Applications of random matrix theory to graph matching and neural networks

Zhou Fan

Department of Statistics and Data Science Yale University

(Online) Random Matrices and Their Applications 2020

Outline

In this talk, I'll discuss applications of random matrix theory to two (unrelated) problems in statistics and machine learning:

- Graph matching
- Spectral analysis of neural network kernel matrices

Outline

In this talk, I'll discuss applications of random matrix theory to two (unrelated) problems in statistics and machine learning:

- Graph matching
- Spectral analysis of neural network kernel matrices

I'll focus on high-level ideas, discuss the random matrix connections, and describe a few open questions.

Joint work with:

Cheng Mao

Yihong Wu

Jiaming Xu

[Picture courtesy of R. Srikant]

[Picture courtesy of R. Srikant]

Given the LinkedIn network, can you de-anonymize Twitter?

[Picture courtesy of R. Srikant]

Given the LinkedIn network, can you de-anonymize Twitter?

More abstractly: Given two *correlated* random graphs on *n* vertices, with a hidden correspondence between their vertices, can you recover this vertex matching?

 $A_{ij}, B_{ij} \sim \text{Bernoulli}(q)$ and $\mathbb{P}[A_{ij} = B_{ij} = 1] = (1 - \delta)q$

 $A_{ij}, B_{ij} \sim \text{Bernoulli}(q)$ and $\mathbb{P}[A_{ij} = B_{ij} = 1] = (1 - \delta)q$

q is the sparsity, and δ is the fraction of differing edges. Different edge pairs (i, j) are independent. [Pedarsani, Grossglauser '11]

 $A_{ij}, B_{ij} \sim \text{Bernoulli}(q)$ and $\mathbb{P}[A_{ij} = B_{ij} = 1] = (1 - \delta)q$

q is the sparsity, and δ is the fraction of differing edges. Different edge pairs (i, j) are independent. [Pedarsani, Grossglauser '11]

We observe A and $\Pi_*^\top B \Pi_*$ and want to recover Π_* .

 $A_{ij}, B_{ij} \sim \mathsf{Bernoulli}(q)$ and $\mathbb{P}[A_{ij} = B_{ij} = 1] = (1 - \delta)q$

q is the sparsity, and δ is the fraction of differing edges. Different edge pairs (i, j) are independent. [Pedarsani, Grossglauser '11]

We observe A and $\Pi_*^{\top}B\Pi_*$ and want to recover Π_* . Questions:

- How correlated must A and B be, to recover Π_* w.h.p.?
- How to design a computational algorithm that achieves this?

Use the (permutation invariant) eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \text{ and } B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

Use the (permutation invariant) eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \quad \text{and} \quad B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

• **Top eigenvector:** Match *A* to *B* by sorting *u*₁ and *v*₁. Similar ideas in IsoRank [Singh, Xu, Berger '08], EigenAlign [Feizi et al '19].

Use the (permutation invariant) eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \quad \text{and} \quad B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

- **Top eigenvector:** Match *A* to *B* by sorting *u*₁ and *v*₁. Similar ideas in IsoRank [Singh, Xu, Berger '08], EigenAlign [Feizi et al '19].
- All eigenvectors: Find the permutation Π which maximizes

$$\sum_{i=1}^{n} v_i^{\top} \Pi u_i \equiv \operatorname{Tr} X \Pi \quad \text{where} \quad X = \sum_{i=1}^{n} u_i v_i^{\top}$$

This aligns every u_i with the corresponding v_i . [Umeyama '88]

Use the (permutation invariant) eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \quad \text{and} \quad B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

- **Top eigenvector:** Match *A* to *B* by sorting *u*₁ and *v*₁. Similar ideas in IsoRank [Singh, Xu, Berger '08], EigenAlign [Feizi et al '19].
- All eigenvectors: Find the permutation Π which maximizes

$$\sum_{i=1}^{n} v_i^{\top} \Pi u_i \equiv \operatorname{Tr} X \Pi \quad \text{where} \quad X = \sum_{i=1}^{n} u_i v_i^{\top}$$

This aligns every u_i with the corresponding v_i . [Umeyama '88] Both work in noiseless settings ($\delta = 0$), but are brittle to noise: Each pair (u_i, v_i) decorrelates when $\delta > 1/n^{\alpha}$ for some $\alpha > 0$.

A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \text{ and } B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \text{ and } B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

2. Construct the similarity matrix

where $\eta =$ bandwidth parameter, **J** = all-1's matrix.

A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top} \text{ and } B = \sum_{j=1}^{n} \mu_j v_j v_j^{\top}$$

2. Construct the similarity matrix

where $\eta =$ bandwidth parameter, **J** = all-1's matrix.

3. Find the permutation Π which maximizes Tr $X\Pi$. This tries to align every u_i with every v_j , with weighting by the Cauchy kernel.

Isomorphic Erdős-Rényi graphs (500 vertices, edge probability $\frac{1}{2}$)

 $\langle u_{100}, v_j
angle^2$ for $j \in \{80, \dots, 120\}$, averaged across 1000 simulations

Erdős-Rényi graphs with fraction of differing edges $\delta = 0.001$

 $\langle u_{100}, v_j
angle^2$ for $j \in \{80, \dots, 120\}$, averaged across 1000 simulations

Erdős-Rényi graphs with fraction of differing edges $\delta = 0.01$

 $\langle u_{100}, v_j
angle^2$ for $j \in \{80, \dots, 120\}$, averaged across 1000 simulations

Erdős-Rényi graphs with fraction of differing edges $\delta=0.05$

 $\langle u_{100}, v_j
angle^2$ for $j \in \{80, \dots, 120\}$, averaged across 1000 simulations

The Cauchy kernel may be motivated by eigenvector correlation decay in the Dyson Brownian motion model

$$B = A + Z_{\delta}$$

where $Z \stackrel{L}{=} \sqrt{\delta} \times \text{independent GOE}$. Results of [Benigni '17] show, using analysis of the eigenvector moment flow in [Bourgade, Yau '17], that

$$n \cdot \mathbb{E}[\langle u_i, v_j \rangle^2] \approx rac{\delta}{(\lambda_i - \mu_j)^2 + C\delta^2}$$

The Cauchy kernel may be motivated by eigenvector correlation decay in the Dyson Brownian motion model

$$B = A + Z_{\delta}$$

where $Z \stackrel{L}{=} \sqrt{\delta} \times \text{independent GOE}$. Results of [Benigni '17] show, using analysis of the eigenvector moment flow in [Bourgade, Yau '17], that

$$n \cdot \mathbb{E}[\langle u_i, v_j \rangle^2] \approx rac{\delta}{(\lambda_i - \mu_j)^2 + C\delta^2}$$

[Question: Is this true also for a time-evolving Erdős-Rényi model?]

Theorem (F., Mao, Wu, Xu)

Theorem (F., Mao, Wu, Xu)

For the correlated Erdős-Rényi model with edge probability $q \ge \operatorname{polylog}(n)/n$ and fraction of differing edges $\delta \le 1/\operatorname{polylog}(n)$, this algorithm recovers the true vertex correspondence Π_* w.h.p.

• Improves over previous spectral algorithms requiring $\delta \leq 1/n^{\alpha}$.

Theorem (F., Mao, Wu, Xu)

- Improves over previous spectral algorithms requiring $\delta \leq 1/n^{\alpha}$.
- This is currently the best-known guarantee for polynomial-time algorithms. Matches previous result of [Ding, Ma, Wu, Xu '18].

Theorem (F., Mao, Wu, Xu)

- Improves over previous spectral algorithms requiring $\delta \leq 1/n^{\alpha}$.
- This is currently the best-known guarantee for polynomial-time algorithms. Matches previous result of [Ding, Ma, Wu, Xu '18].
- Recovery of Π^* is possible once $\delta \leq 1 1/\operatorname{polylog}(n)$ [Cullina, Kiyavash '18], but no efficient algorithm is known.

Theorem (F., Mao, Wu, Xu)

- Improves over previous spectral algorithms requiring $\delta \leq 1/n^{\alpha}$.
- This is currently the best-known guarantee for polynomial-time algorithms. Matches previous result of [Ding, Ma, Wu, Xu '18].
- Recovery of Π^* is possible once $\delta \leq 1 1/\operatorname{polylog}(n)$ [Cullina, Kiyavash '18], but no efficient algorithm is known.
- [Barak, Chou, Lei, Schramm, Sheng '18] developed an $n^{O(\log n)}$ -time algorithm, which succeeds for $\delta \leq 1 \varepsilon$ and $q \geq n^{\varepsilon}/n$.
- [Ganassali, Massoulié '20] developed a polynomial-time algorithm that recovers a positive fraction of the vertex matchings, for $\delta \leq 1 c$ and $q \approx 1/n$.

Define the resolvents

$$R_A(z) = (A - z \operatorname{Id})^{-1}$$
 $R_B(z) = (B - z \operatorname{Id})^{-1}$

Lemma

The GRAMPA similarity matrix X has the resolvent representation

$$X=rac{1}{2\pi}\operatorname{\mathsf{Re}}\oint_{\Gamma}R_{A}(z)\mathbf{\mathsf{J}}R_{B}(z+\mathbf{i}\eta)dz$$

This contour Γ contains all of the poles of R_A , and none of the poles of R_B .

Suppose $\Pi^* = \mathsf{Id}$, and consider the (k, ℓ) entry

$$X_{k\ell} = \frac{1}{2\pi} \operatorname{Re} \oint_{\Gamma} \left[e_k^{\top} R_A(z) \mathbf{J} R_B(z + \mathbf{i}\eta) e_\ell \right] dz$$

Suppose $\Pi^* = \mathsf{Id}$, and consider the (k, ℓ) entry

$$X_{k\ell} = \frac{1}{2\pi} \operatorname{Re} \oint_{\Gamma} \left[e_k^{\top} R_A(z) \mathbf{J} R_B(z + \mathbf{i}\eta) e_\ell \right] dz$$

Diagonal: By Schur-complement identities,

$$X_{kk} \approx \frac{1}{2\pi} \operatorname{Re} \mathbf{a}_{k}^{\top} \Big[\oint_{\Gamma} m(z) m(z + \mathbf{i}\eta) R_{A^{(k)}}(z) \mathbf{J} R_{B^{(k)}}(z + \mathbf{i}\eta) dz \Big] \mathbf{b}_{k}$$

 (a_k, b_k) in (A, B) are correlated, and independent of $(A^{(k)}, B^{(k)})$.

Suppose $\Pi^* = \mathsf{Id}$, and consider the (k, ℓ) entry

$$X_{k\ell} = \frac{1}{2\pi} \operatorname{Re} \oint_{\Gamma} \left[e_k^{\top} R_A(z) \mathbf{J} R_B(z + \mathbf{i}\eta) e_\ell \right] dz$$

Diagonal: By Schur-complement identities,

$$X_{kk} \approx \frac{1}{2\pi} \operatorname{Re} a_k^{\top} \Big[\oint_{\Gamma} m(z) m(z + i\eta) R_{A^{(k)}}(z) J R_{B^{(k)}}(z + i\eta) dz \Big] b_k$$

 (a_k, b_k) in (A, B) are correlated, and independent of $(A^{(k)}, B^{(k)})$.

Off-diagonal: Similarly,

$$X_{k\ell} \approx \frac{1}{2\pi} \operatorname{Re} \mathbf{a}_{k}^{\top} \left[\oint_{\Gamma} m(z) m(z + \mathbf{i}\eta) R_{A^{(k\ell)}}(z) \mathbf{J} R_{B^{(k\ell)}}(z + \mathbf{i}\eta) dz \right] \mathbf{b}_{\ell}$$

 (a_k, b_ℓ) are independent, and also independent of $(A^{(k\ell)}, B^{(k\ell)})$.

Applying local law estimates and fluctuation averaging techniques from [Erdős, Knowles, Yau, Yin '13], we analyze the traces and Frobenius norms of the preceding integrals.
Applying local law estimates and fluctuation averaging techniques from [Erdős, Knowles, Yau, Yin '13], we analyze the traces and Frobenius norms of the preceding integrals.

When $\Pi^* = Id$,

$$\min_{k} X_{kk} > \max_{k \neq \ell} X_{k\ell} \quad \text{w.h.p.}$$

Then the permutation Π maximizing Tr $X\Pi$ is $\Pi = Id$, so GRAMPA returns Id w.h.p.

By permutation invariance of the algorithm, GRAMPA returns Π_* w.h.p. for any true permutation $\Pi^*.$

$$\min_{\Pi \in S_n} \|A - \Pi^\top B \Pi\|_F^2 = \min_{\Pi \in S_n} \|\Pi A - B \Pi\|_F^2$$

$$\min_{\Pi \in S_n} \|A - \Pi^\top B \Pi\|_F^2 = \min_{\Pi \in S_n} \|\Pi A - B\Pi\|_F^2$$

Relax this to the quadratic program

$$\min_{X \in \operatorname{conv}(S_n)} \|XA - BX\|_F^2$$

for the convex hull $\operatorname{conv}(S_n) = \{X : X_{ij} \ge 0, \ X1 = 1, \ X^\top 1 = 1\}.$

$$\min_{\Pi \in S_n} \|A - \Pi^\top B \Pi\|_F^2 = \min_{\Pi \in S_n} \|\Pi A - B\Pi\|_F^2$$

Relax this to the quadratic program

$$\min_{X \in \operatorname{conv}(S_n)} \|XA - BX\|_F^2$$

for the convex hull $\operatorname{conv}(S_n) = \{X : X_{ij} \ge 0, X1 = 1, X^{\top}1 = 1\}$. Solve this for X, then round to a permutation Π . [Zaslavskiy, Bach, Vert '09], [Aflalo, Bronstein, Kimmel '15]

$$\min_{\Pi \in S_n} \|A - \Pi^\top B \Pi\|_F^2 = \min_{\Pi \in S_n} \|\Pi A - B\Pi\|_F^2$$

Relax this to the quadratic program

$$\min_{X \in \operatorname{conv}(S_n)} \|XA - BX\|_F^2$$

for the convex hull $\operatorname{conv}(S_n) = \{X : X_{ij} \ge 0, X1 = 1, X^{\top}1 = 1\}$. Solve this for X, then round to a permutation Π . [Zaslavskiy, Bach, Vert '09], [Aflalo, Bronstein, Kimmel '15]

This method is not well-understood for the Erdős-Rényi model. The GRAMPA matrix X is, instead, the further relaxation

$$\min_{X: \ 1^{\top}X1=n} \|XA - BX\|_F^2 + \eta^2 \|X\|_F^2$$

These two relaxations have representations in terms of the spectra of A and B, and we analyze them in our work.

Variants of this are related to the resolvent-type matrix

$$\left[(A \otimes \mathsf{Id} - \mathsf{Id} \otimes B)^2 + \eta^2 (\mathbf{J} \otimes \mathsf{Id} + \mathsf{Id} \otimes \mathbf{J}) \right]^{-1}$$
for the Kronecker model $A \otimes \mathsf{Id} - \mathsf{Id} \otimes B \in \mathbb{R}^{n^2 \times n^2}$.

How to analyze these programs with entrywise non-negativity is open. We believe from simulation that these may achieve exact recovery of Π^* w.h.p. up to $\delta \leq c$ for some constant c > 0.

Neural network kernel matrices

Neural network kernel matrices

Joint work with Zhichao Wang:

Feedforward neural network

Function $f_{\theta} : \mathbb{R}^{d_0} \to \mathbb{R}$, $\mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined iteratively by $\mathbf{x}^1 = \sigma(W_1 \mathbf{x}), \ \mathbf{x}^2 = \sigma(W_2 \mathbf{x}^1), \ \dots, \ \mathbf{x}^L = \sigma(W_L \mathbf{x}^{L-1}), \ f_{\theta}(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}^L$

Feedforward neural network

Function $f_{\theta} : \mathbb{R}^{d_0} \to \mathbb{R}$, $\mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined iteratively by $\mathbf{x}^1 = \sigma(W_1 \mathbf{x}), \ \mathbf{x}^2 = \sigma(W_2 \mathbf{x}^1), \ \dots, \ \mathbf{x}^L = \sigma(W_L \mathbf{x}^{L-1}), \ f_{\theta}(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}^L$

- $W_1 \in \mathbb{R}^{d_1 \times d_0}$, $W_2 \in \mathbb{R}^{d_2 \times d_1}$, ..., $W_L \in \mathbb{R}^{d_L \times d_{L-1}}$, and $\mathbf{w} \in \mathbb{R}^{d_L}$ are the weights. We denote $\theta = (W_1, \ldots, W_L, \mathbf{w})$.
- $\sigma: \mathbb{R} \to \mathbb{R}$ is the activation function, applied entrywise.

Feedforward neural network

Function $f_{\theta} : \mathbb{R}^{d_0} \to \mathbb{R}$, $\mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined iteratively by $\mathbf{x}^1 = \sigma(W_1 \mathbf{x}), \ \mathbf{x}^2 = \sigma(W_2 \mathbf{x}^1), \ \dots, \ \mathbf{x}^L = \sigma(W_L \mathbf{x}^{L-1}), \ f_{\theta}(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}^L$

- $W_1 \in \mathbb{R}^{d_1 \times d_0}$, $W_2 \in \mathbb{R}^{d_2 \times d_1}$, ..., $W_L \in \mathbb{R}^{d_L \times d_{L-1}}$, and $\mathbf{w} \in \mathbb{R}^{d_L}$ are the weights. We denote $\theta = (W_1, \ldots, W_L, \mathbf{w})$.
- $\sigma: \mathbb{R} \to \mathbb{R}$ is the activation function, applied entrywise.

Two fundamental questions:

- How does learning occur during gradient descent training of θ?
- What allows f_{θ} to generalize to unseen test samples?

Two kernel matrices

Let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{d_0 \times n}$ be the training samples, and $X_\ell \in \mathbb{R}^{d_\ell \times n}$ the outputs of each layer $\ell = 1, \dots, L$.

Recent theory of neural networks highlights two kernel matrices:

1. The **Conjugate Kernel** (or equivalent Gaussian process kernel) $K^{\mathsf{CK}} = X_I^\top X_I \in \mathbb{R}^{n \times n}$

Two kernel matrices

Let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{d_0 \times n}$ be the training samples, and $X_\ell \in \mathbb{R}^{d_\ell \times n}$ the outputs of each layer $\ell = 1, \dots, L$.

Recent theory of neural networks highlights two kernel matrices:

1. The **Conjugate Kernel** (or equivalent Gaussian process kernel) $K^{\mathsf{CK}} = X_I^\top X_I \in \mathbb{R}^{n \times n}$

The final step of the network is just linear regression on X_L . K^{CK} governs the properties of this linear regression.

Two kernel matrices

Let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{d_0 \times n}$ be the training samples, and $X_\ell \in \mathbb{R}^{d_\ell \times n}$ the outputs of each layer $\ell = 1, \dots, L$.

Recent theory of neural networks highlights two kernel matrices:

1. The **Conjugate Kernel** (or equivalent Gaussian process kernel) $K^{\mathsf{CK}} = X_l^\top X_L \in \mathbb{R}^{n \times n}$

The final step of the network is just linear regression on X_L . K^{CK} governs the properties of this linear regression.

- The network is often already predictive when X_L is fixed by random initialization of W_1, \ldots, W_L , and only **w** is trained.
- For d₁,..., d_L → ∞ and fixed n, K^{CK} converges to a limit kernel, and this is an approximation of regression in an associated RKHS.

[Neal '94], [Williams '97], [Cho, Saul '09], [Rahimi, Recht '09], [Daniely et al '16], [Poole et al '16], [Schoenholz et al '17], [Lee et al '18], ...

$$\mathcal{K}^{\mathsf{NTK}} = (
abla_{ heta} f_{ heta}(X))^{ op} (
abla_{ heta} f_{ heta}(X)) \in \mathbb{R}^{n imes n}$$

$$K^{\mathsf{NTK}} = (
abla_ heta f_ heta(X))^ op (
abla_ heta f_ heta(X)) \in \mathbb{R}^{n imes n}$$

Training errors evolve during gradient descent as

$$\frac{d}{dt} \Big(\mathbf{y} - f_{\theta(t)}(X) \Big) = -K^{\mathsf{NTK}}(t) \cdot \Big(\mathbf{y} - f_{\theta(t)}(X) \Big)$$

$$K^{\mathsf{NTK}} = (
abla_ heta f_ heta(X))^ op (
abla_ heta f_ heta(X)) \in \mathbb{R}^{n imes n}$$

Training errors evolve during gradient descent as

$$\frac{d}{dt} \Big(\mathbf{y} - f_{\theta(t)}(X) \Big) = -K^{\mathsf{NTK}}(t) \cdot \Big(\mathbf{y} - f_{\theta(t)}(X) \Big)$$

- For $d_1, \ldots, d_L \to \infty$ and fixed *n*, K^{NTK} is constant over training.
- Then (diagonalizing $\mathcal{K}^{\mathsf{NTK}}$) $\mathbf{y} f_{\theta(t)}(X) \to 0$ at a different exponential rate along each eigenvector of $\mathcal{K}^{\mathsf{NTK}}$.

[Jacot, Gabriel, Hongler '19], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], ...

$$K^{\mathsf{NTK}} = (
abla_ heta f_ heta(X))^ op (
abla_ heta f_ heta(X)) \in \mathbb{R}^{n imes n}$$

Training errors evolve during gradient descent as

$$\frac{d}{dt} \Big(\mathbf{y} - f_{\theta(t)}(X) \Big) = -K^{\mathsf{NTK}}(t) \cdot \Big(\mathbf{y} - f_{\theta(t)}(X) \Big)$$

- For $d_1, \ldots, d_L \to \infty$ and fixed *n*, K^{NTK} is constant over training.
- Then (diagonalizing $\mathcal{K}^{\mathsf{NTK}}$) $\mathbf{y} f_{\theta(t)}(X) \to 0$ at a different exponential rate along each eigenvector of $\mathcal{K}^{\mathsf{NTK}}$.

[Jacot, Gabriel, Hongler '19], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.

$$K^{\mathsf{NTK}} = (
abla_{ heta} f_{ heta}(X))^{ op} (
abla_{ heta} f_{ heta}(X)) \in \mathbb{R}^{n imes n}$$

Training errors evolve during gradient descent as

$$rac{d}{dt} \Big(\mathbf{y} - f_{ heta(t)}(X) \Big) = - \mathcal{K}^{\mathsf{NTK}}(t) \cdot \Big(\mathbf{y} - f_{ heta(t)}(X) \Big)$$

- For $d_1, \ldots, d_L \to \infty$ and fixed *n*, K^{NTK} is constant over training.
- Then (diagonalizing \mathcal{K}^{NTK}) $\mathbf{y} f_{\theta(t)}(X) \to 0$ at a different exponential rate along each eigenvector of \mathcal{K}^{NTK} .

[Jacot, Gabriel, Hongler '19], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], ...

Infinitely wide neural nets are equivalent to kernel linear regression. Neural nets of practical width often generalize better than these equivalent kernel models. [Chizat et al '18], [Arora et al '19]

We study the eigenvalue distributions of K^{CK} and K^{NTK}

• In a *linear width* regime where $n/d_\ell \rightarrow \gamma_\ell \in (0,\infty)$ for each ℓ

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a *linear width* regime where $n/d_\ell o \gamma_\ell \in (0,\infty)$ for each ℓ
- At random (i.i.d. Gaussian) initialization of the weights heta

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a *linear width* regime where $n/d_\ell o \gamma_\ell \in (0,\infty)$ for each ℓ
- At random (i.i.d. Gaussian) initialization of the weights heta
- Assuming that the training samples $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ are approximately pairwise orthogonal, and $\limsup X^\top X = \mu_0$

(I'll use "lim spec" to denote weak convergence of the e.s.d.)

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a *linear width* regime where $n/d_\ell o \gamma_\ell \in (0,\infty)$ for each ℓ
- At random (i.i.d. Gaussian) initialization of the weights θ

Assuming that the training samples X = (x₁,..., x_n) are approximately pairwise orthogonal, and lim spec X^TX = μ₀ (I'll use "lim spec" to denote weak convergence of the e.s.d.)
Theorem (F., Wang)

For fixed L, almost surely as $n, d_1, \ldots, d_L o \infty$,

lim spec
$$K^{CK} = \mu_{CK}$$
, lim spec $K^{NTK} = \mu_{NTK}$

for two probability distributions μ_{CK} and μ_{NTK} . These are defined by μ_0 and properties of $\sigma(x)$.

Normalizing training samples such that $\|\mathbf{x}_1\|^2,\ldots,\|\mathbf{x}_n\|^2\approx 1$, we require

$$|\mathbf{x}_{\alpha}^{\top}\mathbf{x}_{\beta}| \leq \varepsilon_{n}$$

for each pair $\alpha \neq \beta \in \{1, \ldots, n\}$, where $\varepsilon_n \ll n^{-1/4}$.

Normalizing training samples such that $\|\mathbf{x}_1\|^2, \ldots, \|\mathbf{x}_n\|^2 \approx 1$, we require

$$|\mathbf{x}_{\alpha}^{\top}\mathbf{x}_{\beta}| \leq \varepsilon_{n}$$

for each pair $\alpha \neq \beta \in \{1, \ldots, n\}$, where $\varepsilon_n \ll n^{-1/4}$.

This holds with $\varepsilon_n \approx 1/\sqrt{n}$ if $d_0 \simeq n$ and $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are mean-zero independent samples with some concentration. For example:

• $\mathbf{x}_{\alpha} = \mathbf{z}_{\alpha}$ where \mathbf{z}_{α} has i.i.d. subgaussian entries

Normalizing training samples such that $\|\mathbf{x}_1\|^2, \ldots, \|\mathbf{x}_n\|^2 \approx 1$, we require

$$|\mathbf{x}_{\alpha}^{\top}\mathbf{x}_{\beta}| \leq \varepsilon_{n}$$

for each pair $\alpha \neq \beta \in \{1, \ldots, n\}$, where $\varepsilon_n \ll n^{-1/4}$.

This holds with $\varepsilon_n \approx 1/\sqrt{n}$ if $d_0 \simeq n$ and $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are mean-zero independent samples with some concentration. For example:

- $\mathbf{x}_{\alpha} = \mathbf{z}_{\alpha}$ where \mathbf{z}_{α} has i.i.d. subgaussian entries
- $\mathbf{x}_{\alpha} = \Sigma^{1/2} \mathbf{z}_{\alpha}$ where $\|\Sigma\|$ is bounded

Normalizing training samples such that $\|\mathbf{x}_1\|^2, \ldots, \|\mathbf{x}_n\|^2 \approx 1$, we require

$$|\mathbf{x}_{\alpha}^{\top}\mathbf{x}_{\beta}| \leq \varepsilon_{n}$$

for each pair $\alpha \neq \beta \in \{1, \ldots, n\}$, where $\varepsilon_n \ll n^{-1/4}$.

This holds with $\varepsilon_n \approx 1/\sqrt{n}$ if $d_0 \simeq n$ and $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are mean-zero independent samples with some concentration. For example:

- $\mathbf{x}_{\alpha} = \mathbf{z}_{\alpha}$ where \mathbf{z}_{α} has i.i.d. subgaussian entries
- $\mathbf{x}_{\alpha} = \Sigma^{1/2} \mathbf{z}_{\alpha}$ where $\|\Sigma\|$ is bounded
- x_α = f(z_α) where entries of z_α satisfy a log-Sobolev inequality, and f is any Lipschitz function

Let

$$\mu \mapsto \rho_{\gamma}^{\mathsf{MP}} \boxtimes \mu$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio $\gamma.$

Let

$$\mu\mapsto\rho_{\gamma}^{\mathsf{MP}}\boxtimes\mu$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio $\gamma.$ For $\ell=1,\ldots,\textit{L},$ define

$$\mu_{\ell} =
ho_{\gamma_{\ell}}^{\mathsf{MP}} oxtimes \left((1 - b_{\sigma}^2) + b_{\sigma}^2 \cdot \mu_{\ell-1}
ight)$$

where $b_{\sigma} = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[\sigma'(\xi)]^{-1}$.

¹We normalize σ so that $\mathbb{E}[\sigma(\xi)] = 0$, $\mathbb{E}[\sigma(\xi)^2] = 1$.

Let

$$\mu\mapsto\rho_{\gamma}^{\mathsf{MP}}\boxtimes\mu$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio γ . For $\ell = 1, \ldots, L$, define

$$\mu_\ell =
ho_{\gamma_\ell}^{\mathsf{MP}} oxtimes \left((1 - b_\sigma^2) + b_\sigma^2 \cdot \mu_{\ell-1}
ight)$$

where $b_{\sigma} = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[\sigma'(\xi)]^{.1}$ Theorem (F., Wang) For each $\ell = 1, ..., L$, lim spec $X_{\ell}^{\top} X_{\ell} = \mu_{\ell}$. So lim spec $K^{CK} = \mu_{L}$.

¹We normalize σ so that $\mathbb{E}[\sigma(\xi)] = 0$, $\mathbb{E}[\sigma(\xi)^2] = 1$.

Let

$$\mu\mapsto\rho_{\gamma}^{\mathsf{MP}}\boxtimes\mu$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio γ . For $\ell=1,\ldots,L$, define

$$\mu_\ell =
ho_{\gamma_\ell}^{\mathsf{MP}} oxtimes \left((1 - b_\sigma^2) + b_\sigma^2 \cdot \mu_{\ell-1}
ight)$$

where $b_{\sigma} = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[\sigma'(\xi)]^{1}$ Theorem (F., Wang) For each $\ell = 1, ..., L$, lim spec $X_{\ell}^{\top} X_{\ell} = \mu_{\ell}$. So lim spec $K^{CK} = \mu_{L}$.

- For one layer, this is closely related to existing results of [Pennington, Worah '17], [Louart, Liao, Couillet '18].
- When $b_{\sigma} = 0$, each $\mu_{\ell} = \rho_{\gamma_{\ell}}^{\text{MP}}$ is a Marcenko-Pastur law. This case was shown (for X with i.i.d. entries) by [Benigni, Péché '19].

¹We normalize σ so that $\mathbb{E}[\sigma(\xi)] = 0$, $\mathbb{E}[\sigma(\xi)^2] = 1$.

Lemma

There are constants q_{-1}, \ldots, q_L defined by $\sigma(x)$, such that

lim spec
$$\mathcal{K}^{NT\mathcal{K}} = \lim \operatorname{spec} \left(q_{-1} \operatorname{Id} + \sum_{\ell=0}^{L} q_{\ell} X_{\ell}^{\top} X_{\ell} \right)$$

Lemma

There are constants q_{-1}, \ldots, q_L defined by $\sigma(x)$, such that

lim spec
$$\mathcal{K}^{NT\mathcal{K}} = \lim \operatorname{spec} \left(q_{-1} \operatorname{Id} + \sum_{\ell=0}^{L} q_{\ell} X_{\ell}^{\top} X_{\ell} \right)$$

Theorem (F., Wang) Consider any $\mathbf{z} = (z_{-1}, \dots, z_L), \mathbf{w} = (w_{-1}, \dots, w_L)$. Then $\frac{1}{n} \operatorname{Tr} \left(z_{-1} \operatorname{Id} + \sum_{\ell}^{L} z_{\ell} X_{\ell}^{\top} X_{\ell} \right)^{-1} \left(w_{-1} \operatorname{Id} + \sum_{\ell}^{L} w_{\ell} X_{\ell}^{\top} X_{\ell} \right)$

has a deterministic limit $t_L(\mathbf{z}, \mathbf{w})$. A fixed-point equation defines each function t_ℓ in terms of $t_{\ell-1}$.
Limit spectral distribution of the NTK

Lemma

There are constants q_{-1}, \ldots, q_L defined by $\sigma(x)$, such that

$$\limsup \operatorname{K}^{NTK} = \limsup \operatorname{K}^{\ell} \left(q_{-1} \operatorname{Id} + \sum_{\ell=0}^{L} q_{\ell} X_{\ell}^{\top} X_{\ell} \right)$$

Theorem (F., Wang) Consider any $\mathbf{z} = (z_{-1}, \dots, z_L), \mathbf{w} = (w_{-1}, \dots, w_L)$. Then

$$\frac{1}{n}\operatorname{Tr}\left(z_{-1}\operatorname{Id}+\sum_{\ell=0}^{L}z_{\ell}X_{\ell}^{\top}X_{\ell}\right)^{-1}\left(w_{-1}\operatorname{Id}+\sum_{\ell=0}^{L}w_{\ell}X_{\ell}^{\top}X_{\ell}\right)$$

has a deterministic limit $t_L(\mathbf{z}, \mathbf{w})$. A fixed-point equation defines each function t_ℓ in terms of $t_{\ell-1}$. The limit Stieltjes transform for K^{NTK} is then

$$m(z) = t_L ((-z + q_{-1}, q_0, \ldots, q_L), (1, 0, \ldots, 0)).$$

Simulations for i.i.d. Gaussian X

Simulated eigenvalues in blue, limit spectral distribution in red

 $\sigma(x) \propto \tan^{-1}(x), \ L = 5, \ n = 3000, \ d_0 = 1000, \ d_1 = \ldots = d_5 = 6000$

Simulations for input images from CIFAR-10

5000 random training images from CIFAR-10, w/ top 10 PCs removed to improve pairwise orthogonality

 $\sigma(x) \propto \tan^{-1}(x), \ L = 5, \ n = 5000, \ d_0 = 3072, \ d_1 = \ldots = d_5 = 10000$

Lemma

Suppose the input data X is ε_n -orthogonal. Then each X_1, \ldots, X_L is $C\varepsilon_n$ -orthogonal for a constant $C \equiv C(L) > 0$, w.h.p.

This allows us to induct on the layer ℓ , and analyze each matrix $X_{\ell}^{\top}X_{\ell}$ conditional on $X_0, \ldots, X_{\ell-1}$.

Recall $X_{\ell} = \sigma(W_{\ell}X_{\ell-1})$, and observe that

• X_{ℓ} has i.i.d. rows with law $\sigma(\mathbf{w}^{\top}X_{\ell-1})$, conditional on $X_{\ell-1}$

Recall $X_{\ell} = \sigma(W_{\ell}X_{\ell-1})$, and observe that

- X_{ℓ} has i.i.d. rows with law $\sigma(\mathbf{w}^{\top}X_{\ell-1})$, conditional on $X_{\ell-1}$
- Consequently, lim spec $X_{\ell}^{\top}X_{\ell}$ is the Marcenko-Pastur map of

$$\Phi_{\ell} = \mathbb{E}_{\mathsf{w}}[\sigma(\mathsf{w}^{\top} X_{\ell-1}) \otimes \sigma(\mathsf{w}^{\top} X_{\ell-1})]$$

[Louart, Liao, Couillet '18]

Recall $X_{\ell} = \sigma(W_{\ell}X_{\ell-1})$, and observe that

- X_{ℓ} has i.i.d. rows with law $\sigma(\mathbf{w}^{\top}X_{\ell-1})$, conditional on $X_{\ell-1}$
- Consequently, lim spec $X_{\ell}^{\top}X_{\ell}$ is the Marcenko-Pastur map of

$$\Phi_{\ell} = \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{w}^{\top} X_{\ell-1}) \otimes \sigma(\mathbf{w}^{\top} X_{\ell-1})]$$

[Louart, Liao, Couillet '18]

When $X_{\ell-1}$ is ε_n -orthogonal, we show that

$$\frac{1}{n} \left\| \Phi_{\ell} - \left((1 - b_{\sigma}^2) \mathsf{Id} + b_{\sigma}^2 X_{\ell-1}^\top X_{\ell-1} \right) \right\|_F^2 \lesssim n \cdot \varepsilon_n^4 \to 0.$$

So lim spec $\Phi_\ell = (1 - b_\sigma^2) + b_\sigma^2 \mu_{\ell-1}$.

To analyze K^{NTK} , we characterize inductively the limit $t_{\ell}(\mathbf{z}, \mathbf{w})$ of

$$\frac{1}{n}\operatorname{Tr}\left(z_{-1}\operatorname{Id}+\sum_{k=0}^{\ell}z_{k}X_{k}^{\top}X_{k}\right)^{-1}\left(w_{-1}\operatorname{Id}+\sum_{k=0}^{\ell}w_{k}X_{k}^{\top}X_{k}\right)$$

To analyze K^{NTK} , we characterize inductively the limit $t_{\ell}(\mathbf{z}, \mathbf{w})$ of

$$\frac{1}{n}\operatorname{Tr}\left(z_{-1}\operatorname{Id}+\sum_{k=0}^{\ell}z_{k}X_{k}^{\top}X_{k}\right)^{-1}\left(w_{-1}\operatorname{Id}+\sum_{k=0}^{\ell}w_{k}X_{k}^{\top}X_{k}\right)$$

Remove $X_{\ell}^{\top}X_{\ell}$ from the numerator, by writing this as

$$\frac{w_{\ell}}{z_{\ell}} + \frac{1}{n} \operatorname{Tr} \left(A + z_{\ell} X_{\ell}^{\top} X_{\ell} \right)^{-1} M$$

where A, M are linear combinations of $X_0^{\top}X_0, \ldots, X_{\ell-1}^{\top}X_{\ell-1}, \mathsf{Id}$.

To analyze K^{NTK} , we characterize inductively the limit $t_{\ell}(\mathbf{z}, \mathbf{w})$ of

$$\frac{1}{n}\operatorname{Tr}\left(z_{-1}\operatorname{Id}+\sum_{k=0}^{\ell}z_{k}X_{k}^{\top}X_{k}\right)^{-1}\left(w_{-1}\operatorname{Id}+\sum_{k=0}^{\ell}w_{k}X_{k}^{\top}X_{k}\right)$$

Remove $X_{\ell}^{\top}X_{\ell}$ from the numerator, by writing this as

$$rac{w_\ell}{z_\ell} + rac{1}{n} \operatorname{Tr} \left(A + z_\ell \, X_\ell^\top X_\ell
ight)^{-1} M$$

where A, M are linear combinations of $X_0^{\top}X_0, \ldots, X_{\ell-1}^{\top}X_{\ell-1}, \mathsf{Id}$.

Conditional on $X_0, \ldots, X_{\ell-1}$, these matrices A and M are deterministic, and X_{ℓ} is random with i.i.d. rows having second-moment matrix Φ_{ℓ} .

We show an approximation

$$\frac{1}{n}\operatorname{Tr}\left(A+z_{\ell}X_{\ell}^{\top}X_{\ell}\right)^{-1}M\approx\frac{1}{n}\operatorname{Tr}\left(A+s_{\ell}^{-1}\Phi_{\ell}\right)^{-1}M$$

where s_ℓ approximately satisfies the fixed-point equation

$$s_{\ell} pprox rac{1}{z_{\ell}} + rac{\gamma_{\ell}}{n} \operatorname{Tr} \left(A + s_{\ell}^{-1} \Phi_{\ell}
ight)^{-1} \Phi_{\ell}$$

This equation depends on the joint spectral limit of (A, Φ_{ℓ}) .

We show an approximation

$$\frac{1}{n}\operatorname{Tr}\left(A+z_{\ell}X_{\ell}^{\top}X_{\ell}\right)^{-1}M\approx\frac{1}{n}\operatorname{Tr}\left(A+s_{\ell}^{-1}\Phi_{\ell}\right)^{-1}M$$

where s_{ℓ} approximately satisfies the fixed-point equation

$$s_\ell pprox rac{1}{z_\ell} + rac{\gamma_\ell}{n} \operatorname{Tr} \left(A + s_\ell^{-1} \Phi_\ell
ight)^{-1} \Phi_\ell$$

This equation depends on the joint spectral limit of (A, Φ_{ℓ}) . Applying $\Phi_{\ell} \approx (1 - b_{\sigma}^2) \text{Id} + b_{\sigma}^2 X_{\ell-1}^{\top} X_{\ell-1}$ and the induction hypothesis for $\ell - 1$, this has a limit in terms of $t_{\ell-1}(\mathbf{z}, \mathbf{w})$.

We show an approximation

$$\frac{1}{n}\operatorname{Tr}\left(A+z_{\ell}X_{\ell}^{\top}X_{\ell}\right)^{-1}M\approx\frac{1}{n}\operatorname{Tr}\left(A+s_{\ell}^{-1}\Phi_{\ell}\right)^{-1}M$$

where s_{ℓ} approximately satisfies the fixed-point equation

$$s_\ell pprox rac{1}{z_\ell} + rac{\gamma_\ell}{n} \operatorname{Tr} \left(A + s_\ell^{-1} \Phi_\ell
ight)^{-1} \Phi_\ell$$

This equation depends on the joint spectral limit of (A, Φ_{ℓ}) . Applying $\Phi_{\ell} \approx (1 - b_{\sigma}^2) \text{Id} + b_{\sigma}^2 X_{\ell-1}^{\top} X_{\ell-1}$ and the induction hypothesis for $\ell - 1$, this has a limit in terms of $t_{\ell-1}(\mathbf{z}, \mathbf{w})$.

We show inductively that the limit equation has a unique fixed point $s_{\ell} \in \mathbb{C}^+$. This then defines t_{ℓ} recursively in terms of $t_{\ell-1}$, by

$$t_{\ell}(\mathsf{z},\mathsf{w}) = \lim_{n \to \infty} rac{1}{n} \operatorname{Tr} \left(A + s_{\ell}^{-1} \Phi_{\ell} \right)^{-1} M$$

Consider a spiked input matrix

$$X = s_1 \mathbf{u}_1 \mathbf{v}_1^\top + s_2 \mathbf{u}_2 \mathbf{v}_2^\top + \text{i.i.d.}$$
 Gaussian noise

Consider a spiked input matrix

 $X = s_1 \mathbf{u}_1 \mathbf{v}_1^\top + s_2 \mathbf{u}_2 \mathbf{v}_2^\top + \text{i.i.d.}$ Gaussian noise

Eigenvalues of $X_{\ell}^{\top}X_{\ell}$, for $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2$ uniform on the sphere

Eigenvalues of $X_{\ell}^{\top}X_{\ell}$, when $\mathbf{v}_1, \mathbf{v}_2$ are each supported on 20 samples

Eigenvalues of $X_{\ell}^{\top}X_{\ell}$, when $\mathbf{v}_1, \mathbf{v}_2$ are each supported on 20 samples

Question: Can we understand the propagation of outlier eigenvalues and eigenvectors through these layers?

Related analysis of Gaussian mixture models for one hidden layer, and other kernels: [Couillet, Benaych-Georges '16], [Liao, Couillet '18]

Evolution of spectra over training

Eigenvalues of K^{CK} and K^{NTK} for a trained 3-layer network L = 3, n = 1000, $d_0 = 800$, $d_1 = d_2 = d_3 = 800$

Evolution of spectra over training

Eigenvalues of K^{CK} and K^{NTK} for a trained 3-layer network L = 3, n = 1000, $d_0 = 800$, $d_1 = d_2 = d_3 = 800$

Trained on $(\mathbf{x}_{\alpha}, y_{\alpha})$ pairs where \mathbf{x}_{α} are uniform on the sphere, and

$$y_{lpha} = \sigma(\mathbf{v}^{ op} \mathbf{x}_{lpha})$$

Final prediction- R^2 of the trained model was 0.81. The spectral bulks elongate, and large outliers emerge over training.

Outliers contain information about training labels

Projection of training labels **y** onto top 2 PC's of the trained K^{CK} explains 96% of the variance. The emergence of these outliers is the main mechanism of training in this example.

Outliers contain information about training labels

Projection of training labels **y** onto top 2 PC's of the trained K^{CK} explains 96% of the variance. The emergence of these outliers is the main mechanism of training in this example.

Question: Can we understand the evolutions of K^{CK} and/or K^{NTK} over training, from a spectral perspective?

Related work on the evolution of the NTK in an entrywise size: [Huang, Yau '19], [Dyer, Gur-Ari '19]

Graph matching:

Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu, "Spectral graph matching and regularized quadratic relaxations I: The Gaussian model", arxiv:1907.08880.

Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu, "Spectral graph matching and regularized quadratic relaxations II: Erdős-Rényi graphs and universality", arxiv:1907.08883.

Neural network kernel matrices:

Zhou Fan, Zhichao Wang, "Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks", arxiv to appear.