Spectra of random regular hypergraphs

Ioana Dumitriu

Department of Mathematics

Joint work with Yizhe Zhu

RMTA 2020, online
May 26, 2020
1 Motivation: Hypergraphs

2 Perspectives on Regular Hypergraphs

3 A Key Bijection

4 Applications: unwrapping of the spectra of regular hypergraphs

5 Conclusions
Hypergraph: \(V = \text{vertex set}, E = \text{edge set} \)
Hypergraphs

Hypergraphs

- d-regular: the degree of each vertex is d.
Hypergraphs

- \(H = (V, E) \), \(V \): vertex set, \(E \): hyperedge set.
- \(d \)-regular: the degree of each vertex is \(d \).
- \(k \)-uniform: each hyperedge is of size \(k \).
Motivation: Hypergraphs

Hypergraphs

- d-regular: the degree of each vertex is d.
- k-uniform: each hyperedge is of size k.
- (d, k)-regular: both k-uniform and d-regular.
Hypergraphs

- d-regular: the degree of each vertex is d.
- k-uniform: each hyperedge is of size k.
- (d, k)-regular: both k-uniform and d-regular.
- $k = 2$: d-regular graphs.
Applications of Hypergraphs

- Introduced by Berge (1970)
Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
- Model data; recommender systems; pattern recognition, bioinformatics
Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
- Model data; recommender systems; pattern recognition, bioinformatics
- As with graphs, one main object of study is expansion (edge, vertex, spectral)
Recall that for regular/biregular bipartite graphs we know...
Recall that for regular/biregular bipartite graphs we know

(Finite degrees) ESD (Kesten-McKay, “transformed, finite” Marčenko-Pastur (Mojar et. al?))
Motivation: Hypergraphs

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
 - (Finite degrees) ESD (Kesten-McKay, “transformed, finite" Marčenko-Pastur (Mojar et. al?))
 - (Finite degrees) Alon-Boppana bound for all regular graphs and biregular bipartite graphs (second eigenvalue bdd from below by edge of support)
Recall that for regular/biregular bipartite graphs we know

(Finite degrees) ESD (Kesten-McKay, “transformed, finite" Marčenko-Pastur (Mojar et. al?))

(Finite degrees) Alon-Boppana bound for all regular graphs and biregular bipartite graphs (second eigenvalue bdd from below by edge of support)

(Finite degrees) spectral gap (Friedman ‘04, Bordenave ‘15, Brito, D., Harris ‘20)
Recall that for regular/biregular bipartite graphs we know...
Recall that for regular/biregular bipartite graphs we know

- (Infinite degrees) ESD (Semicircle, “transformed" Marčenko-Pastur)
Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)
- (Infinite degrees) Spectral gap $O(\sqrt{d})$ (Cook, Goldstein, Johnson; Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)
Recall that for regular/biregular bipartite graphs we know

- (Infinite degrees) ESD (Semicircle, “transformed” Marčenko-Pastur)
- (Infinite degrees) Spectral gap $O(\sqrt{d})$ (Cook, Goldstein, Johnson; Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)
- Local laws, eigenvectors, etc.
Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm
Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm
- Recently, Li & Mojar proved a generalization of the Alon-Boppana bound using spectral norm
Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm
- Recently, Li & Mojar proved a generalization of the Alon-Boppana bound using spectral norm
- Applications in optimization, etc.
Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

$\lambda_1 = d(k-1)$, since $A \vec{e} = d(k-1) \vec{e}$ with $\vec{e} = (1, \ldots, 1)$.

What about λ_2?

What about other properties?

Incidentally, general hypergraphs' eigenvalues have been connected to diameters, random walks, Ricci curvature (Banerjee '17).
Two different perspectives: adjacency matrix

\[A \in \mathbb{Z}^{n \times n} \text{ Introduced in Feng-Li (1996).} \]

- \(A_{ij} = \text{number of hyperedges containing } i, j. \)
Two different perspectives: adjacency matrix

\[A \in \mathbb{Z}^{n \times n} \] Introduced in Feng-Li (1996).

- \(A_{ij} = \) number of hyperedges containing \(i, j \).
Two different perspectives: adjacency matrix

\(A \in \mathbb{Z}^{n \times n} \) Introduced in Feng-Li (1996).

- \(A_{ij} = \text{number of hyperedges containing } i, j. \)
- \(\lambda_1 = d(k - 1), \) since \(A\vec{e} = d(k - 1)\vec{e} \) with \(\vec{e} = (1, \ldots, 1). \)
Two different perspectives: adjacency matrix

\[A \in \mathbb{Z}^{n \times n} \text{ Introduced in Feng-Li (1996).} \]

- \(A_{ij} = \text{number of hyperedges containing } i, j. \)
- \(\lambda_1 = d(k - 1), \text{ since } A\vec{e} = d(k - 1)\vec{e} \text{ with } \vec{e} = (1, \ldots, 1). \)
- What about \(\lambda_2 \)?
Two different perspectives: adjacency matrix

\[A \in \mathbb{Z}^{n \times n} \] Introduced in Feng-Li (1996).

- \[A_{ij} = \text{number of hyperedges containing } i, j. \]
- \[\lambda_1 = d(k - 1), \text{ since } A\vec{e} = d(k - 1)\vec{e} \text{ with } \vec{e} = (1, \ldots, 1). \]
- What about \(\lambda_2 \)?
- What about other properties?
Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{ij} =$ number of hyperedges containing i, j.
- $\lambda_1 = d(k - 1)$, since $A\vec{e} = d(k - 1)\vec{e}$ with $\vec{e} = (1, \ldots, 1)$.
- What about λ_2?
- What about other properties?
- Incidentally, general hypergraphs’ eigenvalues have been connected to diameters, random walks, Ricci curvature (Banerjee ’17)
Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \geq k - 2 + 2\sqrt{(d - 1)(k - 1)} - \epsilon_n.$$

with $\epsilon_n \rightarrow 0$ as $n \rightarrow \infty$.

$k = 2$: Alon-Boppana bound for d-regular graphs.

Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k - 1)$,

$$|\lambda - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)}.$$

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \geq k - 2 + 2\sqrt{(d - 1)(k - 1)} - \epsilon_n.$$

with $\epsilon_n \to 0$ as $n \to \infty$.

- $k = 2$: Alon-Boppana bound for d-regular graphs.
Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \geq k - 2 + 2\sqrt{(d - 1)(k - 1)} - \epsilon_n.$$

with $\epsilon_n \to 0$ as $n \to \infty$.

- $k = 2$: Alon-Boppana bound for d-regular graphs.
- Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k - 1)$,

$$|\lambda - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)}.$$
Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_n be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$\lambda_2(A_n) \geq k - 2 + 2\sqrt{(d - 1)(k - 1)} - \epsilon_n.$$

with $\epsilon_n \rightarrow 0$ as $n \rightarrow \infty$.

- $k = 2$: Alon-Boppana bound for d-regular graphs.
- Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k - 1)$,
 $$|\lambda - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)}.$$

A Key Bijection

Bijection between hypergraphs and BBGs

Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample. Any event F holds whp for random bipartite biregular graphs $\iff F$ holds whp for the uniform measure over S_1 \iff corresponding F' holds whp for random regular hypergraphs.
Bijection between hypergraphs and BBGs

- \(S_1 = \{ \text{bipartite biregular graphs without certain subgraphs} \} \) and
- \(S_2 = \{ (d, k)\text{-regular hypergraphs} \} \).
S₁={bipartite biregular graphs without certain subgraphs} and S₂={(d, k)-regular hypergraphs}.

Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.

Any event F holds whp for random bipartite biregular graphs ⇔ F holds whp for the uniform measure over S₁ ⇔ corresponding F holds whp for random regular hypergraphs.
Bijection between hypergraphs and BBGs

- \(S_1 = \{ \text{bipartite biregular graphs without certain subgraphs} \} \) and \(S_2 = \{ (d, k)\text{-regular hypergraphs} \} \).

- Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.
Bijection between hypergraphs and BBGs

- $S_1=\{\text{bipartite biregular graphs without certain subgraphs}\}$ and $S_2=\{(d, k)\text{-regular hypergraphs}\}$.

- Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.

- Any event F holds whp for random bipartite biregular graphs $\iff F$ holds whp for the uniform measure over S_1 \iff corresponding F' holds whp for random regular hypergraphs.
Spectral Gap

Theorem (D.-Zhu 2020)

Let G_n be a random (d,k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$|\lambda(A_n) - (k-2)| \leq 2\sqrt{(d-1)(k-1)} + \epsilon n$$

with $\epsilon n \to 0$.

A matching upper bound to Feng-Li (1996).

Almost all regular hypergraphs are almost Ramanujan.
Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.
Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k - 1)$,

$$|\lambda(A_n) - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)} + \epsilon_n$$

with $\epsilon_n \to 0$.
Random regular hypergraphs: uniformly chosen from all \((d, k)\)-regular hypergraphs on \(n\) vertices.

Theorem (D.-Zhu 2020)

Let \(G_n\) be a random \((d, k)\)-regular hypergraphs with \(n\) vertices. Then with high probability for any eigenvalue \(\lambda \neq d(k - 1)\),

\[
|\lambda(A_n) - (k - 2)| \leq 2 \sqrt{(d - 1)(k - 1)} + \epsilon_n
\]

with \(\epsilon_n \to 0\).

- A matching upper bound to Feng-Li (1996).
Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)

Let G_n be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k - 1)$,

$$|\lambda(A_n) - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)} + \epsilon_n$$

with $\epsilon_n \to 0$.

- A matching upper bound to Feng-Li (1996).
Spectral Gap

Random regular hypergraphs: uniformly chosen from all \((d, k)\)-regular hypergraphs on \(n\) vertices.

Theorem (D.-Zhu 2020)

Let \(G_n\) be a random \((d, k)\)-regular hypergraphs with \(n\) vertices. Then with high probability for any eigenvalue \(\lambda \neq d(k - 1),\)

\[
|\lambda(A_n) - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)} + \epsilon_n
\]

with \(\epsilon_n \to 0\).

- A matching upper bound to Feng-Li (1996).
- *Almost* all regular hypergraphs are *almost* Ramanujan.
Spectral Gap

Random regular hypergraphs: uniformly chosen from all \((d, k)\)-regular hypergraphs on \(n\) vertices.

Theorem (D.-Zhu 2020)

Let \(G_n\) be a random \((d, k)\)-regular hypergraphs with \(n\) vertices. Then with high probability for any eigenvalue \(\lambda \neq d(k - 1),\)

\[
|\lambda(A_n) - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)} + \epsilon_n
\]

with \(\epsilon_n \to 0\).

- A matching upper bound to Feng-Li (1996).
- *Almost* all regular hypergraphs are *almost* Ramanujan.
Spectral Gap

Random regular hypergraphs: uniformly chosen from all \((d, k)\)-regular hypergraphs on \(n\) vertices.

Theorem (D.-Zhu 2020)

Let \(G_n\) be a random \((d, k)\)-regular hypergraphs with \(n\) vertices. Then with high probability for any eigenvalue \(\lambda \neq d(k - 1),\)

\[
|\lambda(A_n) - (k - 2)| \leq 2\sqrt{(d - 1)(k - 1)} + \epsilon_n
\]

with \(\epsilon_n \to 0\).

- Uses Brito, D., Harris ('20)
- What does \(\lambda_2\) tell us about \(H\)?
Theorem (D.-Zhu 2020)

Let H be a (d, k)-regular hypergraph and $\lambda = \max\{\lambda_2, |\lambda_n|\}$. Then the following holds: for any subsets $V_1, V_2 \subset V$,

$$\left| e(V_1, V_2) - d(k-1)n^{|V_1|\cdot|V_2|} \right| \leq \lambda \sqrt{|V_1| \cdot |V_2|} \left(1 - \frac{|V_1|}{n}\right)\left(1 - \frac{|V_2|}{n}\right).$$

$e(V_1, V_2)$: number of hyperedges between V_1, V_2 with multiplicity $|e \cap V_1| \cdot |e \cap V_2|$ for any hyperedge e.
Applications: unwrapping of the spectra of regular hypergraphs

Expander Mixing Lemma

Theorem (D.-Zhu 2020)

Let H be a (d, k)-regular hypergraph and $\lambda = \max\{\lambda_2, |\lambda_n|\}$. Then the following holds: for any subsets $V_1, V_2 \subset V$,

$$\left| e(V_1, V_2) - \frac{d(k - 1)}{n} |V_1| \cdot |V_2| \right| \leq \lambda \sqrt{|V_1| \cdot |V_2|} \left(1 - \frac{|V_1|}{n}\right) \left(1 - \frac{|V_2|}{n}\right).$$
Expander Mixing Lemma

Theorem (D.-Zhu 2020)

Let H be a (d, k)-regular hypergraph and $\lambda = \max\{\lambda_2, |\lambda_n|\}$. Then the following holds: for any subsets $V_1, V_2 \subset V$,

$$\left| e(V_1, V_2) - \frac{d(k - 1)}{n} |V_1| \cdot |V_2| \right| \leq \lambda \sqrt{|V_1| \cdot |V_2|} \left(1 - \frac{|V_1|}{n}\right) \left(1 - \frac{|V_2|}{n}\right).$$

$e(V_1, V_2)$: number of hyperedges between V_1, V_2 with multiplicity $|e \cap V_1| \cdot |e \cap V_2|$ for any hyperedge e.
Non-backtracking Random Walks (NBRWs)

A non-backtracking walk of length ℓ in a hypergraph is a sequence $w = (v_0, e_1, v_1, e_2, \ldots, v_{\ell-1}, e_{\ell}, v_\ell)$ such that $v_i \neq v_{i+1}$, $\{v_i, v_{i+1}\} \subset e_i$, and $e_i \neq e_{i+1}$ for $1 \leq i \leq \ell - 1$.

A NBRW of length ℓ from v_0: a uniformly chosen member of all non-backtracking walks of length ℓ starting at v_0.

How fast does the NBRW converge to a stationary distribution?

Mixing rate: $\rho(H) := \limsup_{\ell \to \infty} \max_{i, j \in V} \left| \left(\frac{1}{n} \right)_{ij} - \frac{1}{\ell} \right|$.

Ioana Dumitriu (UCSD)

Regular hypergraphs

May 26, 2020
Non-backtracking Random Walks (NBRWs)

- a non-backtracking walk of length ℓ in a hypergraph is a sequence
 \[w = (v_0, e_1, v_1, e_2, \ldots, v_{\ell-1}, e_{\ell}, v_{\ell}) \]
 such that $v_i \neq v_{i+1}, \{v_i, v_{i+1}\} \subset e_{i+1}$ and $e_i \neq e_{i+1}$ for $1 \leq i \leq \ell - 1$.

Mixing rate: $\rho(H) := \limsup_{\ell \to \infty} \max_{i, j \in V} \left| \frac{P(\ell)^{ij} - 1}{\ell} \right|$.

Ioana Dumitriu (UCSD)
Non-backtracking Random Walks (NBRWs)

- a non-backtracking walk of length ℓ in a hypergraph is a sequence
 \[w = (v_0, e_1, v_1, e_2, \ldots, v_{\ell-1}, e_\ell, v_\ell) \]
 such that $v_i \neq v_{i+1}, \{v_i, v_{i+1}\} \subset e_{i+1}$ and $e_i \neq e_{i+1}$ for $1 \leq i \leq \ell - 1$.
- a NBRW of length ℓ from v_0: a uniformly chosen member of all non-backtracking walks of length ℓ starting at v_0.

How fast does the NBRW converge to a stationary distribution?
Mixing rate: $\rho(H) := \limsup_{\ell \to \infty} \max_{i, j \in V} \left| \frac{1}{\ell} \left(P^{(\ell)} \right)_{ij} - 1 \right|$.
Non-backtracking Random Walks (NBRWs)

- a non-backtracking walk of length \(\ell \) in a hypergraph is a sequence
 \[
 w = (v_0, e_1, v_1, e_2, \ldots, v_{\ell-1}, e_\ell, v_\ell)
 \]
 such that \(v_i \neq v_{i+1}, \{v_i, v_{i+1}\} \subset e_{i+1} \) and \(e_i \neq e_{i+1} \) for \(1 \leq i \leq \ell - 1 \).
- a NBRW of length \(\ell \) from \(v_0 \): a uniformly chosen member of all non-backtracking walks of length \(\ell \) starting at \(v_0 \).
- How fast does the NBRW converge to a stationary distribution?
 Mixing rate:
 \[
 \rho(H) := \limsup_{\ell \to \infty} \max_{i,j \in V} \left| (P^{(\ell)})_{ij} - \frac{1}{n} \right|^{1/\ell}.
 \]
Mixing Rate

Theorem (D.-Zhu 2019)

\[\rho(H) = \frac{1}{\sqrt{(d-1)(k-1)}} \psi \left(\frac{\lambda}{2\sqrt{(k-1)(d-1)}} \right), \text{ where } \lambda := \max\{\lambda_2, |\lambda_n|\} \text{ and} \]

\[\psi(x) := \begin{cases}
 x + \sqrt{x^2 - 1} & \text{if } x \geq 1, \\
 1 & \text{if } 0 \leq x \leq 1.
\end{cases} \]
Mixing Rate

Theorem (D.-Zhu 2019)

\[\rho(H) = \frac{1}{\sqrt{(d-1)(k-1)}} \psi \left(\frac{\lambda}{2\sqrt{(k-1)(d-1)}} \right), \]
where \(\lambda := \max\{\lambda_2, |\lambda_n|\} \) and

\[\psi(x) := \begin{cases}
 x + \sqrt{x^2 - 1} & \text{if } x \geq 1, \\
 1 & \text{if } 0 \leq x \leq 1.
\end{cases} \]

Mixing Rate

Theorem (D.-Zhu 2019)

\[
\rho(H) = \frac{1}{\sqrt{(d-1)(k-1)}} \psi \left(\frac{\lambda}{2\sqrt{(k-1)(d-1)}} \right), \text{ where } \lambda := \max\{\lambda_2, |\lambda_n|\} \text{ and }
\]

\[
\psi(x) := \begin{cases}
 x + \sqrt{x^2 - 1} & \text{if } x \geq 1, \\
 1 & \text{if } 0 \leq x \leq 1.
\end{cases}
\]

- NBRWs mix faster than simple random walks.
Non-backtracking Operator

Non-backtracking Operator

Non-backtracking Operator

- Oriented hyperedges: \(\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\} \)
Non-backtracking Operator

- Oriented hyperedges: $\tilde{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \tilde{E}:

$$B_{(i,e),(j,f)} = \begin{cases}
1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\
0 & \text{otherwise.}
\end{cases}$$

Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020) Let H be a random (d, k)-regular hypergraph. Then any eigenvalue λ of B_H with $\lambda \neq (d - 1)(k - 1)$ satisfies $|\lambda| \leq \sqrt{(k - 1)(d - 1) + \epsilon n}$ asymptotically almost surely as $n \to \infty$ for some $\epsilon_n \to 0$.

Non-backtracking Operator

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E}:

 $$B(i,e),(j,f) = \begin{cases}
 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\
 0 & \text{otherwise.}
 \end{cases}$$

- Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)

Let H be a random (d,k)-regular hypergraph. Then any eigenvalue λ of B_H with $\lambda \neq (d-1)(k-1)$ satisfies

$$|\lambda| \leq \sqrt{(k-1)(d-1)} + \epsilon_n$$

asymptotically almost surely as $n \to \infty$ for some $\epsilon_n \to 0$.

Non-backtracking Operator

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E}:

$$B(i,e),(j,f) = \begin{cases} 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\ 0 & \text{otherwise}. \end{cases}$$

- Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)

Let H be a random (d,k)-regular hypergraph. Then any eigenvalue λ of B_H with $\lambda \neq (d-1)(k-1)$ satisfies

$$|\lambda| \leq \sqrt{(k-1)(d-1)} + \epsilon_n$$

asymptotically almost surely as $n \to \infty$ for some $\epsilon_n \to 0$.
Non-backtracking Operator

- Oriented hyperedges: $\vec{E} = \{(i, e) : i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E}:

 \[
 B_{(i,e),(j,f)} = \begin{cases}
 1 & \text{if } j \in e \setminus \{i\}, f \neq e, \\
 0 & \text{otherwise}.
 \end{cases}
 \]

- Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)

Let H be a random (d, k)-regular hypergraph. Then any eigenvalue λ of B_H with $\lambda \neq (d - 1)(k - 1)$ satisfies

\[
|\lambda| \leq \sqrt{(k - 1)(d - 1)} + \epsilon_n
\]

asymptotically almost surely as $n \to \infty$ for some $\epsilon_n \to 0$.
Empirical Spectral Distributions for Random Regular Hypergraphs
Empirical Spectral Distributions for Random Regular Hypergraphs

For $M_n = \frac{A_n-(k-2)}{\sqrt{(d-1)(k-1)}}$:
Empirical Spectral Distributions for Random Regular Hypergraphs

For $M_n = \frac{A_n - (k-2)}{\sqrt{(d-1)(k-1)}}$:

<table>
<thead>
<tr>
<th>d, k constant</th>
<th>$f(x) = \frac{1 + \frac{k-1}{q}}{(1 + \frac{1}{q} - \frac{x}{\sqrt{q}})(1 + \frac{(k-1)^2}{q} + \frac{(k-1)x}{\sqrt{q}})} \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}}$ with $q = (k-1)(d-1)$. $k = 2$: Kesten-McKay law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \to \infty$, $\frac{d}{k} \to \alpha > 0$</td>
<td>$f(x) = \frac{\alpha}{1 + \alpha + \sqrt{\alpha x}} \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}}$ Marčenko-Pastur law</td>
</tr>
<tr>
<td>$d = o(n^\epsilon)$ for any $\epsilon > 0$</td>
<td></td>
</tr>
<tr>
<td>$\frac{d}{k} \to \infty$, $d = o(n^\epsilon)$</td>
<td>$f(x) = \frac{1}{\pi} \sqrt{1 - \frac{x^2}{4}}$ semicircle law</td>
</tr>
</tbody>
</table>
Beyond ESDs, growing degrees
Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD
All connected to the study of similar properties of random BBGs.

Another reason to study RBBGs.

Can examine fluctuations from ESD

Two ingredients: cycle counts (via switchings) and spectral gap ($\lambda_2 = O(\sqrt{\lambda_1})$).
Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD
- Two ingredients: cycle counts (via switchings) and spectral gap ($\lambda_2 = O(\sqrt{\lambda_1})$).
- A cycle in a hypergraph is a cycle in the RBBG. A non-backtracking cycle in the hypergraph is a non-backtracking cycle in the RBBG.
Cyclically non-backtracking cycles/walks
Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

 $$A = \begin{bmatrix} 0 & X \\ X^T & 0 \end{bmatrix},$$

 then the connection is through the matrix $XX^T - d_1 I$, not A.

Zhu, '20+: spectral gap ($\lambda_2 = O(\sqrt{d_1})$ for BBGs when $d_1 \geq d_2 = O(n^2/3)$, for a more refined, $(\lambda_2^2 - d_1) = O(\sqrt{d_1(d_2 - 1)})$ when $d_2 = O(1)$.)
Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \begin{bmatrix} 0 & X \\ X^T & 0 \end{bmatrix},$$

then the connection is through the matrix $XX^T - d_1 I$, not A.
- Zhu, ’20+:
Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \begin{bmatrix} 0 & X \\ X^T & 0 \end{bmatrix},$$

then the connection is through the matrix $XX^T - d_1I$, not A.
- Zhu, ’20+:
 - spectral gap $(\lambda_2 = O(\sqrt{d_1})$ for BBGs when $d_1 \geq d_2 = O(n^{2/3})$, for A
Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$A = \begin{bmatrix} 0 & X \\ X^T & 0 \end{bmatrix},$$

then the connection is through the matrix $XX^T - d_1 I$, not A.

- Zhu, ’20+:
 - spectral gap $(\lambda_2 = O(\sqrt{d_1})$ for BBGs when $d_1 \geq d_2 = O(n^{2/3})$, for A
 - more refined, $(\lambda_2^2 - d_1) = O(\sqrt{d_1(d_2 - 1)})$ when $d_2 = O(1)$.
Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if
 \[
 A = \begin{bmatrix}
 0 & X \\
 X^T & 0
 \end{bmatrix},
 \]
 then the connection is through the matrix $XX^T - d_1 I$, not A.
- Enough to calculate fluctuations for A when d_1/d_2 bounded in both directions, but if $d_2/d_1 \to 0$, only good enough when d_2 constant. More work needed.
Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory.
Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
- Reason to look at more applications
Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT/random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
- Reason to look at more applications
- Reason to study and understand tensors