
Spectra of random regular hypergraphs

Ioana Dumitriu

Department of Mathematics

Joint work with Yizhe Zhu

RMTA 2020, online
May 26, 2020

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 1 / 23



1 Motivation: Hypergraphs

2 Perspectives on Regular Hypergraphs

3 A Key Bijection

4 Applications: unwrapping of the spectra of regular hypergraphs

5 Conclusions

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 2 / 23



Motivation: Hypergraphs

Hypergraphs

Hypergraph: V =vertex set, E =edge set

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 3 / 23
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Hypergraphs

H = (V,E), V: vertex set, E: hyperedge set.

d-regular: the degree of each vertex is d.
k-uniform: each hyperedge is of size k.
(d, k)-regular: both k-uniform and d-regular.
k = 2: d-regular graphs.
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Motivation: Hypergraphs

Applications of Hypergraphs

Introduced by Berge (1970)

Naturally extend graphs; can model communities
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Motivation: Hypergraphs

Eigenvalue statistics of random (regular) graphs

Recall that for regular/biregular bipartite graphs we know

(Finite degrees) ESD (Kesten-McKay, “transformed, finite"
Marčenko-Pastur (Mojar et. al?))
(Finite degrees) Alon-Boppana bound for all regular graphs and
biregular bipartite graphs (second eigenvalue bdd from below by
edge of support)
(Finite degrees) spectral gap (Friedman ’04, Bordenave ’15, Brito,
D., Harris ’20)
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(Infinite degrees) Spectral gap O(
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d) (Cook, Goldstein, Johnson;

Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)
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Perspectives on Regular Hypergraphs

Two different perspectives: tensors

Study associated tensors (Friedman-Wigderson)

Connect hyperedge expansion to the spectral norm
Recently, Li & Mojar proved a generalization of the Alon-Boppana
bound using spectral norm
Applications in optimization, etc.
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Perspectives on Regular Hypergraphs

Two different perspectives: adjacency matrix

A ∈ Zn×n Introduced in Feng-Li (1996).

Aij = number of hyperedges containing i, j.
λ1 = d(k− 1), since A~e = d(k− 1)~e with~e = (1, . . . , 1).
What about λ2?
What about other properties?
Incidentally, general hypergraphs’ eigenvalues have been
connected to diameters, random walks, Ricci curvature (Banerjee
’17)
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Perspectives on Regular Hypergraphs

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let Gn be any sequence of connected (d, k)-regular hypergraphs with n
vertices. Then

λ2(An) ≥ k− 2 + 2
√

(d− 1)(k− 1)− εn.

with εn → 0 as n→∞.

k = 2: Alon-Boppana bound for d-regular graphs.
Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues
λ 6= d(k− 1),

|λ− (k− 2)| ≤ 2
√
(d− 1)(k− 1).

Algebraic construction: Martínez-Stark-Terras (2001), Li (2004),
Sarveniazi (2007).
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A Key Bijection

Bijection between hypergraphs and BBGs

S1={bipartite biregular graphs without certain subgraphs} and
S2={(d, k)-regular hypergraphs}.
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Use a result in McKay (1981) to estimate the probability of seeing
a forbidden subgraph in a random sample.
Any event F holds whp for random bipartite biregular graphs
⇔ F holds whp for the uniform measure over S1
⇔ corresponding F′ holds whp for random regular hypergraphs.
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Applications: unwrapping of the spectra of regular hypergraphs

Spectral Gap

Random regular hypergraphs: uniformly chosen from all
(d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let Gn be a random (d, k)-regular hypergraphs with n vertices. Then with
high probability for any eigenvalue λ 6= d(k− 1),

|λ(An)− (k− 2)| ≤ 2
√
(d− 1)(k− 1) + εn

with εn → 0.

A matching upper bound to Feng-Li (1996).
A generalization of Alon’s conjecture (1986) proved by Friedman
(2008) and Bordenave (2015) for random d-regular graphs.
Almost all regular hypergraphs are almost Ramanujan.
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Spectral Gap
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(d, k)-regular hypergraphs on n vertices.
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Let Gn be a random (d, k)-regular hypergraphs with n vertices. Then with
high probability for any eigenvalue λ 6= d(k− 1),

|λ(An)− (k− 2)| ≤ 2
√
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with εn → 0.

Uses Brito, D., Harris (’20)
What does λ2 tell us about H?
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Applications: unwrapping of the spectra of regular hypergraphs

Expander Mixing Lemma

Theorem (D.-Zhu 2020)

Let H be a (d, k)-regular hypergraph and λ = max{λ2, |λn|}. Then the
following holds: for any subsets V1,V2 ⊂ V,∣∣∣∣e(V1,V2)−

d(k− 1)
n

|V1| · |V2|
∣∣∣∣ ≤ λ

√
|V1| · |V2|

(
1− |V1|

n

)(
1− |V2|

n

)
.

e(V1,V2) : number of hyperedges between V1,V2 with multiplicity
|e ∩ V1| · |e ∩ V2| for any hyperedge e.
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Applications: unwrapping of the spectra of regular hypergraphs

Non-backtracking Random Walks (NBRWs)

a non-backtracking walk of length ` in a hypergraph is a sequence

w = (v0, e1, v1, e2, . . . , v`−1, e`, v`)

such that vi 6= vi+1,{vi, vi+1} ⊂ ei+1 and ei 6= ei+1 for 1 ≤ i ≤ `− 1.
a NBRW of length ` from v0: a uniformly chosen member of all
non-backtracking walks of length ` starting at v0.
How fast does the NBRW converge to a stationary distribution?
Mixing rate:

ρ(H) := lim sup
`→∞

max
i,j∈V

∣∣∣∣(P(`))ij −
1
n

∣∣∣∣1/` .
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Applications: unwrapping of the spectra of regular hypergraphs

Mixing Rate

Theorem (D.-Zhu 2019)

ρ(H) = 1√
(d−1)(k−1)

ψ

(
λ

2
√

(k−1)(d−1)

)
, where λ := max{λ2, |λn|} and

ψ(x) :=

{
x +
√

x2 − 1 if x ≥ 1,
1 if 0 ≤ x ≤ 1.

k = 2: Alon-Benjamini-Lubetzky-Sodin (2007) for d-regular
graphs. Proof by Chebyshev polynomials of the second kind.
NBRWs mix faster than simple random walks.
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Applications: unwrapping of the spectra of regular hypergraphs

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta
functions.

Generalized in Angelini-Caltagirone-Krzakala-Zdeborová
(2015) for community detection on hypergraph networks.

Oriented hyperedges: ~E = {(i, e) : i ∈ V, e ∈ E, i ∈ e}
Non-backtracking operator B indexed by ~E:

B(i,e),(j,f ) =

{
1 if j ∈ e \ {i}, f 6= e,
0 otherwise.

Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)

Let H be a random (d, k)-regular hypergraph. Then any eigenvalue λ of BH
with λ 6= (d− 1)(k− 1) satisfies

|λ| ≤
√
(k− 1)(d− 1) + εn

asymptotically almost surely as n→∞ for some εn → 0.

k = 2: Bordenave (2015) for random d-regular graphs.
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Applications: unwrapping of the spectra of regular hypergraphs

Empirical Spectral Distributions for Random Regular
Hypergraphs

For Mn = An−(k−2)√
(d−1)(k−1)

:

d, k constant f (x) =
1+ k−1

q

(1+ 1
q−

x√q )(1+
(k−1)2

q +
(k−1)x√q )

1
π

√
1− x2

4

with q = (k − 1)(d − 1). k = 2: Kesten-McKay law

d→∞, d
k → α > 0 f (x) = α

1+α+
√
αx

1
π

√
1− x2

4
d = o(nε) for any ε > 0 Marčenko-Pastur law
d
k →∞, d = o(nε) f (x) = 1

π

√
1− x2

4 semicircle law
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Applications: unwrapping of the spectra of regular hypergraphs

Beyond ESDs, growing degrees

All connected to the study of similar properties of random BBGs.
Another reason to study RBBGs.
Can examine fluctuations from ESD
Two ingredients: cycle counts (via switchings) and spectral gap
(λ2 = O(

√
λ1)).

A cycle in a hypergraph is a cycle in the RBBG. A
non-backtracking cycle in the hypergraph is a non-backtracking
cycle in the RBBG.
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Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.
Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.
Zhu, ’20+:

spectral gap (λ2 = O(
√

d1) for BBGs when d1 ≥ d2 = O(n2/3), for A
more refined, (λ2

2 − d1) = O(
√

d1(d2 − 1)) when d2 = O(1).

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 21 / 23



Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.

Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.
Zhu, ’20+:

spectral gap (λ2 = O(
√

d1) for BBGs when d1 ≥ d2 = O(n2/3), for A
more refined, (λ2

2 − d1) = O(
√

d1(d2 − 1)) when d2 = O(1).

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 21 / 23



Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.
Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.

Zhu, ’20+:
spectral gap (λ2 = O(

√
d1) for BBGs when d1 ≥ d2 = O(n2/3), for A

more refined, (λ2
2 − d1) = O(

√
d1(d2 − 1)) when d2 = O(1).

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 21 / 23



Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.
Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.
Zhu, ’20+:

spectral gap (λ2 = O(
√

d1) for BBGs when d1 ≥ d2 = O(n2/3), for A
more refined, (λ2

2 − d1) = O(
√

d1(d2 − 1)) when d2 = O(1).

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 21 / 23



Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.
Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.
Zhu, ’20+:

spectral gap (λ2 = O(
√

d1) for BBGs when d1 ≥ d2 = O(n2/3), for A

more refined, (λ2
2 − d1) = O(

√
d1(d2 − 1)) when d2 = O(1).

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 21 / 23



Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.
Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.
Zhu, ’20+:

spectral gap (λ2 = O(
√

d1) for BBGs when d1 ≥ d2 = O(n2/3), for A
more refined, (λ2

2 − d1) = O(
√

d1(d2 − 1)) when d2 = O(1).

Ioana Dumitriu (UCSD) Regular hypergraphs May 26, 2020 21 / 23



Applications: unwrapping of the spectra of regular hypergraphs

Cyclically non-backtracking cycles/walks

For d-regular graphs, connection with Chebyshev polynomials.
Same for BBG, BUT if

A =

[
0 X

XT 0

]
,

then the connection is through the matrix XXT − d1I, not A.
Enough to calculate fluctuations for A when d1/d2 bounded in
both directions, but if d2/d1 → 0, only good enough when d2
constant. More work needed.
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Conclusions

Conclusions

Hypergraphs are a new and expanding new field and a new
direction for RMT/random graph theory

Connection to BBGs; extensions (what if only regular on one side?)
Good excuse to study BBGs more in-depth
Reason to look at more applications
Reason to study and understand tensors
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