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Outline

In this talk, I’ll discuss applications of random matrix theory to two
(unrelated) problems in statistics and machine learning:

• Graph matching

• Spectral analysis of neural network kernel matrices

I’ll focus on high-level ideas, discuss the random matrix
connections, and describe a few open questions.
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Given the LinkedIn network, can you de-anonymize Twitter?

More abstractly: Given two correlated random graphs on n
vertices, with a hidden correspondence between their vertices, can
you recover this vertex matching?
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Correlated Erdős-Rényi graph model
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Aij ,Bij ∼ Bernoulli(q) and P[Aij = Bij = 1] = (1− δ)q

q is the sparsity, and δ is the fraction of differing edges.
Different edge pairs (i , j) are independent. [Pedarsani, Grossglauser ’11]

We observe A and Π>∗ BΠ∗ and want to recover Π∗. Questions:

• How correlated must A and B be, to recover Π∗ w.h.p.?

• How to design a computational algorithm that achieves this?
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Spectral algorithms

Use the (permutation invariant) eigendecompositions

A =
n∑

i=1

λiuiu
>
i and B =

n∑
j=1

µjvjv
>
j

• Top eigenvector: Match A to B by sorting u1 and v1. Similar
ideas in IsoRank [Singh, Xu, Berger ’08], EigenAlign [Feizi et al ’19].

• All eigenvectors: Find the permutation Π which maximizes

n∑
i=1

v>i Πui ≡ TrXΠ where X =
n∑

i=1

uiv
>
i

This aligns every ui with the corresponding vi . [Umeyama ’88]

Both work in noiseless settings (δ = 0), but are brittle to noise:
Each pair (ui , vi ) decorrelates when δ > 1/nα for some α > 0.
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A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

A =
n∑

i=1

λiuiu
>
i and B =

n∑
j=1

µjvjv
>
j

2. Construct the similarity matrix

X =
n∑

i ,j=1

η

(λi − µj)2 + η2︸ ︷︷ ︸
Cauchy kernel applied to λi and µj

× uiu
>
i Jvjv

>
j︸ ︷︷ ︸

“Alignment” between ui and vj

where η = bandwidth parameter, J = all-1’s matrix.

3. Find the permutation Π which maximizes TrXΠ. This tries to
align every ui with every vj , with weighting by the Cauchy kernel.
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Motivation for GRAMPA

Isomorphic Erdős-Rényi graphs (500 vertices, edge probability 1
2 )

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations
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〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations



Motivation for GRAMPA

Erdős-Rényi graphs with fraction of differing edges δ = 0.05

〈u100, vj〉2 for j ∈ {80, . . . , 120}, averaged across 1000 simulations



Motivation for GRAMPA

X =
n∑

i ,j=1

η

(λi − µj)2 + η2︸ ︷︷ ︸
Cauchy kernel applied to λi and µj

× uiu
>
i Jvjv

>
j︸ ︷︷ ︸

“Alignment” between ui and vj

The Cauchy kernel may be motivated by eigenvector correlation
decay in the Dyson Brownian motion model

B = A + Zδ

where Z
L
=
√
δ × independent GOE. Results of [Benigni ’17] show,

using analysis of the eigenvector moment flow in [Bourgade, Yau
’17], that

n · E[〈ui , vj〉2] ≈ δ

(λi − µj)2 + Cδ2

[Question: Is this true also for a time-evolving Erdős-Rényi model?]
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Motivation for GRAMPA

X =
n∑

i ,j=1

η

(λi − µj)2 + η2︸ ︷︷ ︸
Cauchy kernel applied to λi and µj

× uiu
>
i Jvjv

>
j︸ ︷︷ ︸

“Alignment” between ui and vj

The Cauchy kernel may be motivated by eigenvector correlation
decay in the Dyson Brownian motion model

B = A + Zδ

where Z
L
=
√
δ × independent GOE. Results of [Benigni ’17] show,

using analysis of the eigenvector moment flow in [Bourgade, Yau
’17], that

n · E[〈ui , vj〉2] ≈ δ

(λi − µj)2 + Cδ2

[Question: Is this true also for a time-evolving Erdős-Rényi model?]



Theoretical guarantee

Theorem (F., Mao, Wu, Xu)

For the correlated Erdős-Rényi model with edge probability
q ≥ polylog(n)/n and fraction of differing edges δ ≤ 1/ polylog(n),
this algorithm recovers the true vertex correspondence Π∗ w.h.p.

• Improves over previous spectral algorithms requiring δ ≤ 1/nα.

• This is currently the best-known guarantee for polynomial-time
algorithms. Matches previous result of [Ding, Ma, Wu, Xu ’18].

• Recovery of Π∗ is possible once δ ≤ 1− 1/ polylog(n) [Cullina,

Kiyavash ’18], but no efficient algorithm is known.

• [Barak, Chou, Lei, Schramm, Sheng ’18] developed an nO(log n)-time
algorithm, which succeeds for δ ≤ 1− ε and q ≥ nε/n.

• [Ganassali, Massoulié ’20] developed a polynomial-time algorithm
that recovers a positive fraction of the vertex matchings, for
δ ≤ 1− c and q � 1/n.
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Main ideas of the analysis

Define the resolvents

RA(z) = (A− z Id)−1 RB(z) = (B − z Id)−1

Lemma
The GRAMPA similarity matrix X has the resolvent representation

X =
1

2π
Re

∮
Γ
RA(z)JRB(z + iη)dz

z ∈ Γ

−3 3

η/2

−η/2

Re

Im

This contour Γ contains all of the poles of RA, and none of the
poles of RB .



Main ideas of the analysis

Suppose Π∗ = Id, and consider the (k , `) entry

Xk` =
1

2π
Re

∮
Γ

[
e>k RA(z)JRB(z + iη)e`

]
dz

Diagonal: By Schur-complement identities,

Xkk ≈
1

2π
Re a>k

[ ∮
Γ
m(z)m(z + iη)RA(k)(z)JRB(k)(z + iη) dz

]
bk

(ak , bk) in (A,B) are correlated, and independent of (A(k),B(k)).

Off-diagonal: Similarly,

Xk` ≈
1

2π
Re a>k

[∮
Γ
m(z)m(z + iη)RA(k`)(z)JRB(k`)(z + iη)dz

]
b`

(ak , b`) are independent, and also independent of (A(k`),B(k`)).
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Main ideas of the analysis

Applying local law estimates and fluctuation averaging techniques
from [Erdős, Knowles, Yau, Yin ’13], we analyze the traces and
Frobenius norms of the preceding integrals.

When Π∗ = Id,

min
k

Xkk > max
k 6=`

Xk` w.h.p.

Then the permutation Π maximizing TrXΠ is Π = Id, so
GRAMPA returns Id w.h.p.

By permutation invariance of the algorithm, GRAMPA returns Π∗
w.h.p. for any true permutation Π∗.
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A different motivation for GRAMPA

min
Π∈Sn

‖A− Π>BΠ‖2
F = min

Π∈Sn
‖ΠA− BΠ‖2

F

Relax this to the quadratic program

min
X∈conv(Sn)

‖XA− BX‖2
F

for the convex hull conv(Sn) = {X : Xij ≥ 0, X1 = 1, X>1 = 1}.
Solve this for X , then round to a permutation Π.
[Zaslavskiy, Bach, Vert ’09], [Aflalo, Bronstein, Kimmel ’15]

This method is not well-understood for the Erdős-Rényi model.
The GRAMPA matrix X is, instead, the further relaxation

min
X : 1>X1=n

‖XA− BX‖2
F + η2‖X‖2

F
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These two relaxations have representations in terms of the spectra
of A and B, and we analyze them in our work.
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Variants of this are related to the resolvent-type matrix[
(A⊗ Id − Id⊗ B)2 + η2(J⊗ Id + Id⊗ J)

]−1

for the Kronecker model A⊗ Id − Id⊗ B ∈ Rn2×n2
.
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How to analyze these programs with entrywise non-negativity is
open. We believe from simulation that these may achieve exact
recovery of Π∗ w.h.p. up to δ ≤ c for some constant c > 0.
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Joint work with Zhichao Wang:



Feedforward neural network

Function fθ : Rd0 → R, x 7→ fθ(x), defined iteratively by

x1 = σ(W1x), x2 = σ(W2x1), . . . , xL = σ(WLxL−1), fθ(x) = w>xL

• W1 ∈ Rd1×d0 , W2 ∈ Rd2×d1 , . . ., WL ∈ RdL×dL−1 , and w ∈ RdL

are the weights. We denote θ = (W1, . . . ,WL,w).

• σ : R→ R is the activation function, applied entrywise.

Two fundamental questions:

• How does learning occur during gradient descent training of θ?

• What allows fθ to generalize to unseen test samples?
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Two kernel matrices

Let X = (x1, . . . , xn) ∈ Rd0×n be the training samples, and
X` ∈ Rd`×n the outputs of each layer ` = 1, . . . , L.

Recent theory of neural networks highlights two kernel matrices:

1. The Conjugate Kernel (or equivalent Gaussian process kernel)

KCK = X>L XL ∈ Rn×n

The final step of the network is just linear regression on XL.
KCK governs the properties of this linear regression.

• The network is often already predictive when XL is fixed by
random initialization of W1, . . . ,WL, and only w is trained.

• For d1, . . . , dL →∞ and fixed n, KCK converges to a limit kernel,
and this is an approximation of regression in an associated RKHS.

[Neal ’94], [Williams ’97], [Cho, Saul ’09], [Rahimi, Recht ’09], [Daniely et al

’16], [Poole et al ’16], [Schoenholz et al ’17], [Lee et al ’18], ...
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Two kernel matrices

2. The Neural Tangent Kernel

KNTK = (∇θfθ(X ))>(∇θfθ(X )) ∈ Rn×n

Training errors evolve during gradient descent as

d

dt

(
y − fθ(t)(X )

)
= −KNTK(t) ·

(
y − fθ(t)(X )

)
• For d1, . . . , dL →∞ and fixed n, KNTK is constant over training.
• Then (diagonalizing KNTK) y − fθ(t)(X )→ 0 at a different

exponential rate along each eigenvector of KNTK.

[Jacot, Gabriel, Hongler ’19], [Du et al ’19], [Allen-Zhu et al ’19], [Lee

et al ’19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.
Neural nets of practical width often generalize better than these
equivalent kernel models. [Chizat et al ’18], [Arora et al ’19]



Two kernel matrices

2. The Neural Tangent Kernel

KNTK = (∇θfθ(X ))>(∇θfθ(X )) ∈ Rn×n

Training errors evolve during gradient descent as

d

dt

(
y − fθ(t)(X )

)
= −KNTK(t) ·

(
y − fθ(t)(X )

)

• For d1, . . . , dL →∞ and fixed n, KNTK is constant over training.
• Then (diagonalizing KNTK) y − fθ(t)(X )→ 0 at a different

exponential rate along each eigenvector of KNTK.

[Jacot, Gabriel, Hongler ’19], [Du et al ’19], [Allen-Zhu et al ’19], [Lee

et al ’19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.
Neural nets of practical width often generalize better than these
equivalent kernel models. [Chizat et al ’18], [Arora et al ’19]



Two kernel matrices

2. The Neural Tangent Kernel

KNTK = (∇θfθ(X ))>(∇θfθ(X )) ∈ Rn×n

Training errors evolve during gradient descent as

d

dt

(
y − fθ(t)(X )

)
= −KNTK(t) ·

(
y − fθ(t)(X )

)
• For d1, . . . , dL →∞ and fixed n, KNTK is constant over training.
• Then (diagonalizing KNTK) y − fθ(t)(X )→ 0 at a different

exponential rate along each eigenvector of KNTK.

[Jacot, Gabriel, Hongler ’19], [Du et al ’19], [Allen-Zhu et al ’19], [Lee

et al ’19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.
Neural nets of practical width often generalize better than these
equivalent kernel models. [Chizat et al ’18], [Arora et al ’19]



Two kernel matrices

2. The Neural Tangent Kernel

KNTK = (∇θfθ(X ))>(∇θfθ(X )) ∈ Rn×n

Training errors evolve during gradient descent as

d

dt

(
y − fθ(t)(X )

)
= −KNTK(t) ·

(
y − fθ(t)(X )

)
• For d1, . . . , dL →∞ and fixed n, KNTK is constant over training.
• Then (diagonalizing KNTK) y − fθ(t)(X )→ 0 at a different

exponential rate along each eigenvector of KNTK.

[Jacot, Gabriel, Hongler ’19], [Du et al ’19], [Allen-Zhu et al ’19], [Lee

et al ’19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.

Neural nets of practical width often generalize better than these
equivalent kernel models. [Chizat et al ’18], [Arora et al ’19]



Two kernel matrices

2. The Neural Tangent Kernel

KNTK = (∇θfθ(X ))>(∇θfθ(X )) ∈ Rn×n

Training errors evolve during gradient descent as

d

dt

(
y − fθ(t)(X )

)
= −KNTK(t) ·

(
y − fθ(t)(X )

)
• For d1, . . . , dL →∞ and fixed n, KNTK is constant over training.
• Then (diagonalizing KNTK) y − fθ(t)(X )→ 0 at a different

exponential rate along each eigenvector of KNTK.

[Jacot, Gabriel, Hongler ’19], [Du et al ’19], [Allen-Zhu et al ’19], [Lee

et al ’19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.
Neural nets of practical width often generalize better than these
equivalent kernel models. [Chizat et al ’18], [Arora et al ’19]



Eigenvalues in the linear width regime

We study the eigenvalue distributions of KCK and KNTK

• In a linear width regime where n/d` → γ` ∈ (0,∞) for each `

• At random (i.i.d. Gaussian) initialization of the weights θ

• Assuming that the training samples X = (x1, . . . , xn) are
approximately pairwise orthogonal, and lim specX>X = µ0

(I’ll use “lim spec” to denote weak convergence of the e.s.d.)

Theorem (F., Wang)

For fixed L, almost surely as n, d1, . . . , dL →∞,

lim specKCK = µCK, lim specKNTK = µNTK

for two probability distributions µCK and µNTK. These are defined
by µ0 and properties of σ(x).
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Approximate pairwise orthogonality

Normalizing training samples such that ‖x1‖2, . . . , ‖xn‖2 ≈ 1, we
require

|x>α xβ| ≤ εn
for each pair α 6= β ∈ {1, . . . , n}, where εn � n−1/4.

This holds with εn ≈ 1/
√
n if d0 � n and x1, . . . , xn are mean-zero

independent samples with some concentration. For example:

• xα = zα where zα has i.i.d. subgaussian entries

• xα = Σ1/2zα where ‖Σ‖ is bounded

• xα = f (zα) where entries of zα satisfy a log-Sobolev inequality,
and f is any Lipschitz function
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Limit spectral distribution of the CK

Let
µ 7→ ρMP

γ � µ

be the Marcenko-Pastur map for the spectra of sample covariance
matrices with aspect ratio γ.

For ` = 1, . . . , L, define

µ` = ρMP
γ`
�
(

(1− b2
σ) + b2

σ · µ`−1

)
where bσ = Eξ∼N (0,1)[σ′(ξ)].1

Theorem (F., Wang)

For each ` = 1, . . . , L, lim specX>` X` = µ`. So lim specKCK = µL.

• For one layer, this is closely related to existing results of
[Pennington, Worah ’17], [Louart, Liao, Couillet ’18].

• When bσ = 0, each µ` = ρMP
γ`

is a Marcenko-Pastur law. This
case was shown (for X with i.i.d. entries) by [Benigni, Péché ’19].

1

We normalize σ so that E[σ(ξ)] = 0, E[σ(ξ)2] = 1.
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Limit spectral distribution of the NTK

Lemma
There are constants q−1, . . . , qL defined by σ(x), such that

lim specKNTK = lim spec

(
q−1Id +

L∑
`=0

q`X
>
` X`

)

Theorem (F., Wang)

Consider any z = (z−1, . . . , zL),w = (w−1, . . . ,wL). Then

1

n
Tr

(
z−1Id +

L∑
`=0

z`X
>
` X`

)−1(
w−1Id +

L∑
`=0

w`X
>
` X`

)
has a deterministic limit tL(z,w). A fixed-point equation defines
each function t` in terms of t`−1. The limit Stieltjes transform for
KNTK is then

m(z) = tL

(
(−z + q−1, q0, . . . , qL), (1, 0, . . . , 0)

)
.
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Simulations for i.i.d. Gaussian X

Simulated eigenvalues in blue, limit spectral distribution in red

σ(x) ∝ tan−1(x), L = 5, n = 3000, d0 = 1000, d1 = . . . = d5 = 6000



Simulations for input images from CIFAR-10

5000 random training images from CIFAR-10, w/ top 10 PCs
removed to improve pairwise orthogonality

σ(x) ∝ tan−1(x), L = 5, n = 5000, d0 = 3072, d1 = . . . = d5 = 10000



Main ideas of the analysis

Lemma
Suppose the input data X is εn-orthogonal. Then each X1, . . . ,XL

is Cεn-orthogonal for a constant C ≡ C (L) > 0, w.h.p.

This allows us to induct on the layer `, and analyze each matrix
X>` X` conditional on X0, . . . ,X`−1.



Main ideas of the analysis

Recall X` = σ(W`X`−1), and observe that

• X` has i.i.d. rows with law σ(w>X`−1), conditional on X`−1

• Consequently, lim specX>` X` is the Marcenko-Pastur map of

Φ` = Ew[σ(w>X`−1)⊗ σ(w>X`−1)]

[Louart, Liao, Couillet ’18]

When X`−1 is εn-orthogonal, we show that

1

n

∥∥∥Φ` −
(

(1− b2
σ)Id + b2

σX
>
`−1X`−1

)∥∥∥2

F
. n · ε4

n → 0.

So lim spec Φ` = (1− b2
σ) + b2

σµ`−1.
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Conditional on X0, . . . ,X`−1, these matrices A and M are
deterministic, and X` is random with i.i.d. rows having
second-moment matrix Φ`.
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Propagation of “signal” at random initialization

Eigenvalues of X>` X`, when v1, v2 are each supported on 20 samples

Question: Can we understand the propagation of outlier
eigenvalues and eigenvectors through these layers?

Related analysis of Gaussian mixture models for one hidden layer, and

other kernels: [Couillet, Benaych-Georges ’16], [Liao, Couillet ’18]
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Evolution of spectra over training

Eigenvalues of KCK and KNTK for a trained 3-layer network
L = 3, n = 1000, d0 = 800, d1 = d2 = d3 = 800

Trained on (xα, yα) pairs where xα are uniform on the sphere, and

yα = σ(v>xα)

Final prediction-R2 of the trained model was 0.81. The spectral
bulks elongate, and large outliers emerge over training.
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Outliers contain information about training labels

Projection of training labels y onto top 2 PC’s of the trained KCK

explains 96% of the variance. The emergence of these outliers is
the main mechanism of training in this example.

Question: Can we understand the evolutions of KCK and/or KNTK

over training, from a spectral perspective?

Related work on the evolution of the NTK in an entrywise size:

[Huang, Yau ’19], [Dyer, Gur-Ari ’19]
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