Spectra of random regular hypergraphs

Ioana Dumitriu

Department of Mathematics

Joint work with Yizhe Zhu
RMTA 2020, online
May 26, 2020
(1) Motivation: Hypergraphs
(2) Perspectives on Regular Hypergraphs
(3) A Key Bijection

4 Applications: unwrapping of the spectra of regular hypergraphs
(5) Conclusions

Hypergraphs

- Hypergraph: $V=$ vertex set, $E=$ edge set

Hypergraphs

- $H=(V, E), V$: vertex set, E : hyperedge set.

Hypergraphs

- $H=(V, E), V$: vertex set, E : hyperedge set.
- d-regular: the degree of each vertex is d.

Hypergraphs

- $H=(V, E), V$: vertex set, E : hyperedge set.
- d-regular: the degree of each vertex is d.
- k-uniform: each hyperedge is of size k.

Hypergraphs

- $H=(V, E), V$: vertex set, E : hyperedge set.
- d-regular: the degree of each vertex is d.
- k-uniform: each hyperedge is of size k.
- (d, k)-regular: both k-uniform and d-regular.

Hypergraphs

- $H=(V, E), V$: vertex set, E : hyperedge set.
- d-regular: the degree of each vertex is d.
- k-uniform: each hyperedge is of size k.
- (d, k)-regular: both k-uniform and d-regular.
- $k=2$: d-regular graphs.

Applications of Hypergraphs

- Introduced by Berge (1970)

Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities

Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities

Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities

Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
- Model data; recommender systems; pattern recognition, bioinformatics

Applications of Hypergraphs

- Introduced by Berge (1970)
- Naturally extend graphs; can model communities
- Model data; recommender systems; pattern recognition, bioinformatics
- As with graphs, one main object of study is expansion (edge, vertex, spectral)

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Finite degrees) ESD (Kesten-McKay, "transformed, finite" Marčenko-Pastur (Mojar et. al?))

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Finite degrees) ESD (Kesten-McKay, "transformed, finite" Marčenko-Pastur (Mojar et. al?))
- (Finite degrees) Alon-Boppana bound for all regular graphs and biregular bipartite graphs (second eigenvalue bdd from below by edge of support)

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Finite degrees) ESD (Kesten-McKay, "transformed, finite" Marčenko-Pastur (Mojar et. al?))
- (Finite degrees) Alon-Boppana bound for all regular graphs and biregular bipartite graphs (second eigenvalue bdd from below by edge of support)
- (Finite degrees) spectral gap (Friedman '04, Bordenave '15, Brito, D., Harris '20)

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)
- (Infinite degrees) Spectral gap $O(\sqrt{d})$ (Cook, Goldstein, Johnson; Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)

Eigenvalue statistics of random (regular) graphs

- Recall that for regular/biregular bipartite graphs we know
- (Infinite degrees) ESD (Semicircle, "transformed" Marčenko-Pastur)
- (Infinite degrees) Spectral gap $O(\sqrt{d})$ (Cook, Goldstein, Johnson; Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, Youssef)
- Local laws, eigenvectors, etc.

Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)

Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm

Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm
- Recently, Li \& Mojar proved a generalization of the Alon-Boppana bound using spectral norm

Two different perspectives: tensors

- Study associated tensors (Friedman-Wigderson)
- Connect hyperedge expansion to the spectral norm
- Recently, Li \& Mojar proved a generalization of the Alon-Boppana bound using spectral norm
- Applications in optimization, etc.

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{i j}=$ number of hyperedges containing i, j.

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{i j}=$ number of hyperedges containing i, j.

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{i j}=$ number of hyperedges containing i, j.
- $\lambda_{1}=d(k-1)$, since $A \vec{e}=d(k-1) \vec{e}$ with $\vec{e}=(1, \ldots, 1)$.

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{i j}=$ number of hyperedges containing i, j.
- $\lambda_{1}=d(k-1)$, since $A \vec{e}=d(k-1) \vec{e}$ with $\vec{e}=(1, \ldots, 1)$.
- What about λ_{2} ?

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{i j}=$ number of hyperedges containing i, j.
- $\lambda_{1}=d(k-1)$, since $A \vec{e}=d(k-1) \vec{e}$ with $\vec{e}=(1, \ldots, 1)$.
- What about λ_{2} ?
- What about other properties?

Two different perspectives: adjacency matrix

$A \in \mathbb{Z}^{n \times n}$ Introduced in Feng-Li (1996).

- $A_{i j}=$ number of hyperedges containing i, j.
- $\lambda_{1}=d(k-1)$, since $A \vec{e}=d(k-1) \vec{e}$ with $\vec{e}=(1, \ldots, 1)$.
- What about λ_{2} ?
- What about other properties?
- Incidentally, general hypergraphs' eigenvalues have been connected to diameters, random walks, Ricci curvature (Banerjee '17)

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_{n} be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$
\lambda_{2}\left(A_{n}\right) \geq k-2+2 \sqrt{(d-1)(k-1)}-\epsilon_{n} .
$$

with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_{n} be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$
\lambda_{2}\left(A_{n}\right) \geq k-2+2 \sqrt{(d-1)(k-1)}-\epsilon_{n} .
$$

with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- $k=2$: Alon-Boppana bound for d-regular graphs.

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_{n} be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$
\lambda_{2}\left(A_{n}\right) \geq k-2+2 \sqrt{(d-1)(k-1)}-\epsilon_{n} .
$$

with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- $k=2$: Alon-Boppana bound for d-regular graphs.
- Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k-1)$,

$$
|\lambda-(k-2)| \leq 2 \sqrt{(d-1)(k-1)} .
$$

Alon-Boppana bound

Theorem (Feng-Li 1996)

Let G_{n} be any sequence of connected (d, k)-regular hypergraphs with n vertices. Then

$$
\lambda_{2}\left(A_{n}\right) \geq k-2+2 \sqrt{(d-1)(k-1)}-\epsilon_{n} .
$$

with $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- $k=2$: Alon-Boppana bound for d-regular graphs.
- Li-Solé (1996): Ramanujan hypergraphs. For all eigenvalues $\lambda \neq d(k-1)$,

$$
|\lambda-(k-2)| \leq 2 \sqrt{(d-1)(k-1)}
$$

- Algebraic construction: Martínez-Stark-Terras (2001), Li (2004), Sarveniazi (2007).

Bijection between hypergraphs and BBGs

Bijection between hypergraphs and BBGs

- $S_{1}=\{$ bipartite biregular graphs without certain subgraphs $\}$ and $S_{2}=\{(d, k)$-regular hypergraphs $\}$.

Bijection between hypergraphs and BBGs

- $S_{1}=\{$ bipartite biregular graphs without certain subgraphs $\}$ and $S_{2}=\{(d, k)$-regular hypergraphs $\}$.

Bijection between hypergraphs and BBGs

- $S_{1}=\{$ bipartite biregular graphs without certain subgraphs $\}$ and $S_{2}=\{(d, k)$-regular hypergraphs $\}$.

- Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.

Bijection between hypergraphs and BBGs

- $S_{1}=\{$ bipartite biregular graphs without certain subgraphs\} and $S_{2}=\{(d, k)$-regular hypergraphs $\}$.

- Use a result in McKay (1981) to estimate the probability of seeing a forbidden subgraph in a random sample.
- Any event F holds whp for random bipartite biregular graphs $\Leftrightarrow F$ holds whp for the uniform measure over S_{1} \Leftrightarrow corresponding F^{\prime} holds whp for random regular hypergraphs.

Spectral Gap

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)
Let G_{n} be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$
\left|\lambda\left(A_{n}\right)-(k-2)\right| \leq 2 \sqrt{(d-1)(k-1)}+\epsilon_{n}
$$

with $\epsilon_{n} \rightarrow 0$.

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)
Let G_{n} be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$
\left|\lambda\left(A_{n}\right)-(k-2)\right| \leq 2 \sqrt{(d-1)(k-1)}+\epsilon_{n}
$$

with $\epsilon_{n} \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)
Let G_{n} be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$
\left|\lambda\left(A_{n}\right)-(k-2)\right| \leq 2 \sqrt{(d-1)(k-1)}+\epsilon_{n}
$$

with $\epsilon_{n} \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).
- A generalization of Alon's conjecture (1986) proved by Friedman (2008) and Bordenave (2015) for random d-regular graphs.

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)
Let G_{n} be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$
\left|\lambda\left(A_{n}\right)-(k-2)\right| \leq 2 \sqrt{(d-1)(k-1)}+\epsilon_{n}
$$

with $\epsilon_{n} \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).
- A generalization of Alon's conjecture (1986) proved by Friedman (2008) and Bordenave (2015) for random d-regular graphs.
- Almost all regular hypergraphs are almost Ramanujan.

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)
Let G_{n} be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$
\left|\lambda\left(A_{n}\right)-(k-2)\right| \leq 2 \sqrt{(d-1)(k-1)}+\epsilon_{n}
$$

with $\epsilon_{n} \rightarrow 0$.

- A matching upper bound to Feng-Li (1996).
- A generalization of Alon's conjecture (1986) proved by Friedman (2008) and Bordenave (2015) for random d-regular graphs.
- Almost all regular hypergraphs are almost Ramanujan.

Spectral Gap

Random regular hypergraphs: uniformly chosen from all (d, k)-regular hypergraphs on n vertices.

Theorem (D.-Zhu 2020)
Let G_{n} be a random (d, k)-regular hypergraphs with n vertices. Then with high probability for any eigenvalue $\lambda \neq d(k-1)$,

$$
\left|\lambda\left(A_{n}\right)-(k-2)\right| \leq 2 \sqrt{(d-1)(k-1)}+\epsilon_{n}
$$

with $\epsilon_{n} \rightarrow 0$.

- Uses Brito, D., Harris ('20)
- What does λ_{2} tell us about H ?

Expander Mixing Lemma

Expander Mixing Lemma

Theorem (D.-Zhu 2020)
Let H be a (d, k)-regular hypergraph and $\lambda=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$. Then the following holds: for any subsets $V_{1}, V_{2} \subset V$,

$$
\left|e\left(V_{1}, V_{2}\right)-\frac{d(k-1)}{n}\right| V_{1}|\cdot| V_{2}| | \leq \lambda \sqrt{\left|V_{1}\right| \cdot\left|V_{2}\right|\left(1-\frac{\left|V_{1}\right|}{n}\right)\left(1-\frac{\left|V_{2}\right|}{n}\right)} .
$$

Expander Mixing Lemma

Theorem (D.-Zhu 2020)
Let H be a (d, k)-regular hypergraph and $\lambda=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$. Then the following holds: for any subsets $V_{1}, V_{2} \subset V$,

$$
\left|e\left(V_{1}, V_{2}\right)-\frac{d(k-1)}{n}\right| V_{1}|\cdot| V_{2}| | \leq \lambda \sqrt{\left|V_{1}\right| \cdot\left|V_{2}\right|\left(1-\frac{\left|V_{1}\right|}{n}\right)\left(1-\frac{\left|V_{2}\right|}{n}\right)}
$$

$e\left(V_{1}, V_{2}\right)$: number of hyperedges between V_{1}, V_{2} with multiplicity $\left|e \cap V_{1}\right| \cdot\left|e \cap V_{2}\right|$ for any hyperedge e.

Non-backtracking Random Walks (NBRWs)

Non-backtracking Random Walks (NBRWs)

- a non-backtracking walk of length ℓ in a hypergraph is a sequence

$$
w=\left(v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{\ell-1}, e_{\ell}, v_{\ell}\right)
$$

such that $v_{i} \neq v_{i+1},\left\{v_{i}, v_{i+1}\right\} \subset e_{i+1}$ and $e_{i} \neq e_{i+1}$ for $1 \leq i \leq \ell-1$.

Non-backtracking Random Walks (NBRWs)

- a non-backtracking walk of length ℓ in a hypergraph is a sequence

$$
w=\left(v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{\ell-1}, e_{\ell}, v_{\ell}\right)
$$

such that $v_{i} \neq v_{i+1},\left\{v_{i}, v_{i+1}\right\} \subset e_{i+1}$ and $e_{i} \neq e_{i+1}$ for $1 \leq i \leq \ell-1$.

- a NBRW of length ℓ from v_{0} : a uniformly chosen member of all non-backtracking walks of length ℓ starting at v_{0}.

Non-backtracking Random Walks (NBRWs)

- a non-backtracking walk of length ℓ in a hypergraph is a sequence

$$
w=\left(v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{\ell-1}, e_{\ell}, v_{\ell}\right)
$$

such that $v_{i} \neq v_{i+1},\left\{v_{i}, v_{i+1}\right\} \subset e_{i+1}$ and $e_{i} \neq e_{i+1}$ for $1 \leq i \leq \ell-1$.

- a NBRW of length ℓ from v_{0} : a uniformly chosen member of all non-backtracking walks of length ℓ starting at v_{0}.
- How fast does the NBRW converge to a stationary distribution? Mixing rate:

$$
\rho(H):=\limsup _{\ell \rightarrow \infty} \max _{i, j \in V}\left|\left(P^{(\ell)}\right)_{i j}-\frac{1}{n}\right|^{1 / \ell}
$$

Mixing Rate

Theorem (D.-Zhu 2019)
$\rho(H)=\frac{1}{\sqrt{(d-1)(k-1)}} \psi\left(\frac{\lambda}{2 \sqrt{(k-1)(d-1)}}\right)$, where $\lambda:=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$ and

$$
\psi(x):= \begin{cases}x+\sqrt{x^{2}-1} & \text { if } x \geq 1 \\ 1 & \text { if } 0 \leq x \leq 1\end{cases}
$$

Mixing Rate

Theorem (D.-Zhu 2019)

$$
\begin{gathered}
\rho(H)=\frac{1}{\sqrt{(d-1)(k-1)}} \psi\left(\frac{\lambda}{2 \sqrt{(k-1)(d-1)}}\right), \text { where } \lambda:=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\} \text { and } \\
\qquad \psi(x):= \begin{cases}x+\sqrt{x^{2}-1} & \text { if } x \geq 1, \\
1 & \text { if } 0 \leq x \leq 1 .\end{cases}
\end{gathered}
$$

- $k=2$: Alon-Benjamini-Lubetzky-Sodin (2007) for d-regular graphs. Proof by Chebyshev polynomials of the second kind.

Mixing Rate

Theorem (D.-Zhu 2019)

$$
\begin{gathered}
\rho(H)=\frac{1}{\sqrt{(d-1)(k-1)}} \psi\left(\frac{\lambda}{2 \sqrt{(k-1)(d-1)}}\right), \text { where } \lambda:=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\} \text { and } \\
\qquad \psi(x):= \begin{cases}x+\sqrt{x^{2}-1} & \text { if } x \geq 1, \\
1 & \text { if } 0 \leq x \leq 1 .\end{cases}
\end{gathered}
$$

- $k=2$: Alon-Benjamini-Lubetzky-Sodin (2007) for d-regular graphs. Proof by Chebyshev polynomials of the second kind.
- NBRWs mix faster than simple random walks.

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E}=\{(i, e): i \in V, e \in E, i \in e\}$

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E}=\{(i, e): i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E} :

$$
B_{(i, e),(j, f)}= \begin{cases}1 & \text { if } j \in e \backslash\{i\}, f \neq e \\ 0 & \text { otherwise }\end{cases}
$$

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E}=\{(i, e): i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E} :
$B_{(i, e),(j, f)}= \begin{cases}1 & \text { if } j \in e \backslash\{i\}, f \neq e, \\ 0 & \text { otherwise } .\end{cases}$
- Non-Hermitian, complex eigenvalues.

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E}=\{(i, e): i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E} :

$$
B_{(i, e),(j, f)}= \begin{cases}1 & \text { if } j \in e \backslash\{i\}, f \neq e \\ 0 & \text { otherwise }\end{cases}
$$

- Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)
Let H be a random (d, k)-regular hypergraph. Then any eigenvalue λ of B_{H} with $\lambda \neq(d-1)(k-1)$ satisfies

$$
|\lambda| \leq \sqrt{(k-1)(d-1)}+\epsilon_{n}
$$

asymptotically almost surely as $n \rightarrow \infty$ for some $\epsilon_{n} \rightarrow 0$.

Non-backtracking Operator

Hashimoto (1989) for graphs. Related to Ihara-Zeta functions.Generalized in Angelini-Caltagirone-Krzakala-Zdeborová (2015) for community detection on hypergraph networks.

- Oriented hyperedges: $\vec{E}=\{(i, e): i \in V, e \in E, i \in e\}$
- Non-backtracking operator B indexed by \vec{E} :

$$
B_{(i, e),(j, f)}= \begin{cases}1 & \text { if } j \in e \backslash\{i\}, f \neq e \\ 0 & \text { otherwise }\end{cases}
$$

- Non-Hermitian, complex eigenvalues.

Theorem (D.-Zhu 2020)
Let H be a random (d, k)-regular hypergraph. Then any eigenvalue λ of B_{H} with $\lambda \neq(d-1)(k-1)$ satisfies

$$
|\lambda| \leq \sqrt{(k-1)(d-1)}+\epsilon_{n}
$$

asymptotically almost surely as $n \rightarrow \infty$ for some $\epsilon_{n} \rightarrow 0$.

Empirical Spectral Distributions for Random Regular Hypergraphs

Empirical Spectral Distributions for Random Regular Hypergraphs

For $M_{n}=\frac{A_{n}-(k-2)}{\sqrt{(d-1)(k-1)}}:$

Empirical Spectral Distributions for Random Regular Hypergraphs

For $M_{n}=\frac{A_{n}-(k-2)}{\sqrt{(d-1)(k-1)}}$:

d, k constant	$f(x)=\frac{1+\frac{k-1}{q}}{\left(1+\frac{1}{q}-\frac{x}{\sqrt{7}}\right)\left(1+\frac{(k-1)^{2}}{q}+\frac{(k-1) x}{\sqrt{\eta}}\right)} \frac{1}{\pi} \sqrt{1-\frac{x^{2}}{4}}$
with $q=(k-1)(d-1) \cdot k=2:$ Kesten-McKay law	
$d \rightarrow \infty, \frac{d}{k} \rightarrow \alpha>0$	$f(x)=\frac{\alpha}{1+\alpha+\sqrt{\alpha} x} \frac{1}{\pi} \sqrt{1-\frac{x^{2}}{4}}$
$d=o\left(n^{\epsilon}\right)$ for any $\epsilon>0$	Marčenko-Pastur law
$\frac{d}{k} \rightarrow \infty, d=o\left(n^{\epsilon}\right)$	$f(x)=\frac{1}{\pi} \sqrt{1-\frac{x^{2}}{4}}$ semicircle law

Beyond ESDs, growing degrees

Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.

Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.

Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD

Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD
- Two ingredients: cycle counts (via switchings) and spectral gap $\left(\lambda_{2}=O\left(\sqrt{\lambda_{1}}\right)\right)$.

Beyond ESDs, growing degrees

- All connected to the study of similar properties of random BBGs.
- Another reason to study RBBGs.
- Can examine fluctuations from ESD
- Two ingredients: cycle counts (via switchings) and spectral gap $\left(\lambda_{2}=O\left(\sqrt{\lambda_{1}}\right)\right)$.
- A cycle in a hypergraph is a cycle in the RBBG. A non-backtracking cycle in the hypergraph is a non-backtracking cycle in the RBBG.

Cyclically non-backtracking cycles/walks

Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.

Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$
A=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

then the connection is through the matrix $X X^{T}-d_{1} I$, not A.

Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$
A=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

then the connection is through the matrix $X X^{T}-d_{1} I$, not A.

- Zhu, '20+:

Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$
A=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

then the connection is through the matrix $X X^{T}-d_{1} I$, not A.

- Zhu, '20+:
- $\operatorname{spectral}$ gap $\left(\lambda_{2}=O\left(\sqrt{d_{1}}\right)\right.$ for BBGs when $d_{1} \geq d_{2}=O\left(n^{2 / 3}\right)$, for A

Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$
A=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

then the connection is through the matrix $X X^{T}-d_{1} I$, not A.

- Zhu, '20+:
- $\operatorname{spectral} \operatorname{gap}\left(\lambda_{2}=O\left(\sqrt{d_{1}}\right)\right.$ for BBGs when $d_{1} \geq d_{2}=O\left(n^{2 / 3}\right)$, for A
- more refined, $\left(\lambda_{2}^{2}-d_{1}\right)=O\left(\sqrt{d_{1}\left(d_{2}-1\right)}\right)$ when $d_{2}=O(1)$.

Cyclically non-backtracking cycles/walks

- For d-regular graphs, connection with Chebyshev polynomials.
- Same for BBG, BUT if

$$
A=\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]
$$

then the connection is through the matrix $X X^{T}-d_{1} I$, not A.

- Enough to calculate fluctuations for A when d_{1} / d_{2} bounded in both directions, but if $d_{2} / d_{1} \rightarrow 0$, only good enough when d_{2} constant. More work needed.

Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT / random graph theory

Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT / random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)

Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT / random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth

Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT / random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
- Reason to look at more applications

Conclusions

- Hypergraphs are a new and expanding new field and a new direction for RMT / random graph theory
- Connection to BBGs; extensions (what if only regular on one side?)
- Good excuse to study BBGs more in-depth
- Reason to look at more applications
- Reason to study and understand tensors

