Spectra of random regular hypergraphs

Ioana Dumitriu

Department of Mathematics

Joint work with Yizhe Zhu

RMTA 2020, online May 26, 2020

Ioana Dumitriu (UCSD)

Regular hypergraphs

イロト イポト イヨト イヨト

- 3

1/23

May 26, 2020

- Perspectives on Regular Hypergraphs
- 3 A Key Bijection
- Applications: unwrapping of the spectra of regular hypergraphs
- 5 Conclusions

• Hypergraph: *V* =vertex set, *E* =edge set

イロト イボト イヨト イヨト 一日

• H = (V, E), V: vertex set, E: hyperedge set.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○ May 26, 2020

4/23

- H = (V, E), V: vertex set, E: hyperedge set.
- *d*-regular: the degree of each vertex is *d*.

- H = (V, E), V: vertex set, E: hyperedge set.
- *d*-regular: the degree of each vertex is *d*.
- *k*-uniform: each hyperedge is of size *k*.

- H = (V, E), V: vertex set, E: hyperedge set.
- *d*-regular: the degree of each vertex is *d*.
- *k*-uniform: each hyperedge is of size *k*.
- (*d*, *k*)-regular: both *k*-uniform and *d*-regular.

- H = (V, E), V: vertex set, E: hyperedge set.
- *d*-regular: the degree of each vertex is *d*.
- *k*-uniform: each hyperedge is of size *k*.
- (*d*, *k*)-regular: both *k*-uniform and *d*-regular.
- k = 2: *d*-regular graphs.

• Introduced by Berge (1970)

イロト イボト イヨト イヨト 一日

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
- Model data; recommender systems; pattern recognition, bioinformatics

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
- Model data; recommender systems; pattern recognition, bioinformatics
- As with graphs, one main object of study is *expansion* (edge, vertex, spectral)

• Recall that for regular/biregular bipartite graphs we know

イロト イポト イヨト イヨト

- 3

7/23

May 26, 2020

- Recall that for regular/biregular bipartite graphs we know
- (Finite degrees) ESD (Kesten-McKay, "transformed, finite" Marčenko-Pastur (Mojar et. al?))

- Recall that for regular/biregular bipartite graphs we know
- (Finite degrees) ESD (Kesten-McKay, "transformed, finite" Marčenko-Pastur (Mojar et. al?))
- (Finite degrees) Alon-Boppana bound for all regular graphs and biregular bipartite graphs (second eigenvalue bdd from below by edge of support)

- Recall that for regular/biregular bipartite graphs we know
- (Finite degrees) ESD (Kesten-McKay, "transformed, finite" Marčenko-Pastur (Mojar et. al?))
- (Finite degrees) Alon-Boppana bound for all regular graphs and biregular bipartite graphs (second eigenvalue bdd from below by edge of support)
- (Finite degrees) spectral gap (Friedman '04, Bordenave '15, Brito, D., Harris '20)

• Recall that for regular/biregular bipartite graphs we know

イロト イポト イヨト イヨト

- 3

8/23

May 26, 2020

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)
- (Infinite degrees) Spectral gap $O(\sqrt{d})$ (Cook, Goldstein, Johnson; Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)
- (Infinite degrees) Spectral gap $O(\sqrt{d})$ (Cook, Goldstein, Johnson; Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)
- Local laws, eigenvectors, etc.

• Study associated tensors (Friedman-Wigderson)

イロト イポト イヨト イヨト 一日

May 26, 2020

9/23

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the *spectral norm*
- Recently, Li & Mojar proved a generalization of the Alon-Boppana bound using spectral norm

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the *spectral norm*
- Recently, Li & Mojar proved a generalization of the Alon-Boppana bound using spectral norm
- Applications in optimization, etc.

 $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

イロト イポト イヨト イヨト 一日

May 26, 2020

10/23

- $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).
 - A_{ij} = number of hyperedges containing *i*, *j*.

- $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).
 - A_{ij} = number of hyperedges containing *i*, *j*.

- $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).
 - A_{ij} = number of hyperedges containing i, j.
 - $\lambda_1 = d(k-1)$, since $A\vec{e} = d(k-1)\vec{e}$ with $\vec{e} = (1, ..., 1)$.

 $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- A_{ii} = number of hyperedges containing *i*, *j*.
- $\lambda_1 = d(k-1)$, since $A\vec{e} = d(k-1)\vec{e}$ with $\vec{e} = (1, ..., 1)$.
- What about λ_2 ?

May 26, 2020

10/23

 $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- A_{ij} = number of hyperedges containing i, j.
- $\lambda_1 = d(k-1)$, since $A\vec{e} = d(k-1)\vec{e}$ with $\vec{e} = (1, ..., 1)$.
- What about λ_2 ?
- What about other properties?

 $A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- A_{ij} = number of hyperedges containing i, j.
- $\lambda_1 = d(k-1)$, since $A\vec{e} = d(k-1)\vec{e}$ with $\vec{e} = (1, ..., 1)$.
- What about λ_2 ?
- What about other properties?
- Incidentally, general hypergraphs' eigenvalues have been connected to diameters, random walks, Ricci curvature (Banerjee '17)

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \ge k - 2 + 2\sqrt{(d-1)(k-1)} - \epsilon_n.$$

with $\epsilon_n \to 0$ as $n \to \infty$.

イロト イポト イヨト イヨト 二日

May 26, 2020

11/23

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \ge k - 2 + 2\sqrt{(d-1)(k-1)} - \epsilon_n.$$

with $\epsilon_n \to 0$ as $n \to \infty$.

• k = 2: Alon-Boppana bound for *d*-regular graphs.

イロト イポト イヨト イヨト 二日

May 26, 2020

11/23

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \ge k - 2 + 2\sqrt{(d-1)(k-1)} - \epsilon_n.$$

with $\epsilon_n \to 0$ as $n \to \infty$.

- k = 2: Alon-Boppana bound for *d*-regular graphs.
- Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k-1)$,

$$|\lambda - (k-2)| \le 2\sqrt{(d-1)(k-1)}.$$

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \ge k - 2 + 2\sqrt{(d-1)(k-1)} - \epsilon_n.$$

with $\epsilon_n \to 0$ as $n \to \infty$.

- k = 2: Alon-Boppana bound for *d*-regular graphs.
- Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k-1)$,

$$|\lambda - (k-2)| \le 2\sqrt{(d-1)(k-1)}.$$

• Algebraic construction: Martínez-Stark-Terras (2001), Li (2004), Sarveniazi (2007).

Ioana Dumitriu (UCSD)

イロト イポト イヨト イヨト 三日

May 26, 2020

• S_1 ={**bipartite biregular graphs** without certain subgraphs} and S_2 ={(d, k)-regular hypergraphs}.

イロト イポト イヨト イヨト 一日

May 26, 2020

• S_1 ={**bipartite biregular graphs** without certain subgraphs} and S_2 ={(d, k)-regular hypergraphs}.

• S_1 ={**bipartite biregular graphs** without certain subgraphs} and S_2 ={(d, k)-regular hypergraphs}.

• Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.

• S_1 ={**bipartite biregular graphs** without certain subgraphs} and S_2 ={(d,k)-regular hypergraphs}.

- Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.
- Any event *F* holds whp for random bipartite biregular graphs
 ⇔ *F* holds whp for the uniform measure over *S*₁
 ⇔ corresponding *F*' holds whp for random regular hypergraphs.

<ロ> (四) (四) (三) (三) (三) (三)

May 26, 2020

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on *n* vertices.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○ May 26, 2020

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n *be a random* (d, k)*-regular hypergraphs with n vertices. Then with high probability for any eigenvalue* $\lambda \neq d(k-1)$ *,*

$$|\lambda(A_n) - (k-2)| \le 2\sqrt{(d-1)(k-1)} + \epsilon_n$$

with $\epsilon_n \rightarrow 0$.

May 26, 2020

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n *be a random* (d, k)*-regular hypergraphs with n vertices. Then with high probability for any eigenvalue* $\lambda \neq d(k-1)$ *,*

$$|\lambda(A_n) - (k-2)| \le 2\sqrt{(d-1)(k-1)} + \epsilon_n$$

with $\epsilon_n \rightarrow 0$.

A matching upper bound to Feng-Li (1996).

イロト イポト イヨト イヨト 一日

May 26, 2020

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n *be a random* (d, k)*-regular hypergraphs with n vertices. Then with high probability for any eigenvalue* $\lambda \neq d(k-1)$ *,*

$$|\lambda(A_n) - (k-2)| \le 2\sqrt{(d-1)(k-1)} + \epsilon_n$$

with $\epsilon_n \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).
- A generalization of Alon's conjecture (1986) proved by Friedman (2008) and Bordenave (2015) for random *d*-regular graphs.

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n *be a random* (d, k)*-regular hypergraphs with n vertices. Then with high probability for any eigenvalue* $\lambda \neq d(k-1)$ *,*

$$|\lambda(A_n) - (k-2)| \le 2\sqrt{(d-1)(k-1)} + \epsilon_n$$

with $\epsilon_n \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).
- A generalization of Alon's conjecture (1986) proved by Friedman (2008) and Bordenave (2015) for random *d*-regular graphs.
- *Almost* all regular hypergraphs are *almost* Ramanujan.

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n *be a random* (d, k)*-regular hypergraphs with n vertices. Then with high probability for any eigenvalue* $\lambda \neq d(k-1)$ *,*

$$|\lambda(A_n) - (k-2)| \le 2\sqrt{(d-1)(k-1)} + \epsilon_n$$

with $\epsilon_n \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).
- A generalization of Alon's conjecture (1986) proved by Friedman (2008) and Bordenave (2015) for random *d*-regular graphs.
- *Almost* all regular hypergraphs are *almost* Ramanujan.

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n *be a random* (d, k)*-regular hypergraphs with n vertices. Then with high probability for any eigenvalue* $\lambda \neq d(k-1)$ *,*

$$|\lambda(A_n) - (k-2)| \le 2\sqrt{(d-1)(k-1)} + \epsilon_n$$

with $\epsilon_n \rightarrow 0$.

- Uses Brito, D., Harris ('20)
- What does λ_2 tell us about *H*?

イロト イボト イヨト イヨト 一日

May 26, 2020

Expander Mixing Lemma

<ロ> (四) (四) (三) (三) (三)

May 26, 2020

Expander Mixing Lemma

Theorem (D.-Zhu 2020)

Let H be a (d, k)*-regular hypergraph and* $\lambda = \max{\{\lambda_2, |\lambda_n|\}}$ *. Then the following holds: for any subsets* $V_1, V_2 \subset V$ *,*

$$\left| e(V_1, V_2) - \frac{d(k-1)}{n} |V_1| \cdot |V_2| \right| \le \lambda \sqrt{|V_1| \cdot |V_2|} \left(1 - \frac{|V_1|}{n} \right) \left(1 - \frac{|V_2|}{n} \right).$$

イロト イポト イヨト イヨト

May 26, 2020

Expander Mixing Lemma

Theorem (D.-Zhu 2020)

Let H be a (d, k)-regular hypergraph and $\lambda = \max{\{\lambda_2, |\lambda_n|\}}$. Then the following holds: for any subsets $V_1, V_2 \subset V$,

$$\left| e(V_1, V_2) - \frac{d(k-1)}{n} |V_1| \cdot |V_2| \right| \le \lambda \sqrt{|V_1| \cdot |V_2|} \left(1 - \frac{|V_1|}{n} \right) \left(1 - \frac{|V_2|}{n} \right).$$

 $e(V_1, V_2)$: number of hyperedges between V_1, V_2 with multiplicity $|e \cap V_1| \cdot |e \cap V_2|$ for any hyperedge e.

イロト イポト イヨト イヨト 二日

May 26, 2020

イロト イポト イヨト イヨト 一日

May 26, 2020

• a non-backtracking walk of length ℓ in a hypergraph is a sequence

$$w = (v_0, e_1, v_1, e_2, \dots, v_{\ell-1}, e_\ell, v_\ell)$$

such that $v_i \neq v_{i+1} \{ v_i, v_{i+1} \} \subset e_{i+1}$ and $e_i \neq e_{i+1}$ for $1 \le i \le \ell - 1$.

May 26, 2020

• a non-backtracking walk of length ℓ in a hypergraph is a sequence

$$w = (v_0, e_1, v_1, e_2, \dots, v_{\ell-1}, e_\ell, v_\ell)$$

such that $v_i \neq v_{i+1}, \{v_i, v_{i+1}\} \subset e_{i+1}$ and $e_i \neq e_{i+1}$ for $1 \leq i \leq \ell - 1$.

 a NBRW of length ℓ from v₀: a uniformly chosen member of all non-backtracking walks of length ℓ starting at v₀.

イロト イボト イヨト イヨト 一日

• a non-backtracking walk of length ℓ in a hypergraph is a sequence

$$w = (v_0, e_1, v_1, e_2, \dots, v_{\ell-1}, e_\ell, v_\ell)$$

such that $v_i \neq v_{i+1}, \{v_i, v_{i+1}\} \subset e_{i+1}$ and $e_i \neq e_{i+1}$ for $1 \leq i \leq \ell - 1$.

- a NBRW of length ℓ from v₀: a uniformly chosen member of all non-backtracking walks of length ℓ starting at v₀.
- How fast does the NBRW converge to a stationary distribution? Mixing rate:

$$o(H) := \limsup_{\ell \to \infty} \max_{i,j \in V} \left| (P^{(\ell)})_{ij} - \frac{1}{n} \right|^{1/\ell}$$

٠

Mixing Rate

Theorem (D.-Zhu 2019)

$$\rho(H) = \frac{1}{\sqrt{(d-1)(k-1)}} \psi\left(\frac{\lambda}{2\sqrt{(k-1)(d-1)}}\right), \text{ where } \lambda := \max\{\lambda_2, |\lambda_n|\} \text{ and}$$
$$\psi(x) := \begin{cases} x + \sqrt{x^2 - 1} & \text{if } x \ge 1, \\ 1 & \text{if } 0 \le x \le 1. \end{cases}$$

Ioana Dumitriu (UCSD)

Regular hypergraphs

May 26, 2020 17 / 23

- 3

Mixing Rate

Theorem (D.-Zhu 2019)

$$\rho(H) = \frac{1}{\sqrt{(d-1)(k-1)}} \psi\left(\frac{\lambda}{2\sqrt{(k-1)(d-1)}}\right), \text{ where } \lambda := \max\{\lambda_2, |\lambda_n|\} \text{ and}$$
$$\psi(x) := \begin{cases} x + \sqrt{x^2 - 1} & \text{if } x \ge 1, \\ 1 & \text{if } 0 \le x \le 1. \end{cases}$$

• *k* = 2: Alon-Benjamini-Lubetzky-Sodin (2007) for *d*-regular graphs. Proof by Chebyshev polynomials of the second kind.

イロト イヨト イヨト イヨト

Mixing Rate

Theorem (D.-Zhu 2019)

$$\rho(H) = \frac{1}{\sqrt{(d-1)(k-1)}} \psi\left(\frac{\lambda}{2\sqrt{(k-1)(d-1)}}\right), \text{ where } \lambda := \max\{\lambda_2, |\lambda_n|\} \text{ and}$$
$$\psi(x) := \begin{cases} x + \sqrt{x^2 - 1} & \text{if } x \ge 1, \\ 1 & \text{if } 0 \le x \le 1. \end{cases}$$

- *k* = 2: Alon-Benjamini-Lubetzky-Sodin (2007) for *d*-regular graphs. Proof by Chebyshev polynomials of the second kind.
- NBRWs mix faster than simple random walks.

イロト イロト イヨト イヨト

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.

イロト イポト イヨト イヨト 二日

May 26, 2020

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

イロト イポト イヨト イヨト 二日

May 26, 2020

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

• Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$

イロト イポト イヨト イヨト 二日

May 26, 2020

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator *B* indexed by \vec{E} :

$$B_{(i,e),(j,f)} = \begin{cases} 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\ 0 & \text{otherwise.} \end{cases}$$

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator *B* indexed by \vec{E} :

$$B_{(i,e),(j,f)} = \begin{cases} 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\ 0 & \text{otherwise.} \end{cases}$$

• Non-Hermitian, complex eigenvalues.

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator *B* indexed by \vec{E} :

$$B_{(i,e),(j,f)} = \begin{cases} 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\ 0 & \text{otherwise.} \end{cases}$$

• Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)

Let H be a random (d, k)*-regular hypergraph. Then any eigenvalue* λ *of* B_H *with* $\lambda \neq (d-1)(k-1)$ *satisfies*

$$|\lambda| \le \sqrt{(k-1)(d-1)} + \epsilon_n$$

asymptotically almost surely as $n \to \infty$ for some $\epsilon_n \to 0$.

Ioana Dumitriu (UCSD)

Regular hypergraphs

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator *B* indexed by \vec{E} :

$$B_{(i,e),(j,f)} = \begin{cases} 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\ 0 & \text{otherwise.} \end{cases}$$

• Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)

Let H be a random (d, k)*-regular hypergraph. Then any eigenvalue* λ *of* B_H *with* $\lambda \neq (d-1)(k-1)$ *satisfies*

$$|\lambda| \le \sqrt{(k-1)(d-1)} + \epsilon_n$$

asymptotically almost surely as $n \to \infty$ for some $\epsilon_n \to 0$.

Ioana Dumitriu (UCSD)

Regular hypergraphs

Empirical Spectral Distributions for Random Regular Hypergraphs

イロト イポト イヨト イヨト 一日

May 26, 2020

Empirical Spectral Distributions for Random Regular Hypergraphs

For
$$M_n = \frac{A_n - (k-2)}{\sqrt{(d-1)(k-1)}}$$
:

イロト イポト イヨト イヨト 三日

May 26, 2020

Empirical Spectral Distributions for Random Regular Hypergraphs

For
$$M_n = \frac{A_n - (k-2)}{\sqrt{(d-1)(k-1)}}$$
:

<i>d</i> , <i>k</i> constant	$f(x) = \frac{1 + \frac{k-1}{q}}{(1 + \frac{1}{q} - \frac{x}{\sqrt{q}})(1 + \frac{(k-1)^2}{q} + \frac{(k-1)x}{\sqrt{q}})} \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}}$
	with $q = (k - 1)(d - 1)$. $k = 2$: Kesten-McKay law
$d \to \infty, \frac{d}{k} \to \alpha > 0$	$f(x) = \frac{\alpha}{1 + \alpha + \sqrt{\alpha}x} \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}}$
$d = o(n^{\epsilon})$ for any $\epsilon > 0$	Marčenko-Pastur law
$\frac{d}{k} \to \infty, d = o(n^{\epsilon})$	$f(x) = \frac{1}{\pi}\sqrt{1 - \frac{x^2}{4}}$ semicircle law

Ioana Dumitriu (UCSD)

Regular hypergraphs

イロト イポト イヨト イヨト 三日

May 26, 2020

Beyond ESDs, growing degrees

イロト イボト イヨト イヨト 一日

May 26, 2020

Beyond ESDs, growing degrees

• All connected to the study of similar properties of random BBGs.

イロト イポト イヨト イヨト

- 3

20 / 23

May 26, 2020

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.

イロト イポト イヨト イヨト

- 3

20 / 23

May 26, 2020

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD
- Two ingredients: cycle counts (via switchings) and spectral gap $(\lambda_2 = O(\sqrt{\lambda_1})).$

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD
- Two ingredients: cycle counts (via switchings) and spectral gap $(\lambda_2 = O(\sqrt{\lambda_1})).$
- A cycle in a hypergraph is a cycle in the RBBG. A non-backtracking cycle in the hypergraph is a non-backtracking cycle in the RBBG.

イロト イポト イヨト イヨト 一日

May 26, 2020

• For *d*-regular graphs, connection with Chebyshev polynomials.

イロト イポト イヨト イヨト 一日

May 26, 2020

- For *d*-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \left[\begin{array}{cc} 0 & X \\ X^T & 0 \end{array} \right] \; ,$$

then the connection is through the matrix $XX^T - d_1I$, not *A*.

- For *d*-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \left[egin{array}{cc} 0 & X \ X^T & 0 \end{array}
ight] \, ,$$

then the connection is through the matrix XX^T - d₁I, not A.
Zhu, '20+:

イロト イポト イヨト イヨト 一日

May 26, 2020

- For *d*-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \left[egin{array}{cc} 0 & X \ X^T & 0 \end{array}
ight] \, ,$$

then the connection is through the matrix $XX^T - d_1I$, not *A*.

- Zhu, '20+:
 - spectral gap $(\lambda_2 = O(\sqrt{d_1}))$ for BBGs when $d_1 \ge d_2 = O(n^{2/3})$, for A

(日)

- For *d*-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \left[egin{array}{cc} 0 & X \ X^T & 0 \end{array}
ight] \, ,$$

then the connection is through the matrix $XX^T - d_1I$, not *A*.

- Zhu, '20+:
 - spectral gap $(\lambda_2 = O(\sqrt{d_1}))$ for BBGs when $d_1 \ge d_2 = O(n^{2/3})$, for A
 - more refined, $(\lambda_2^2 d_1) = O(\sqrt{d_1(d_2 1)})$ when $d_2 = O(1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わんの

- For *d*-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \left[\begin{array}{cc} 0 & X \\ X^T & 0 \end{array} \right] \; ,$$

then the connection is through the matrix $XX^T - d_1I$, not *A*.

• Enough to calculate fluctuations for *A* when d_1/d_2 bounded in both directions, but if $d_2/d_1 \rightarrow 0$, only good enough when d_2 constant. More work needed.

• Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory

イロト イポト イヨト イヨト 三日

May 26, 2020

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)

イロト イポト イヨト イヨト

- 32

23 / 23

May 26, 2020

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth

イロト イポト イヨト イヨト

- 32

23 / 23

May 26, 2020

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
- Reason to look at more applications

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
- Reason to look at more applications
- Reason to study and understand tensors