent of L)
Qf converges to a Poisson point process of intensity dx.
Eigenvectors: exponentially decreasing at constant speed c(E)
(not depending on L) .
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Localization for E < L
Let E = E(L) be the re-centering of the eigenvalues and define

Qfp(dx) = Z 51 n(Ey(\—E)(dX) ,  where n(E) = density of states.
i>1

Theorem (D., Labbé ("20+))

» Bulk regime: E fixed (independent of L)
Qf converges to a Poisson point process of intensity dx.
Eigenvectors: exponentially decreasing at constant speed c(E)
(not depending on L) .

» Crossover regime: 1 < E < L
OF converges to a Poisson point process of intensity dx.
Eigenvectors: exponentially decreasing at speed
c(E) = O(1/E). Moreover, a “typical” eigenvector chosen
w.r.t. the “spectral measure” looks like the exponential of a
Brownian motion plus a drift on a region of size E.
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Transition towards delocalization
Let E = E(L) be the re-centering of the eigenvalues and define
Qp(dx) = Z 51 n(Ey(N—E)(dX) ,  where n(E) = density of states.
i>1
Theorem (D., Labbé (’20+))
» If E ~ al with a € (0,00) Q¢ — ((2y/aL3?) mod 27)
converges towards a point process with repulsion between the

points. It corresponds to the point process Schy .
Eigenvectors: exponential of a Brownian motion plus a drift

(as conjectured by Rifking and Virdg).

24 /36



Transition towards delocalization

Let E = E(L) be the re-centering of the eigenvalues and define

Qp(dx) = Z 51 n(Ey(N—E)(dX) ,  where n(E) = density of states.
i>1

Theorem (D., Labbé ('20+))

» If E ~ al with a € (0,00) Q¢ — ((2y/aL3?) mod 27)
converges towards a point process with repulsion between the
points. It corresponds to the point process Schy .
Eigenvectors: exponential of a Brownian motion plus a drift
(as conjectured by Rifking and Virdg).

> If E > L then Qf converges to the deterministic process of
eigenvalues of —d?/dx?.
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Limiting operator

For this slide, let us define ; on L?[—L, L] instead of L2[0, L], so
that [—L, L] converges to the whole line R. We denote - and A
its eigenvectors and eigenvalues.
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Limiting operator
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Limiting operator

For this slide, let us define ; on L?[—L, L] instead of L2[0, L], so
that [—L, L] converges to the whole line R. We denote - and A
its eigenvectors and eigenvalues.

Define Hf := —f" + &f on a domain
D:={f € L2(R), f AC, f' — Bf AC, Hf € L?(R)} of L*(R). It is
a self-adjoint operator, which is limit point at both sides.

It is easy to see that the operator H; converges in the strong
resolvent sense towards H.

Theorem (D., Labbé ("20+))

The spectral measures 3;(¢+(0)? + ¢!£(0)?)8,. converge a.s. (for
the topology of the vague convergence) towards the spectral
measure of H.

This spectral measure is pure point: the operator H is a pure
point operator.
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SOME IDEAS FOR THE PROOFS
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Eigenvalue equation

Eigenvalue equation for #; defined on [0, L]:
—¢"+ =20

with ¢(0) = 0 (without any condition on ¢(L)).
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Eigenvalue equation

Eigenvalue equation for #; defined on [0, L]:
—¢"+ =20
with ¢(0) = 0 (without any condition on ¢(L)).

For all A € R, there is an unique solution ) (up to a scaling).

The couple (A, ¢y) is an eigenvalue/eigenvector when

ea(L) =0.
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Eigenvalue equation

One can also impose first $(L) = 0 and solve

~ll

—¢+ € P =2
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Eigenvalue equation

One can also impose first $(L) = 0 and solve

~ll

—¢+ € P =2

For all A € R, there is an unique solution ¢, (up to a scaling).

The couple (A, $y) is an eigenvalue/eigenvector when

¢A(0) = 0.
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Concatenation forward /backward

Key idea: Use forward solution @) on the time-interval [0, u] and
then backward solution @ on [u, L] for some well-chosen wu.
— Concatenation is p(t).
forward backward
99(“> | |
[ { {
0 u L
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Concatenation forward /backward

Key idea: Use forward solution @) on the time-interval [0, u] and
then backward solution @ on [u, L] for some well-chosen wu.
— Concatenation is p(t).
forward backward
(w) | |
T | |
0 u L

» If X\ eigenvalue — changes nothing.

» FACT: If X close to an eigenvalue — close to eigenvector if
u = argmax of eigenvector.

It helps A LOT because it is much easier to analyze the forward or
backward solution of the ODE than the eigenvalue equation (when
A eigenvalue, \ is random and depends on the whole potential ¢!).
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Localization of the first eigenvector
Simulation of ¢\ /oy,

.Tp |1v‘l Ny ¥l
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Localization of the first eigenvector

One can approximate ¢, /¢x; by ¢\ /¢ on [0, u] and then by
&/ on [u, L] for A close to A\

31/36



Localization of the first eigenvector

One can approximate ¢, /¢x; by ¢\ /¢ on [0, u] and then by
&/ on [u, L] for A close to A\
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Localization in the bulk: A key formula

Proposition (Goldsheid Molchanov Pastur formula)

For all continuous and bounded G:

El Y GAp)]

X eigenvalue

:/ /L/wsinz(e)px(ﬁ)m(w—G)E{G(A, ) [dAduds,
AeR JO JO

where

» o) s the concatenation of the forward process and backward
process at time u.

> pi(0) transition probability of 8 “phase function” (argument
of Y\ + ipy).
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Strategy to prove convergence towards a Poisson point
process when you know localization

Let A =[E — h/(Ln(E)), E + h/(Ln(E))] (E fixed) and denote
N(A) = # eigenvalues in A.
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Strategy to prove convergence towards a Poisson point
process when you know localization
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N(A) = # eigenvalues in A.

Divide [0, L] into small boxes B;, i =1,---, N of same length.

Eigenvalues Eigenvectors

; I\\\\\\

A
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Strategy to prove convergence towards a Poisson point

process when you know localization

Let A =[E — h/(Ln(E)), E + h/(Ln(E))] (E fixed) and denote
N(A) = # eigenvalues in A.

Divide [0, L] into small boxes B;, i = 1,--- N of same length.

Eigenvalues Eigenvectors
E
I || J,JLL ||
0/ IB!l Il T 1L
A

(A) N(A) = Ni(A) where N;i(A) is the number of eigenvalues
in A of Hp, = (—d?*/dx* + B'(x))s.-

(B) E[N(A)] ~ 2h — much stronger than the density of states!
() X, PIN(A) > 2] 0.
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THANK YOQU!
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