Localization of the continuous Anderson Hamiltonian in 1-d and its transition towards delocalization

Laure Dumaz
CNRS, Université Paris-Dauphine

Online conference Random matrices and Applications, May 2020

Works in collaboration with Cyril Labbé

SCHRÖDINGER OPERATORS

Schrödinger operator in 1-d

For $u:[0, L] \rightarrow \mathbb{R}$

$$
u \mapsto-u^{\prime \prime}+V \cdot u
$$

$V:[0, L] \rightarrow \mathbb{R}$: potential, self-adjoint operator with Dirichlet boundary conditions.
Models disordered solids in physics where disorder $=V$.

Schrödinger operator in 1-d

For $u:[0, L] \rightarrow \mathbb{R}$

$$
u \mapsto-u^{\prime \prime}+V \cdot u
$$

$V:[0, L] \rightarrow \mathbb{R}$: potential, self-adjoint operator with Dirichlet boundary conditions.
Models disordered solids in physics where disorder $=V$. Interpolation between the Laplacian:

$$
u \mapsto-u^{\prime \prime}
$$

and the multiplication by the potential V :

$$
u \mapsto V \cdot u
$$

Schrödinger operator in 1-d

For $u:[0, L] \rightarrow \mathbb{R}$

$$
u \mapsto-u^{\prime \prime}+V \cdot u
$$

$V:[0, L] \rightarrow \mathbb{R}$: potential, self-adjoint operator with Dirichlet boundary conditions.
Models disordered solids in physics where disorder $=V$. Interpolation between the Laplacian:

$$
u \mapsto-u^{\prime \prime}
$$

and the multiplication by the potential V :

$$
u \mapsto V \cdot u .
$$

Discrete analog: tridiagonal matrix

$$
\left(\begin{array}{cccc}
V_{1} & 1 & & \\
1 & V_{2} & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & V_{N}
\end{array}\right)
$$

Case $V=0$: Laplacian on $[0, L]$ with Dirichlet b.c.

$$
\begin{aligned}
& -u^{\prime \prime}(x)=\lambda u(x) \\
& u(0)=u(L)=0
\end{aligned}
$$

Case $V=0$: Laplacian on $[0, L]$ with Dirichlet b.c.

$$
\begin{gathered}
-u^{\prime \prime}(x)=\lambda u(x) \\
u(0)=u(L)=0 .
\end{gathered}
$$

Eigenvalues $\lambda_{1}<\lambda_{2}<\cdots$ satisfy:

$$
\lambda_{k}=(\pi k / L)^{2} .
$$

And the associated eigenvectors are:

$$
x \in[0, L] \mapsto \sin \left(\frac{\pi k}{L} x\right) .
$$

Case $V=0$: Laplacian on $[0, L]$ with Dirichlet b.c.

$$
\begin{aligned}
& -u^{\prime \prime}(x)=\lambda u(x) \\
& u(0)=u(L)=0
\end{aligned}
$$

Eigenvalues $\lambda_{1}<\lambda_{2}<\cdots$ satisfy:

$$
\lambda_{k}=(\pi k / L)^{2}
$$

And the associated eigenvectors are:

$$
x \in[0, L] \mapsto \sin \left(\frac{\pi k}{L} x\right) .
$$

Eigenvectors are completely delocalized!

Continuous Anderson Hamiltonian in 1-d

We choose $V=\xi$: white noise. For $u:[0, L] \rightarrow \mathbb{R}$,

$$
\mathcal{H}_{L}: u \mapsto-u^{\prime \prime}+\xi \cdot u .
$$

Continuous Anderson Hamiltonian in 1-d

We choose $V=\xi$: white noise. For $u:[0, L] \rightarrow \mathbb{R}$,

$$
\mathcal{H}_{L}: u \mapsto-u^{\prime \prime}+\xi \cdot u .
$$

Be careful: Multiplication by the white noise does not make sense!

Continuous Anderson Hamiltonian in 1-d

We choose $V=\xi$: white noise. For $u:[0, L] \rightarrow \mathbb{R}$,

$$
\mathcal{H}_{L}: u \mapsto-u^{\prime \prime}+\xi \cdot u .
$$

Be careful: Multiplication by the white noise does not make sense!
Fukushima, Nakao ('77) proved:

- Well-defined self-adjoint operator,
- discrete simple spectrum bounded from below: $\lambda_{1}<\lambda_{2}<\cdots$,
- associated eigenvectors $\left(\varphi_{k}\right)_{k}$ form an orthonormal basis of $L^{2}([0, L])$ and are $C^{3 / 2-}$.

Goal

Study the spectrum of this operator when $L \rightarrow \infty$.

Study the spectrum of this operator when $L \rightarrow \infty$.

Usually for random operators, there is a dichotomy:

- Localization of the eigenvectors and Poisson distribution of eigenvalues.

Study the spectrum of this operator when $L \rightarrow \infty$.

Usually for random operators, there is a dichotomy:

- Delocalization of the eigenvectors and repulsion of the eigenvalues.

Previous results on \mathcal{H}_{L}

Density of states

Density of states:

$$
n: E \mapsto \frac{d}{d E} \lim _{L \rightarrow \infty} \frac{1}{L} \#\{\text { eigenvalues } \leq E\}
$$

Density of states

Density of states:

$$
n: E \mapsto \frac{d}{d E} \lim _{L \rightarrow \infty} \frac{1}{L} \#\{\text { eigenvalues } \leq E\}
$$

For the Laplacian, its eigenvalues are:

$$
\lambda_{k}=(\pi k / L)^{2}
$$

\rightarrow Density of states:

$$
E \in \mathbb{R}_{+} \mapsto \frac{1}{2 \pi \sqrt{E}}
$$

Density of states for \mathcal{H}_{L}

Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao ('77): Explicit integral formula for the density of states of \mathcal{H}_{L} :

$$
n(E)=\frac{d}{d E}\left(\sqrt{2 \pi} \int_{0}^{\infty} u^{-1 / 2} e^{-\frac{1}{6} u^{3}-2 E u} d u\right)^{-1}
$$

First eigenvalue

McKean ('94): Convergence of the smallest eigenvalue λ_{1} (recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

$$
-4 \sqrt{a_{L}}\left(\lambda_{1}+a_{L}\right) \Rightarrow_{L \rightarrow \infty} e^{-e^{-x}} d x
$$

where $a_{L} \sim\left(\frac{3}{8} \ln L\right)^{2 / 3}$

Our results on \mathcal{H}_{L}

Localization of the smallest eigenvectors

Recall $a_{L} \sim\left(\frac{3}{8} \ln L\right)^{2 / 3}$. Denote by

$$
\mathcal{Q}_{L}:=\sum_{k \geq 1} \delta_{4 \sqrt{a_{L}}\left(\lambda_{k}+a_{L}\right)}
$$

Spacing:
$O\left(1 / \sqrt{a_{L}}\right)$

$$
\begin{aligned}
& \lambda_{1} \lambda_{2} \quad \lambda_{3} \\
& \times \times \times \times \sim \times \\
& \times a_{L} \\
& \simeq-(\ln L)^{2 / 3}
\end{aligned}
$$

Localization of the smallest eigenvectors

Recall $a_{L} \sim\left(\frac{3}{8} \ln L\right)^{2 / 3}$. Denote by

$$
\mathcal{Q}_{L}:=\sum_{k \geq 1} \delta_{4 \sqrt{a_{L}}\left(\lambda_{k}+a_{L}\right)}, \quad m_{L}(d t):=\left(L \varphi_{k}(L t)^{2} d t\right)_{k \geq 1} .
$$

Localization of the smallest eigenvectors

Recall $a_{L} \sim\left(\frac{3}{8} \ln L\right)^{2 / 3}$. Denote by

$$
\mathcal{Q}_{L}:=\sum_{k \geq 1} \delta_{4 \sqrt{a_{L}}\left(\lambda_{k}+a_{L}\right)}, \quad m_{L}(d t):=\left(L \varphi_{k}(L t)^{2} d t\right)_{k \geq 1} .
$$

Theorem (D., Labbé ('17))

$\left(\mathcal{Q}_{L}, m_{L, k}(d t)\right)$ converges in distribution towards $\left(\mathcal{Q}_{\infty}, m_{\infty}\right)$ where:

- \mathcal{Q}_{∞} : Poisson point process of intensity $e^{x} d x$,
- $m_{\infty}=\left(\delta_{u_{k}}\right)_{k \geq 1}:\left(u_{k}\right)_{k \geq 1}$ i.i.d, uniform on $[0,1]$, independent of \mathcal{Q}_{∞}.

Simulation of the first eigenvectors

The first 5 eigenvectors φ_{k}^{2} in order: black, blue, purple, red, green ($L=300$).

Shape of the first eigenvectors

Theorem (D., Labbé ('17))

- For all fixed k, φ_{k} decays exponentially at rate $\sqrt{a_{L}}$.

Shape of the first eigenvectors

Theorem (D., Labbé ('17))

- For all fixed k, φ_{k} decays exponentially at rate $\sqrt{a_{L}}$.
- Let U_{k} be the point where φ_{k} reaches its maximum.

$$
h_{k}(t):=\sqrt{a_{L}} \varphi_{k}^{2}\left(U_{k}+\sqrt{a_{L}} t\right) \rightarrow_{L \rightarrow \infty} 1 / \cosh (t)^{2}
$$

uniformly over compact subsets of \mathbb{R}.

Zoom around the maximum of φ_{k}^{2}

Schematic shape of the fifth eigenvector

Note that we know for example precisely the position of the $k-1$ zeros of φ_{k}

Localization and transition towards delocalization

Localization and transition towards delocalization

Eigenvector located around E :

Localization for $E \ll L$

Let $E=E(L)$ be the re-centering of the eigenvalues and define $\mathcal{Q}_{E}(d x):=\sum_{i \geq 1} \delta_{\operatorname{Ln}(E)\left(\lambda_{i}-E\right)}(d x), \quad$ where $n(E)=$ density of states.

Localization for $E \ll L$

Let $E=E(L)$ be the re-centering of the eigenvalues and define
$\mathcal{Q}_{E}(d x):=\sum_{i \geq 1} \delta_{\operatorname{Ln}(E)\left(\lambda_{i}-E\right)}(d x), \quad$ where $n(E)=$ density of states.

Theorem (D., Labbé ('20+))

- Bulk regime: E fixed (independent of L) \mathcal{Q}_{E} converges to a Poisson point process of intensity $d x$. Eigenvectors: exponentially decreasing at constant speed $c(E)$ (not depending on L).

Localization for $E \ll L$

Let $E=E(L)$ be the re-centering of the eigenvalues and define
$\mathcal{Q}_{E}(d x):=\sum_{i \geq 1} \delta_{\operatorname{Ln}(E)\left(\lambda_{i}-E\right)}(d x), \quad$ where $n(E)=$ density of states.

Theorem (D., Labbé ('20+))

- Bulk regime: E fixed (independent of L) \mathcal{Q}_{E} converges to a Poisson point process of intensity $d x$. Eigenvectors: exponentially decreasing at constant speed c(E) (not depending on L).
- Crossover regime: $1 \ll E \ll L$
\mathcal{Q}_{E} converges to a Poisson point process of intensity $d x$.
Eigenvectors: exponentially decreasing at speed $c(E)=O(1 / E)$. Moreover, a "typical" eigenvector chosen w.r.t. the "spectral measure" looks like the exponential of a Brownian motion plus a drift on a region of size E.

Transition towards delocalization

Let $E=E(L)$ be the re-centering of the eigenvalues and define
$\mathcal{Q}_{E}(d x):=\sum_{i \geq 1} \delta_{\operatorname{Ln}(E)\left(\lambda_{i}-E\right)}(d x), \quad$ where $n(E)=$ density of states.

Theorem (D., Labbé ('20+))

- If $E \sim \alpha L$ with $\alpha \in(0, \infty) \mathcal{Q}_{E}-\left(\left(2 \sqrt{\alpha} L^{3 / 2}\right) \bmod 2 \pi\right)$ converges towards a point process with repulsion between the points. It corresponds to the point process Sch $h_{1 / \alpha}$.
Eigenvectors: exponential of a Brownian motion plus a drift (as conjectured by Rifking and Virág).

Transition towards delocalization

Let $E=E(L)$ be the re-centering of the eigenvalues and define
$\mathcal{Q}_{E}(d x):=\sum_{i \geq 1} \delta_{\operatorname{Ln}(E)\left(\lambda_{i}-E\right)}(d x), \quad$ where $n(E)=$ density of states.

Theorem (D., Labbé ('20+))

- If $E \sim \alpha L$ with $\alpha \in(0, \infty) \mathcal{Q}_{E}-\left(\left(2 \sqrt{\alpha} L^{3 / 2}\right) \bmod 2 \pi\right)$ converges towards a point process with repulsion between the points. It corresponds to the point process Sch $h_{1 / \alpha}$.
Eigenvectors: exponential of a Brownian motion plus a drift (as conjectured by Rifking and Virág).
- If $E \gg L$ then \mathcal{Q}_{E} converges to the deterministic process of eigenvalues of $-d^{2} / d x^{2}$.

Limiting operator

For this slide, let us define \mathcal{H}_{L} on $L^{2}[-L, L]$ instead of $L^{2}[0, L]$, so that $[-L, L]$ converges to the whole line \mathbb{R}. We denote φ_{i}^{L} and λ_{i}^{L} its eigenvectors and eigenvalues.

Limiting operator

For this slide, let us define \mathcal{H}_{L} on $L^{2}[-L, L]$ instead of $L^{2}[0, L]$, so that $[-L, L]$ converges to the whole line \mathbb{R}. We denote φ_{i}^{L} and λ_{i}^{L} its eigenvectors and eigenvalues.
Define $\mathcal{H} f:=-f^{\prime \prime}+\xi f$ on a domain
$\mathcal{D}:=\left\{f \in L^{2}(\mathbb{R}), f \mathrm{AC}, f^{\prime}-\mathrm{Bf} \mathrm{AC}, \mathcal{H} f \in L^{2}(\mathbb{R})\right\}$ of $L^{2}(\mathbb{R})$. It is a self-adjoint operator, which is limit point at both sides.

Limiting operator

For this slide, let us define \mathcal{H}_{L} on $L^{2}[-L, L]$ instead of $L^{2}[0, L]$, so that $[-L, L]$ converges to the whole line \mathbb{R}. We denote φ_{i}^{L} and λ_{i}^{L} its eigenvectors and eigenvalues.

Define $\mathcal{H} f:=-f^{\prime \prime}+\xi f$ on a domain
$\mathcal{D}:=\left\{f \in L^{2}(\mathbb{R}), f \mathrm{AC}, f^{\prime}-B f \mathrm{AC}, \mathcal{H} f \in L^{2}(\mathbb{R})\right\}$ of $L^{2}(\mathbb{R})$. It is a self-adjoint operator, which is limit point at both sides.

It is easy to see that the operator \mathcal{H}_{L} converges in the strong resolvent sense towards \mathcal{H}.

Limiting operator

For this slide, let us define \mathcal{H}_{L} on $L^{2}[-L, L]$ instead of $L^{2}[0, L]$, so that $[-L, L]$ converges to the whole line \mathbb{R}. We denote φ_{i}^{L} and λ_{i}^{L} its eigenvectors and eigenvalues.
Define $\mathcal{H} f:=-f^{\prime \prime}+\xi f$ on a domain $\mathcal{D}:=\left\{f \in L^{2}(\mathbb{R}), f \mathrm{AC}, f^{\prime}-B f \mathrm{AC}, \mathcal{H} f \in L^{2}(\mathbb{R})\right\}$ of $L^{2}(\mathbb{R})$. It is a self-adjoint operator, which is limit point at both sides.

It is easy to see that the operator \mathcal{H}_{L} converges in the strong resolvent sense towards \mathcal{H}.

Theorem (D., Labbé ('20+))

The spectral measures $\sum_{i}\left(\varphi_{i}^{L}(0)^{2}+\varphi_{i}^{\prime L}(0)^{2}\right) \delta_{\lambda_{i}^{L}}$ converge a.s. (for the topology of the vague convergence) towards the spectral measure of \mathcal{H}.
This spectral measure is pure point: the operator \mathcal{H} is a pure point operator.

Some ideas for the proofs

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on $[0, L]$:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(0)=0$ (without any condition on $\varphi(L)$).

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on $[0, L]$:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(0)=0$ (without any condition on $\varphi(L)$).
For all $\lambda \in \mathbb{R}$, there is an unique solution φ_{λ} (up to a scaling).

Eigenvalue equation

Eigenvalue equation for \mathcal{H}_{L} defined on $[0, L]$:

$$
-\varphi^{\prime \prime}+\xi \cdot \varphi=\lambda \varphi
$$

with $\varphi(0)=0$ (without any condition on $\varphi(L)$).
For all $\lambda \in \mathbb{R}$, there is an unique solution φ_{λ} (up to a scaling).
The couple $\left(\lambda, \varphi_{\lambda}\right)$ is an eigenvalue/eigenvector when

$$
\varphi_{\lambda}(L)=0
$$

Eigenvalue equation

One can also impose first $\hat{\varphi}(L)=0$ and solve

$$
-\hat{\varphi}^{\prime \prime}+\xi \cdot \hat{\varphi}=\lambda \hat{\varphi}
$$

Eigenvalue equation

One can also impose first $\hat{\varphi}(L)=0$ and solve

$$
-\hat{\varphi}^{\prime \prime}+\xi \cdot \hat{\varphi}=\lambda \hat{\varphi}
$$

For all $\lambda \in \mathbb{R}$, there is an unique solution $\hat{\varphi}_{\lambda}$ (up to a scaling).

Eigenvalue equation

One can also impose first $\hat{\varphi}(L)=0$ and solve

$$
-\hat{\varphi}^{\prime \prime}+\xi \cdot \hat{\varphi}=\lambda \hat{\varphi}
$$

For all $\lambda \in \mathbb{R}$, there is an unique solution $\hat{\varphi}_{\lambda}$ (up to a scaling).
The couple $\left(\lambda, \hat{\varphi}_{\lambda}\right)$ is an eigenvalue/eigenvector when

$$
\hat{\varphi}_{\lambda}(0)=0 .
$$

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[0, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[0, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[0, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.
- FACT: If λ close to an eigenvalue \rightarrow close to eigenvector if $u=\operatorname{argmax}$ of eigenvector.

Concatenation forward/backward

Key idea: Use forward solution φ_{λ} on the time-interval $[0, u]$ and then backward solution $\hat{\varphi}_{\lambda}$ on $[u, L]$ for some well-chosen u. \rightarrow Concatenation is $\varphi^{(u)}$.

- If λ eigenvalue \rightarrow changes nothing.
- FACT: If λ close to an eigenvalue \rightarrow close to eigenvector if $u=$ argmax of eigenvector.

It helps A LOT because it is much easier to analyze the forward or backward solution of the ODE than the eigenvalue equation (when λ eigenvalue, λ is random and depends on the whole potential $\xi!$).

Localization of the first eigenvector

 Simulation of $\varphi_{\lambda_{1}}^{\prime} / \varphi_{\lambda_{1}}$:

Localization of the first eigenvector

One can approximate $\varphi_{\lambda_{1}}^{\prime} / \varphi_{\lambda_{1}}$ by $\varphi_{\lambda}^{\prime} / \varphi_{\lambda}$ on $[0, u]$ and then by $\hat{\varphi}_{\lambda}^{\prime} / \hat{\varphi}_{\lambda}$ on $[u, L]$ for λ close to λ_{1}

$$
\frac{\varphi_{\lambda_{1}}(t)}{\varphi_{\lambda_{1}}\left(t_{0}\right)}=\exp \left(\int_{t_{0}}^{t} \frac{\varphi_{\lambda_{1}}^{\prime}(s)}{\varphi_{\lambda_{1}}(s)} d s\right)
$$

Localization of the first eigenvector

One can approximate $\varphi_{\lambda_{1}}^{\prime} / \varphi_{\lambda_{1}}$ by $\varphi_{\lambda}^{\prime} / \varphi_{\lambda}$ on $[0, u]$ and then by $\hat{\varphi}_{\lambda}^{\prime} / \hat{\varphi}_{\lambda}$ on $[u, L]$ for λ close to λ_{1}

Localization in the bulk: A key formula

Proposition (Goldsheid Molchanov Pastur formula)

For all continuous and bounded G :

$$
\mathbb{E}\left[\sum_{\lambda \text { eigenvalue }} G\left(\lambda, \varphi_{\lambda}\right)\right]
$$

$$
=\int_{\lambda \in \mathbb{R}} \int_{0}^{L} \int_{0}^{\pi} \sin ^{2}(\theta) p_{\lambda}(\theta) p_{\lambda}(\pi-\theta) \mathbb{E}\left[G\left(\lambda, \frac{\varphi_{\lambda}^{(u)}}{\left\|\varphi_{\lambda}^{(u)}\right\|_{2}}\right)\right] d \lambda d u d \theta
$$

where

- $\varphi^{(u)}$ is the concatenation of the forward process and backward process at time u.
- $p_{\lambda}(\theta)$ transition probability of θ_{λ} "phase function" (argument of $\varphi_{\lambda}^{\prime}+i \varphi_{\lambda}$).

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.

Divide $[0, L]$ into small boxes $B_{i}, i=1, \cdots, N$ of same length.

Eigenvectors

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[0, L]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

Eigenvectors

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[0, L]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

Eigenvectors

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.
(B) $\mathbb{E}[N(\Delta)] \sim 2 h$

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[0, L]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.
(B) $\mathbb{E}[N(\Delta)] \sim 2 h \rightarrow$ much stronger than the density of states!

Strategy to prove convergence towards a Poisson point process when you know localization

Let $\Delta=[E-h /(\operatorname{Ln}(E)), E+h /(\operatorname{Ln}(E))](E$ fixed $)$ and denote $N(\Delta)=\#$ eigenvalues in Δ.
Divide $[0, L]$ into small boxes $B_{i}, i=1, \cdots N$ of same length.

(A) $N(\Delta) \simeq \sum_{i} N_{i}(\Delta)$ where $N_{i}(\Delta)$ is the number of eigenvalues in Δ of $\mathcal{H}_{B_{i}}:=\left(-d^{2} / d x^{2}+B^{\prime}(x)\right)_{\mid B_{i}}$.
(B) $\mathbb{E}[N(\Delta)] \sim 2 h \rightarrow$ much stronger than the density of states!
(C) $\sum_{i} \mathbb{P}\left[N_{i}(\Delta) \geq 2\right] \rightarrow 0$.

THANK YOU!

