Applications of random matrix theory to graph matching and neural networks

Zhou Fan

Department of Statistics and Data Science Yale University

(Online) Random Matrices and Their Applications 2020

Outline

In this talk, l'll discuss applications of random matrix theory to two (unrelated) problems in statistics and machine learning:

- Graph matching
- Spectral analysis of neural network kernel matrices

Outline

In this talk, l'll discuss applications of random matrix theory to two (unrelated) problems in statistics and machine learning:

- Graph matching
- Spectral analysis of neural network kernel matrices

I'll focus on high-level ideas, discuss the random matrix connections, and describe a few open questions.

Graph Matching

Graph matching

Joint work with:

Cheng Mao

Yihong Wu

Jiaming Xu

Graph matching

Linkedin.

[Picture courtesy of R. Srikant]

Graph matching

Linked in

[Picture courtesy of R. Srikant]
Given the Linkedln network, can you de-anonymize Twitter?

Graph matching

Linked in

[Picture courtesy of R. Srikant]
Given the Linkedln network, can you de-anonymize Twitter?

More abstractly: Given two correlated random graphs on n vertices, with a hidden correspondence between their vertices, can you recover this vertex matching?

Correlated Erdős-Rényi graph model

$A_{i j}, B_{i j} \sim \operatorname{Bernoulli}(q) \quad$ and $\quad \mathbb{P}\left[A_{i j}=B_{i j}=1\right]=(1-\delta) q$

Correlated Erdős-Rényi graph model

A

B
$A_{i j}, B_{i j} \sim \operatorname{Bernoulli}(q) \quad$ and $\quad \mathbb{P}\left[A_{i j}=B_{i j}=1\right]=(1-\delta) q$
q is the sparsity, and δ is the fraction of differing edges.
Different edge pairs (i, j) are independent. [Pedarsani, Grossglauser '11]

Correlated Erdős-Rényi graph model

$A_{i j}, B_{i j} \sim \operatorname{Bernoulli}(q) \quad$ and $\quad \mathbb{P}\left[A_{i j}=B_{i j}=1\right]=(1-\delta) q$
q is the sparsity, and δ is the fraction of differing edges.
Different edge pairs (i, j) are independent. [Pedarsani, Grossglauser '11]
We observe A and $\Pi_{*}^{\top} B \Pi_{*}$ and want to recover Π_{*}.

Correlated Erdős-Rényi graph model

$A_{i j}, B_{i j} \sim \operatorname{Bernoulli}(q) \quad$ and $\quad \mathbb{P}\left[A_{i j}=B_{i j}=1\right]=(1-\delta) q$
q is the sparsity, and δ is the fraction of differing edges.
Different edge pairs (i, j) are independent. [Pedarsani, Grossglauser '11]
We observe A and $\Pi_{*}^{\top} B \Pi_{*}$ and want to recover Π_{*}. Questions:

- How correlated must A and B be, to recover Π_{*} w.h.p.?
- How to design a computational algorithm that achieves this?

Spectral algorithms

Use the (permutation invariant) eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

Spectral algorithms

Use the (permutation invariant) eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

- Top eigenvector: Match A to B by sorting u_{1} and v_{1}. Similar ideas in IsoRank [Singh, Xu, Berger '08], EigenAlign [Feizi et al '19].

Spectral algorithms

Use the (permutation invariant) eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

- Top eigenvector: Match A to B by sorting u_{1} and v_{1}. Similar ideas in IsoRank [Singh, Xu, Berger '08], EigenAlign [Feizi et al '19].
- All eigenvectors: Find the permutation Π which maximizes

$$
\sum_{i=1}^{n} v_{i}^{\top} \Pi u_{i} \equiv \operatorname{Tr} X \Pi \quad \text { where } \quad X=\sum_{i=1}^{n} u_{i} v_{i}^{\top}
$$

This aligns every u_{i} with the corresponding v_{i}. [Umeyama '88]

Spectral algorithms

Use the (permutation invariant) eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

- Top eigenvector: Match A to B by sorting u_{1} and v_{1}. Similar ideas in IsoRank [Singh, Xu, Berger '08], EigenAlign [Feizi et al '19].
- All eigenvectors: Find the permutation Π which maximizes

$$
\sum_{i=1}^{n} v_{i}^{\top} \Pi u_{i} \equiv \operatorname{Tr} X \Pi \quad \text { where } \quad X=\sum_{i=1}^{n} u_{i} v_{i}^{\top}
$$

This aligns every u_{i} with the corresponding v_{i}. [Umeyama '88]
Both work in noiseless settings ($\delta=0$), but are brittle to noise: Each pair $\left(u_{i}, v_{i}\right)$ decorrelates when $\delta>1 / n^{\alpha}$ for some $\alpha>0$.

A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

2. Construct the similarity matrix

$$
X=\sum_{i, j=1}^{n} \underbrace{\frac{\eta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+\eta^{2}}}_{\text {Cauchy kernel applied to } \lambda_{i} \text { and } \mu_{j}} \times \underbrace{u_{i} u_{i}^{\top} \mathbf{J} v_{j} v_{j}^{\top}}_{\text {"Alignment" between } u_{i} \text { and } v_{j}}
$$

where $\eta=$ bandwidth parameter, $\mathbf{J}=$ all-1's matrix.

A new spectral algorithm: GRAMPA

GRAph Matching by Pairwise eigen-Alignments

1. Compute the eigendecompositions

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \quad \text { and } \quad B=\sum_{j=1}^{n} \mu_{j} v_{j} v_{j}^{\top}
$$

2. Construct the similarity matrix

$$
X=\sum_{i, j=1}^{n} \underbrace{\frac{\eta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+\eta^{2}}}_{\text {Cauchy kernel applied to } \lambda_{i} \text { and } \mu_{j}} \times \underbrace{u_{i} u_{i}^{\top} \mathbf{J} v_{j} v_{j}^{\top}}_{\text {"Alignment" between } u_{i} \text { and } v_{j}}
$$

where $\eta=$ bandwidth parameter, $\mathbf{J}=$ all-1's matrix.
3. Find the permutation Π which maximizes $\operatorname{Tr} X \Pi$. This tries to align every u_{i} with every v_{j}, with weighting by the Cauchy kernel.

Motivation for GRAMPA

Isomorphic Erdős-Rényi graphs (500 vertices, edge probability $\frac{1}{2}$)

$\left\langle u_{100}, v_{j}\right\rangle^{2}$ for $j \in\{80, \ldots, 120\}$, averaged across 1000 simulations

Motivation for GRAMPA

Erdős-Rényi graphs with fraction of differing edges $\delta=0.001$

$\left\langle u_{100}, v_{j}\right\rangle^{2}$ for $j \in\{80, \ldots, 120\}$, averaged across 1000 simulations

Motivation for GRAMPA

Erdős-Rényi graphs with fraction of differing edges $\delta=0.01$

$\left\langle u_{100}, v_{j}\right\rangle^{2}$ for $j \in\{80, \ldots, 120\}$, averaged across 1000 simulations

Motivation for GRAMPA

Erdős-Rényi graphs with fraction of differing edges $\delta=0.05$

$\left\langle u_{100}, v_{j}\right\rangle^{2}$ for $j \in\{80, \ldots, 120\}$, averaged across 1000 simulations

Motivation for GRAMPA

$$
X=\sum_{i, j=1}^{n} \underbrace{\frac{\eta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+\eta^{2}}}_{\text {Cauchy kernel applied to } \lambda_{i} \text { and } \mu_{j}} \times \underbrace{u_{i} u_{i}^{\top} \mathbf{J} v_{j} v_{j}^{\top}}_{\text {"Alignment" between } u_{i} \text { and } v_{j}}
$$

Motivation for GRAMPA

$$
X=\sum_{i, j=1}^{n} \underbrace{\frac{\eta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+\eta^{2}}}_{\text {Cauchy kernel applied to } \lambda_{i} \text { and } \mu_{j}} \times \underbrace{u_{i} u_{i}^{\top} \mathbf{J} v_{j} v_{j}^{\top}}_{\text {"Alignment" between } u_{i} \text { and } v_{j}}
$$

The Cauchy kernel may be motivated by eigenvector correlation decay in the Dyson Brownian motion model

$$
B=A+Z_{\delta}
$$

where $Z \stackrel{L}{=} \sqrt{\delta} \times$ independent GOE. Results of [Benigni '17] show, using analysis of the eigenvector moment flow in [Bourgade, Yau '17], that

$$
n \cdot \mathbb{E}\left[\left\langle u_{i}, v_{j}\right\rangle^{2}\right] \approx \frac{\delta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+C \delta^{2}}
$$

Motivation for GRAMPA

$$
X=\sum_{i, j=1}^{n} \underbrace{\frac{\eta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+\eta^{2}}}_{\text {Cauchy kernel applied to } \lambda_{i} \text { and } \mu_{j}} \times \underbrace{u_{i} u_{i}^{\top} \mathbf{J} v_{j} v_{j}^{\top}}_{\text {"Alignment" between } u_{i} \text { and } v_{j}}
$$

The Cauchy kernel may be motivated by eigenvector correlation decay in the Dyson Brownian motion model

$$
B=A+Z_{\delta}
$$

where $Z \stackrel{L}{=} \sqrt{\delta} \times$ independent GOE. Results of [Benigni '17] show, using analysis of the eigenvector moment flow in [Bourgade, Yau '17], that

$$
n \cdot \mathbb{E}\left[\left\langle u_{i}, v_{j}\right\rangle^{2}\right] \approx \frac{\delta}{\left(\lambda_{i}-\mu_{j}\right)^{2}+C \delta^{2}}
$$

[Question: Is this true also for a time-evolving Erdős-Rényi model?]

Theoretical guarantee

Theorem (F., Mao, Wu, Xu)
For the correlated Erdős-Rényi model with edge probability $q \geq \operatorname{polylog}(n) / n$ and fraction of differing edges $\delta \leq 1 / \operatorname{polylog}(n)$, this algorithm recovers the true vertex correspondence Π_{*} w.h.p.

Theoretical guarantee

Theorem (F., Mao, Wu, Xu)
For the correlated Erdős-Rényi model with edge probability $q \geq \operatorname{polylog}(n) / n$ and fraction of differing edges $\delta \leq 1 / \operatorname{polylog}(n)$, this algorithm recovers the true vertex correspondence Π_{*} w.h.p.

- Improves over previous spectral algorithms requiring $\delta \leq 1 / n^{\alpha}$.

Theoretical guarantee

Theorem (F., Mao, Wu, Xu)
For the correlated Erdős-Rényi model with edge probability $q \geq \operatorname{polylog}(n) / n$ and fraction of differing edges $\delta \leq 1 / \operatorname{polylog}(n)$, this algorithm recovers the true vertex correspondence Π_{*} w.h.p.

- Improves over previous spectral algorithms requiring $\delta \leq 1 / n^{\alpha}$.
- This is currently the best-known guarantee for polynomial-time algorithms. Matches previous result of [Ding, Ma, Wu, Xu '18].

Theoretical guarantee

Theorem (F., Mao, Wu, Xu)
For the correlated Erdős-Rényi model with edge probability $q \geq \operatorname{polylog}(n) / n$ and fraction of differing edges $\delta \leq 1 / \operatorname{polylog}(n)$, this algorithm recovers the true vertex correspondence Π_{*} w.h.p.

- Improves over previous spectral algorithms requiring $\delta \leq 1 / n^{\alpha}$.
- This is currently the best-known guarantee for polynomial-time algorithms. Matches previous result of [Ding, Ma, Wu, Xu '18].
- Recovery of Π^{*} is possible once $\delta \leq 1-1 / \operatorname{polylog}(n)$ [Cullina, Kiyavash '18], but no efficient algorithm is known.

Theoretical guarantee

Theorem (F., Mao, Wu, Xu)
For the correlated Erdős-Rényi model with edge probability $q \geq \operatorname{polylog}(n) / n$ and fraction of differing edges $\delta \leq 1 / \operatorname{polylog}(n)$, this algorithm recovers the true vertex correspondence Π_{*} w.h.p.

- Improves over previous spectral algorithms requiring $\delta \leq 1 / n^{\alpha}$.
- This is currently the best-known guarantee for polynomial-time algorithms. Matches previous result of [Ding, Ma, Wu, Xu '18].
- Recovery of Π^{*} is possible once $\delta \leq 1-1 / \operatorname{polylog}(n)$ [Cullina, Kiyavash '18], but no efficient algorithm is known.
- [Barak, Chou, Lei, Schramm, Sheng '18] developed an $n^{O(\log n)}$-time algorithm, which succeeds for $\delta \leq 1-\varepsilon$ and $q \geq n^{\varepsilon} / n$.
- [Ganassali, Massoulié '20] developed a polynomial-time algorithm that recovers a positive fraction of the vertex matchings, for $\delta \leq 1-c$ and $q \asymp 1 / n$.

Main ideas of the analysis

Define the resolvents

$$
R_{A}(z)=(A-z \mathrm{Id})^{-1} \quad R_{B}(z)=(B-z \mathrm{Id})^{-1}
$$

Lemma
The GRAMPA similarity matrix X has the resolvent representation

$$
X=\frac{1}{2 \pi} \operatorname{Re} \oint_{\Gamma} R_{A}(z) \mathbf{J} R_{B}(z+\mathbf{i} \eta) d z
$$

This contour Γ contains all of the poles of R_{A}, and none of the poles of R_{B}.

Main ideas of the analysis

Suppose $\Pi^{*}=\mathrm{Id}$, and consider the (k, ℓ) entry

$$
X_{k \ell}=\frac{1}{2 \pi} \operatorname{Re} \oint_{\Gamma}\left[e_{k}^{\top} R_{A}(z) \mathbf{J} R_{B}(z+\mathbf{i} \eta) e_{\ell}\right] d z
$$

Main ideas of the analysis

Suppose $\Pi^{*}=\mathrm{Id}$, and consider the (k, ℓ) entry

$$
X_{k \ell}=\frac{1}{2 \pi} \operatorname{Re} \oint_{\Gamma}\left[e_{k}^{\top} R_{A}(z) \mathbf{J} R_{B}(z+\mathbf{i} \eta) e_{\ell}\right] d z
$$

Diagonal: By Schur-complement identities,

$$
X_{k k} \approx \frac{1}{2 \pi} \operatorname{Re} a_{k}^{\top}\left[\oint_{\Gamma} m(z) m(z+\mathbf{i} \eta) R_{A^{(k)}}(z) \mathbf{J} R_{B^{(k)}}(z+\mathbf{i} \eta) d z\right] b_{k}
$$

$\left(a_{k}, b_{k}\right)$ in (A, B) are correlated, and independent of $\left(A^{(k)}, B^{(k)}\right)$.

Main ideas of the analysis

Suppose $\Pi^{*}=\mathrm{Id}$, and consider the (k, ℓ) entry

$$
X_{k \ell}=\frac{1}{2 \pi} \operatorname{Re} \oint_{\Gamma}\left[e_{k}^{\top} R_{A}(z) \mathbf{J} R_{B}(z+\mathbf{i} \eta) e_{\ell}\right] d z
$$

Diagonal: By Schur-complement identities,

$$
X_{k k} \approx \frac{1}{2 \pi} \operatorname{Re} a_{k}^{\top}\left[\oint_{\Gamma} m(z) m(z+\mathbf{i} \eta) R_{A^{(k)}}(z) \mathbf{J} R_{B^{(k)}}(z+\mathbf{i} \eta) d z\right] b_{k}
$$

$\left(a_{k}, b_{k}\right)$ in (A, B) are correlated, and independent of $\left(A^{(k)}, B^{(k)}\right)$.
Off-diagonal: Similarly,

$$
X_{k \ell} \approx \frac{1}{2 \pi} \operatorname{Re} a_{k}^{\top}\left[\oint_{\Gamma} m(z) m(z+\mathbf{i} \eta) R_{A^{(k \ell)}}(z) \mathbf{J} R_{B^{(k \ell)}}(z+\mathbf{i} \eta) d z\right] b_{\ell}
$$

$\left(a_{k}, b_{\ell}\right)$ are independent, and also independent of $\left(A^{(k \ell)}, B^{(k \ell)}\right)$.

Main ideas of the analysis

Applying local law estimates and fluctuation averaging techniques from [Erdős, Knowles, Yau, Yin '13], we analyze the traces and Frobenius norms of the preceding integrals.

Main ideas of the analysis

Applying local law estimates and fluctuation averaging techniques from [Erdős, Knowles, Yau, Yin '13], we analyze the traces and Frobenius norms of the preceding integrals.

When $\Pi^{*}=\mathrm{Id}$,

$$
\min _{k} X_{k k}>\max _{k \neq \ell} X_{k \ell} \quad \text { w.h.p. }
$$

Then the permutation Π maximizing $\operatorname{Tr} X \Pi$ is $\Pi=\mathrm{Id}$, so GRAMPA returns Id w.h.p.

By permutation invariance of the algorithm, GRAMPA returns Π_{*} w.h.p. for any true permutation Π^{*}.

A different motivation for GRAMPA

$$
\min _{\Pi \in S_{n}}\left\|A-\Pi^{\top} B \Pi\right\|_{F}^{2}=\min _{\Pi \in S_{n}}\|\Pi A-B \Pi\|_{F}^{2}
$$

A different motivation for GRAMPA

$$
\min _{\Pi \in S_{n}}\left\|A-\Pi^{\top} B \Pi\right\|_{F}^{2}=\min _{\Pi \in S_{n}}\|\Pi A-B \Pi\|_{F}^{2}
$$

Relax this to the quadratic program

$$
\min _{X \in \operatorname{conv}\left(S_{n}\right)}\|X A-B X\|_{F}^{2}
$$

for the convex hull $\operatorname{conv}\left(S_{n}\right)=\left\{X: X_{i j} \geq 0, X 1=1, X^{\top} 1=1\right\}$.

A different motivation for GRAMPA

$$
\min _{\Pi \in S_{n}}\left\|A-\Pi^{\top} B \Pi\right\|_{F}^{2}=\min _{\Pi \in S_{n}}\|\Pi A-B \Pi\|_{F}^{2}
$$

Relax this to the quadratic program

$$
\min _{X \in \operatorname{conv}\left(S_{n}\right)}\|X A-B X\|_{F}^{2}
$$

for the convex hull $\operatorname{conv}\left(S_{n}\right)=\left\{X: X_{i j} \geq 0, X 1=1, X^{\top} 1=1\right\}$.
Solve this for X, then round to a permutation Π.
[Zaslavskiy, Bach, Vert '09], [Aflalo, Bronstein, Kimmel '15]

A different motivation for GRAMPA

$$
\min _{\Pi \in S_{n}}\left\|A-\Pi^{\top} B \Pi\right\|_{F}^{2}=\min _{\Pi \in S_{n}}\|\Pi A-B \Pi\|_{F}^{2}
$$

Relax this to the quadratic program

$$
\min _{X \in \operatorname{conv}\left(S_{n}\right)}\|X A-B X\|_{F}^{2}
$$

for the convex hull $\operatorname{conv}\left(S_{n}\right)=\left\{X: X_{i j} \geq 0, X 1=1, X^{\top} 1=1\right\}$.
Solve this for X, then round to a permutation Π.
[Zaslavskiy, Bach, Vert '09], [Aflalo, Bronstein, Kimmel '15]
This method is not well-understood for the Erdős-Rényi model. The GRAMPA matrix X is, instead, the further relaxation

$$
\min _{X: 1^{\top} X 1=n}\|X A-B X\|_{F}^{2}+\eta^{2}\|X\|_{F}^{2}
$$

A hierarchy of relaxations

$$
\min _{x: X 1=1}\|X A-B X\|_{F}^{2}+\eta^{2}\|X\|_{F}^{2}
$$

A hierarchy of relaxations

These two relaxations have representations in terms of the spectra of A and B, and we analyze them in our work.

A hierarchy of relaxations

Variants of this are related to the resolvent-type matrix

$$
\left[(A \otimes \mathrm{Id}-\mathrm{Id} \otimes B)^{2}+\eta^{2}(\mathbf{J} \otimes \mathrm{Id}+\mathrm{Id} \otimes \mathbf{J})\right]^{-1}
$$

for the Kronecker model $A \otimes \mathbf{I d}-\mathrm{Id} \otimes B \in \mathbb{R}^{n^{2} \times n^{2}}$.

A hierarchy of relaxations

How to analyze these programs with entrywise non-negativity is open. We believe from simulation that these may achieve exact recovery of Π^{*} w.h.p. up to $\delta \leq c$ for some constant $c>0$.

Neural network kernel matrices

Neural network kernel matrices

Joint work with Zhichao Wang:

Feedforward neural network

Function $f_{\theta}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}, \mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined iteratively by
$\mathbf{x}^{1}=\sigma\left(W_{1} \mathbf{x}\right), \mathbf{x}^{2}=\sigma\left(W_{2} \mathbf{x}^{1}\right), \ldots, \mathbf{x}^{L}=\sigma\left(W_{L} \mathbf{x}^{L-1}\right), f_{\theta}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}^{L}$

Feedforward neural network

Function $f_{\theta}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}, \mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined iteratively by
$\mathbf{x}^{1}=\sigma\left(W_{1} \mathbf{x}\right), \mathbf{x}^{2}=\sigma\left(W_{2} \mathbf{x}^{1}\right), \ldots, \mathbf{x}^{L}=\sigma\left(W_{L} \mathbf{x}^{L-1}\right), f_{\theta}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}^{L}$

- $W_{1} \in \mathbb{R}^{d_{1} \times d_{0}}, W_{2} \in \mathbb{R}^{d_{2} \times d_{1}}, \ldots, W_{L} \in \mathbb{R}^{d_{L} \times d_{L-1}}$, and $\mathbf{w} \in \mathbb{R}^{d_{L}}$ are the weights. We denote $\theta=\left(W_{1}, \ldots, W_{L}, \mathbf{w}\right)$.
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function, applied entrywise.

Feedforward neural network

Function $f_{\theta}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}, \mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined iteratively by

$$
\mathbf{x}^{1}=\sigma\left(W_{1} \mathbf{x}\right), \mathbf{x}^{2}=\sigma\left(W_{2} \mathbf{x}^{1}\right), \ldots, \mathbf{x}^{L}=\sigma\left(W_{L} \mathbf{x}^{L-1}\right), f_{\theta}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}^{L}
$$

- $W_{1} \in \mathbb{R}^{d_{1} \times d_{0}}, W_{2} \in \mathbb{R}^{d_{2} \times d_{1}}, \ldots, W_{L} \in \mathbb{R}^{d_{L} \times d_{L-1}}$, and $\mathbf{w} \in \mathbb{R}^{d_{L}}$ are the weights. We denote $\theta=\left(W_{1}, \ldots, W_{L}, \mathbf{w}\right)$.
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function, applied entrywise.

Two fundamental questions:

- How does learning occur during gradient descent training of θ ?
- What allows f_{θ} to generalize to unseen test samples?

Two kernel matrices

Let $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{d_{0} \times n}$ be the training samples, and $X_{\ell} \in \mathbb{R}^{d_{\ell} \times n}$ the outputs of each layer $\ell=1, \ldots, L$.

Recent theory of neural networks highlights two kernel matrices:

1. The Conjugate Kernel (or equivalent Gaussian process kernel)

$$
K^{\mathrm{CK}}=X_{L}^{\top} X_{L} \in \mathbb{R}^{n \times n}
$$

Two kernel matrices

Let $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{d_{0} \times n}$ be the training samples, and $X_{\ell} \in \mathbb{R}^{d_{\ell} \times n}$ the outputs of each layer $\ell=1, \ldots, L$.

Recent theory of neural networks highlights two kernel matrices:

1. The Conjugate Kernel (or equivalent Gaussian process kernel)

$$
K^{\mathrm{CK}}=X_{L}^{\top} X_{L} \in \mathbb{R}^{n \times n}
$$

The final step of the network is just linear regression on X_{L}. K^{CK} governs the properties of this linear regression.

Two kernel matrices

Let $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{d_{0} \times n}$ be the training samples, and $X_{\ell} \in \mathbb{R}^{d_{\ell} \times n}$ the outputs of each layer $\ell=1, \ldots, L$.

Recent theory of neural networks highlights two kernel matrices:

1. The Conjugate Kernel (or equivalent Gaussian process kernel)

$$
K^{\mathrm{CK}}=X_{L}^{\top} X_{L} \in \mathbb{R}^{n \times n}
$$

The final step of the network is just linear regression on X_{L}. K^{CK} governs the properties of this linear regression.

- The network is often already predictive when X_{L} is fixed by random initialization of W_{1}, \ldots, W_{L}, and only \mathbf{w} is trained.
- For $d_{1}, \ldots, d_{L} \rightarrow \infty$ and fixed n, K^{CK} converges to a limit kernel, and this is an approximation of regression in an associated RKHS.
[Neal '94], [Williams '97], [Cho, Saul '09], [Rahimi, Recht '09], [Daniely et al '16], [Poole et al '16], [Schoenholz et al '17], [Lee et al '18], ...

Two kernel matrices

2. The Neural Tangent Kernel

$$
K^{\mathrm{NTK}}=\left(\nabla_{\theta} f_{\theta}(X)\right)^{\top}\left(\nabla_{\theta} f_{\theta}(X)\right) \in \mathbb{R}^{n \times n}
$$

Two kernel matrices

2. The Neural Tangent Kernel

$$
K^{\mathrm{NTK}}=\left(\nabla_{\theta} f_{\theta}(X)\right)^{\top}\left(\nabla_{\theta} f_{\theta}(X)\right) \in \mathbb{R}^{n \times n}
$$

Training errors evolve during gradient descent as

$$
\frac{d}{d t}\left(\mathbf{y}-f_{\theta(t)}(X)\right)=-K^{\mathrm{NTK}}(t) \cdot\left(\mathbf{y}-f_{\theta(t)}(X)\right)
$$

Two kernel matrices

2. The Neural Tangent Kernel

$$
K^{\mathrm{NTK}}=\left(\nabla_{\theta} f_{\theta}(X)\right)^{\top}\left(\nabla_{\theta} f_{\theta}(X)\right) \in \mathbb{R}^{n \times n}
$$

Training errors evolve during gradient descent as

$$
\frac{d}{d t}\left(\mathbf{y}-f_{\theta(t)}(X)\right)=-K^{\mathrm{NTK}}(t) \cdot\left(\mathbf{y}-f_{\theta(t)}(X)\right)
$$

- For $d_{1}, \ldots, d_{L} \rightarrow \infty$ and fixed $n, K^{\text {NTK }}$ is constant over training.
- Then (diagonalizing $\left.K^{\text {NTK }}\right) \mathbf{y}-f_{\theta(t)}(X) \rightarrow 0$ at a different exponential rate along each eigenvector of $K^{\text {NTK }}$.
[Jacot, Gabriel, Hongler '19], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], ...

Two kernel matrices

2. The Neural Tangent Kernel

$$
K^{\mathrm{NTK}}=\left(\nabla_{\theta} f_{\theta}(X)\right)^{\top}\left(\nabla_{\theta} f_{\theta}(X)\right) \in \mathbb{R}^{n \times n}
$$

Training errors evolve during gradient descent as

$$
\frac{d}{d t}\left(\mathbf{y}-f_{\theta(t)}(X)\right)=-K^{\mathrm{NTK}}(t) \cdot\left(\mathbf{y}-f_{\theta(t)}(X)\right)
$$

- For $d_{1}, \ldots, d_{L} \rightarrow \infty$ and fixed $n, K^{\text {NTK }}$ is constant over training.
- Then (diagonalizing $\left.K^{\text {NTK }}\right) \mathbf{y}-f_{\theta(t)}(X) \rightarrow 0$ at a different exponential rate along each eigenvector of $K^{\text {NTK }}$.
[Jacot, Gabriel, Hongler '19], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], ...

Infinitely wide neural nets are equivalent to kernel linear regression.

Two kernel matrices

2. The Neural Tangent Kernel

$$
K^{\mathrm{NTK}}=\left(\nabla_{\theta} f_{\theta}(X)\right)^{\top}\left(\nabla_{\theta} f_{\theta}(X)\right) \in \mathbb{R}^{n \times n}
$$

Training errors evolve during gradient descent as

$$
\frac{d}{d t}\left(\mathbf{y}-f_{\theta(t)}(X)\right)=-K^{\mathrm{NTK}}(t) \cdot\left(\mathbf{y}-f_{\theta(t)}(X)\right)
$$

- For $d_{1}, \ldots, d_{L} \rightarrow \infty$ and fixed $n, K^{\text {NTK }}$ is constant over training.
- Then (diagonalizing $\left.K^{\text {NTK }}\right) \mathbf{y}-f_{\theta(t)}(X) \rightarrow 0$ at a different exponential rate along each eigenvector of $K^{\text {NTK }}$.
[Jacot, Gabriel, Hongler '19], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], ...

Infinitely wide neural nets are equivalent to kernel linear regression. Neural nets of practical width often generalize better than these equivalent kernel models. [Chizat et al '18], [Arora et al '19]

Eigenvalues in the linear width regime

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a linear width regime where $n / d_{\ell} \rightarrow \gamma_{\ell} \in(0, \infty)$ for each ℓ

Eigenvalues in the linear width regime

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a linear width regime where $n / d_{\ell} \rightarrow \gamma_{\ell} \in(0, \infty)$ for each ℓ
- At random (i.i.d. Gaussian) initialization of the weights θ

Eigenvalues in the linear width regime

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a linear width regime where $n / d_{\ell} \rightarrow \gamma_{\ell} \in(0, \infty)$ for each ℓ
- At random (i.i.d. Gaussian) initialization of the weights θ
- Assuming that the training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ are approximately pairwise orthogonal, and $\lim \operatorname{spec} X^{\top} X=\mu_{0}$
(I'll use "lim spec" to denote weak convergence of the e.s.d.)

Eigenvalues in the linear width regime

We study the eigenvalue distributions of K^{CK} and K^{NTK}

- In a linear width regime where $n / d_{\ell} \rightarrow \gamma_{\ell} \in(0, \infty)$ for each ℓ
- At random (i.i.d. Gaussian) initialization of the weights θ
- Assuming that the training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ are approximately pairwise orthogonal, and $\lim \operatorname{spec} X^{\top} X=\mu_{0}$
(I'll use "lim spec" to denote weak convergence of the e.s.d.)
Theorem (F., Wang)
For fixed L, almost surely as $n, d_{1}, \ldots, d_{L} \rightarrow \infty$,

$$
\lim \operatorname{spec} K^{C K}=\mu_{C K}, \quad \text { lim spec } K^{N T K}=\mu_{N T K}
$$

for two probability distributions $\mu_{C K}$ and $\mu_{N T K}$. These are defined by μ_{0} and properties of $\sigma(x)$.

Approximate pairwise orthogonality

Normalizing training samples such that $\left\|\mathbf{x}_{1}\right\|^{2}, \ldots,\left\|\mathbf{x}_{n}\right\|^{2} \approx 1$, we require

$$
\left|\mathbf{x}_{\alpha}^{\top} \mathbf{x}_{\beta}\right| \leq \varepsilon_{n}
$$

for each pair $\alpha \neq \beta \in\{1, \ldots, n\}$, where $\varepsilon_{n} \ll n^{-1 / 4}$.

Approximate pairwise orthogonality

Normalizing training samples such that $\left\|\mathbf{x}_{1}\right\|^{2}, \ldots,\left\|\mathbf{x}_{n}\right\|^{2} \approx 1$, we require

$$
\left|\mathbf{x}_{\alpha}^{\top} \mathbf{x}_{\beta}\right| \leq \varepsilon_{n}
$$

for each pair $\alpha \neq \beta \in\{1, \ldots, n\}$, where $\varepsilon_{n} \ll n^{-1 / 4}$.
This holds with $\varepsilon_{n} \approx 1 / \sqrt{n}$ if $d_{0} \asymp n$ and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are mean-zero independent samples with some concentration. For example:

- $\mathbf{x}_{\alpha}=\mathbf{z}_{\alpha}$ where \mathbf{z}_{α} has i.i.d. subgaussian entries

Approximate pairwise orthogonality

Normalizing training samples such that $\left\|\mathbf{x}_{1}\right\|^{2}, \ldots,\left\|\mathbf{x}_{n}\right\|^{2} \approx 1$, we require

$$
\left|\mathbf{x}_{\alpha}^{\top} \mathbf{x}_{\beta}\right| \leq \varepsilon_{n}
$$

for each pair $\alpha \neq \beta \in\{1, \ldots, n\}$, where $\varepsilon_{n} \ll n^{-1 / 4}$.
This holds with $\varepsilon_{n} \approx 1 / \sqrt{n}$ if $d_{0} \asymp n$ and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are mean-zero independent samples with some concentration. For example:

- $\mathbf{x}_{\alpha}=\mathbf{z}_{\alpha}$ where \mathbf{z}_{α} has i.i.d. subgaussian entries
- $\mathbf{x}_{\alpha}=\Sigma^{1 / 2} \mathbf{z}_{\alpha}$ where $\|\Sigma\|$ is bounded

Approximate pairwise orthogonality

Normalizing training samples such that $\left\|\mathbf{x}_{1}\right\|^{2}, \ldots,\left\|\mathbf{x}_{n}\right\|^{2} \approx 1$, we require

$$
\left|\mathbf{x}_{\alpha}^{\top} \mathbf{x}_{\beta}\right| \leq \varepsilon_{n}
$$

for each pair $\alpha \neq \beta \in\{1, \ldots, n\}$, where $\varepsilon_{n} \ll n^{-1 / 4}$.
This holds with $\varepsilon_{n} \approx 1 / \sqrt{n}$ if $d_{0} \asymp n$ and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are mean-zero independent samples with some concentration. For example:

- $\mathbf{x}_{\alpha}=\mathbf{z}_{\alpha}$ where \mathbf{z}_{α} has i.i.d. subgaussian entries
- $\mathbf{x}_{\alpha}=\Sigma^{1 / 2} \mathbf{z}_{\alpha}$ where $\|\Sigma\|$ is bounded
- $\mathbf{x}_{\alpha}=f\left(\mathbf{z}_{\alpha}\right)$ where entries of \mathbf{z}_{α} satisfy a log-Sobolev inequality, and f is any Lipschitz function

Limit spectral distribution of the CK

Let

$$
\mu \mapsto \rho_{\gamma}^{\mathrm{MP}} \boxtimes \mu
$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio γ.

Limit spectral distribution of the CK

Let

$$
\mu \mapsto \rho_{\gamma}^{\mathrm{MP}} \boxtimes \mu
$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio γ. For $\ell=1, \ldots, L$, define

$$
\mu_{\ell}=\rho_{\gamma_{\ell}}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\ell-1}\right)
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathcal{N}(0,1)}\left[\sigma^{\prime}(\xi)\right] .{ }^{1}$
${ }^{1}$ We normalize σ so that $\mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

Limit spectral distribution of the CK

Let

$$
\mu \mapsto \rho_{\gamma}^{\mathrm{MP}} \boxtimes \mu
$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio γ. For $\ell=1, \ldots, L$, define

$$
\mu_{\ell}=\rho_{\gamma_{\ell}}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\ell-1}\right)
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathcal{N}(0,1)}\left[\sigma^{\prime}(\xi)\right] .{ }^{1}$
Theorem (F., Wang)
For each $\ell=1, \ldots, L, \lim \operatorname{spec} X_{\ell}^{\top} X_{\ell}=\mu_{\ell}$. So $\lim \operatorname{spec} K^{C K}=\mu_{L}$.
${ }^{1}$ We normalize σ so that $\mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

Limit spectral distribution of the CK

Let

$$
\mu \mapsto \rho_{\gamma}^{\mathrm{MP}} \boxtimes \mu
$$

be the Marcenko-Pastur map for the spectra of sample covariance matrices with aspect ratio γ. For $\ell=1, \ldots, L$, define

$$
\mu_{\ell}=\rho_{\gamma_{\ell}}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\ell-1}\right)
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathcal{N}(0,1)}\left[\sigma^{\prime}(\xi)\right] .{ }^{1}$
Theorem (F., Wang)
For each $\ell=1, \ldots, L, \lim \operatorname{spec} X_{\ell}^{\top} X_{\ell}=\mu_{\ell}$. So lim spec $K^{C K}=\mu_{L}$.

- For one layer, this is closely related to existing results of [Pennington, Worah '17], [Louart, Liao, Couillet '18].
- When $b_{\sigma}=0$, each $\mu_{\ell}=\rho_{\gamma_{\ell}}^{\mathrm{MP}}$ is a Marcenko-Pastur law. This case was shown (for X with i.i.d. entries) by [Benigni, Péché '19].
${ }^{1}$ We normalize σ so that $\mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

Limit spectral distribution of the NTK

Lemma

There are constants q_{-1}, \ldots, q_{L} defined by $\sigma(x)$, such that

$$
\lim \operatorname{spec} K^{N T K}=\lim \operatorname{spec}\left(q_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} q_{\ell} X_{\ell}^{\top} X_{\ell}\right)
$$

Limit spectral distribution of the NTK

Lemma

There are constants q_{-1}, \ldots, q_{L} defined by $\sigma(x)$, such that

$$
\lim \operatorname{spec} K^{N T K}=\lim \operatorname{spec}\left(q_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} q_{\ell} X_{\ell}^{\top} X_{\ell}\right)
$$

Theorem (F., Wang)
Consider any $\mathbf{z}=\left(z_{-1}, \ldots, z_{L}\right), \mathbf{w}=\left(w_{-1}, \ldots, w_{L}\right)$. Then

$$
\frac{1}{n} \operatorname{Tr}\left(z_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1}\left(w_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} w_{\ell} X_{\ell}^{\top} X_{\ell}\right)
$$

has a deterministic limit $t_{L}(\mathbf{z}, \mathbf{w})$. A fixed-point equation defines each function t_{ℓ} in terms of $t_{\ell-1}$.

Limit spectral distribution of the NTK

Lemma

There are constants q_{-1}, \ldots, q_{L} defined by $\sigma(x)$, such that

$$
\lim \operatorname{spec} K^{N T K}=\lim \operatorname{spec}\left(q_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} q_{\ell} X_{\ell}^{\top} X_{\ell}\right)
$$

Theorem (F., Wang)
Consider any $\mathbf{z}=\left(z_{-1}, \ldots, z_{L}\right), \mathbf{w}=\left(w_{-1}, \ldots, w_{L}\right)$. Then

$$
\frac{1}{n} \operatorname{Tr}\left(z_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1}\left(w_{-1} \mathrm{Id}+\sum_{\ell=0}^{L} w_{\ell} X_{\ell}^{\top} X_{\ell}\right)
$$

has a deterministic limit $t_{L}(\mathbf{z}, \mathbf{w})$. A fixed-point equation defines each function t_{ℓ} in terms of $t_{\ell-1}$. The limit Stieltjes transform for $K^{N T K}$ is then

$$
m(z)=t_{L}\left(\left(-z+q_{-1}, q_{0}, \ldots, q_{L}\right),(1,0, \ldots, 0)\right)
$$

Simulations for i.i.d. Gaussian X

Simulated eigenvalues in blue, limit spectral distribution in red
$\sigma(x) \propto \tan ^{-1}(x), L=5, n=3000, d_{0}=1000, d_{1}=\ldots=d_{5}=6000$

Simulations for input images from CIFAR-10

5000 random training images from CIFAR-10, w/ top 10 PCs removed to improve pairwise orthogonality

$$
\sigma(x) \propto \tan ^{-1}(x), L=5, n=5000, d_{0}=3072, d_{1}=\ldots=d_{5}=10000
$$

Main ideas of the analysis

Lemma

Suppose the input data X is ε_{n}-orthogonal. Then each X_{1}, \ldots, X_{L} is $C \varepsilon_{n}$-orthogonal for a constant $C \equiv C(L)>0$, w.h.p.

This allows us to induct on the layer ℓ, and analyze each matrix $X_{\ell}^{\top} X_{\ell}$ conditional on $X_{0}, \ldots, X_{\ell-1}$.

Main ideas of the analysis

Recall $X_{\ell}=\sigma\left(W_{\ell} X_{\ell-1}\right)$, and observe that

- X_{ℓ} has i.i.d. rows with law $\sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right)$, conditional on $X_{\ell-1}$

Main ideas of the analysis

Recall $X_{\ell}=\sigma\left(W_{\ell} X_{\ell-1}\right)$, and observe that

- X_{ℓ} has i.i.d. rows with law $\sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right)$, conditional on $X_{\ell-1}$
- Consequently, lim spec $X_{\ell}^{\top} X_{\ell}$ is the Marcenko-Pastur map of

$$
\Phi_{\ell}=\mathbb{E}_{\mathbf{w}}\left[\sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right) \otimes \sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right)\right]
$$

[Louart, Liao, Couillet '18]

Main ideas of the analysis

Recall $X_{\ell}=\sigma\left(W_{\ell} X_{\ell-1}\right)$, and observe that

- X_{ℓ} has i.i.d. rows with law $\sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right)$, conditional on $X_{\ell-1}$
- Consequently, lim spec $X_{\ell}^{\top} X_{\ell}$ is the Marcenko-Pastur map of

$$
\Phi_{\ell}=\mathbb{E}_{\mathbf{w}}\left[\sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right) \otimes \sigma\left(\mathbf{w}^{\top} X_{\ell-1}\right)\right]
$$

[Louart, Liao, Couillet '18]
When $X_{\ell-1}$ is ε_{n}-orthogonal, we show that

$$
\frac{1}{n}\left\|\Phi_{\ell}-\left(\left(1-b_{\sigma}^{2}\right) \mathrm{Id}+b_{\sigma}^{2} X_{\ell-1}^{\top} X_{\ell-1}\right)\right\|_{F}^{2} \lesssim n \cdot \varepsilon_{n}^{4} \rightarrow 0
$$

So lim spec $\Phi_{\ell}=\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \mu_{\ell-1}$.

Main ideas of the analysis

To analyze $K^{\text {NTK }}$, we characterize inductively the limit $t_{\ell}(\mathbf{z}, \mathbf{w})$ of

$$
\frac{1}{n} \operatorname{Tr}\left(z_{-1} \mathrm{Id}+\sum_{k=0}^{\ell} z_{k} X_{k}^{\top} X_{k}\right)^{-1}\left(w_{-1} \mathrm{Id}+\sum_{k=0}^{\ell} w_{k} X_{k}^{\top} X_{k}\right)
$$

Main ideas of the analysis

To analyze $K^{\text {NTK }}$, we characterize inductively the limit $t_{\ell}(\mathbf{z}, \mathbf{w})$ of

$$
\frac{1}{n} \operatorname{Tr}\left(z_{-1} \mathrm{Id}+\sum_{k=0}^{\ell} z_{k} X_{k}^{\top} X_{k}\right)^{-1}\left(w_{-1} \operatorname{ld}+\sum_{k=0}^{\ell} w_{k} X_{k}^{\top} X_{k}\right)
$$

Remove $X_{\ell}^{\top} X_{\ell}$ from the numerator, by writing this as

$$
\frac{w_{\ell}}{z_{\ell}}+\frac{1}{n} \operatorname{Tr}\left(A+z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1} M
$$

where A, M are linear combinations of $X_{0}^{\top} X_{0}, \ldots, X_{\ell-1}^{\top} X_{\ell-1}$, Id.

Main ideas of the analysis

To analyze $K^{\text {NTK }}$, we characterize inductively the limit $t_{\ell}(\mathbf{z}, \mathbf{w})$ of

$$
\frac{1}{n} \operatorname{Tr}\left(z_{-1} \mathrm{Id}+\sum_{k=0}^{\ell} z_{k} X_{k}^{\top} X_{k}\right)^{-1}\left(w_{-1} \operatorname{ld}+\sum_{k=0}^{\ell} w_{k} X_{k}^{\top} X_{k}\right)
$$

Remove $X_{\ell}^{\top} X_{\ell}$ from the numerator, by writing this as

$$
\frac{w_{\ell}}{z_{\ell}}+\frac{1}{n} \operatorname{Tr}\left(A+z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1} M
$$

where A, M are linear combinations of $X_{0}^{\top} X_{0}, \ldots, X_{\ell-1}^{\top} X_{\ell-1}$, Id.
Conditional on $X_{0}, \ldots, X_{\ell-1}$, these matrices A and M are deterministic, and X_{ℓ} is random with i.i.d. rows having second-moment matrix Φ_{ℓ}.

Main ideas of the analysis

We show an approximation

$$
\frac{1}{n} \operatorname{Tr}\left(A+z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1} M \approx \frac{1}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} M
$$

where s_{ℓ} approximately satisfies the fixed-point equation

$$
s_{\ell} \approx \frac{1}{z_{\ell}}+\frac{\gamma_{\ell}}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} \Phi_{\ell}
$$

This equation depends on the joint spectral limit of $\left(A, \Phi_{\ell}\right)$.

Main ideas of the analysis

We show an approximation

$$
\frac{1}{n} \operatorname{Tr}\left(A+z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1} M \approx \frac{1}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} M
$$

where s_{ℓ} approximately satisfies the fixed-point equation

$$
s_{\ell} \approx \frac{1}{z_{\ell}}+\frac{\gamma_{\ell}}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} \Phi_{\ell}
$$

This equation depends on the joint spectral limit of $\left(A, \Phi_{\ell}\right)$. Applying $\Phi_{\ell} \approx\left(1-b_{\sigma}^{2}\right) \mathrm{ld}+b_{\sigma}^{2} X_{\ell-1}^{\top} X_{\ell-1}$ and the induction hypothesis for $\ell-1$, this has a limit in terms of $t_{\ell-1}(\mathbf{z}, \mathbf{w})$.

Main ideas of the analysis

We show an approximation

$$
\frac{1}{n} \operatorname{Tr}\left(A+z_{\ell} X_{\ell}^{\top} X_{\ell}\right)^{-1} M \approx \frac{1}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} M
$$

where s_{ℓ} approximately satisfies the fixed-point equation

$$
s_{\ell} \approx \frac{1}{z_{\ell}}+\frac{\gamma_{\ell}}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} \Phi_{\ell}
$$

This equation depends on the joint spectral limit of $\left(A, \Phi_{\ell}\right)$. Applying $\Phi_{\ell} \approx\left(1-b_{\sigma}^{2}\right) \mathrm{ld}+b_{\sigma}^{2} X_{\ell-1}^{\top} X_{\ell-1}$ and the induction hypothesis for $\ell-1$, this has a limit in terms of $t_{\ell-1}(\mathbf{z}, \mathbf{w})$.

We show inductively that the limit equation has a unique fixed point $s_{\ell} \in \mathbb{C}^{+}$. This then defines t_{ℓ} recursively in terms of $t_{\ell-1}$, by

$$
t_{\ell}(\mathbf{z}, \mathbf{w})=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(A+s_{\ell}^{-1} \Phi_{\ell}\right)^{-1} M
$$

Propagation of "signal" at random initialization

Consider a spiked input matrix

$$
X=s_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{\top}+s_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{\top}+\text { i.i.d. Gaussian noise }
$$

Propagation of "signal" at random initialization

Consider a spiked input matrix

$$
X=s_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{\top}+s_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{\top}+\text { i.i.d. Gaussian noise }
$$

Eigenvalues of $X_{\ell}^{\top} X_{\ell}$, for $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}$ uniform on the sphere

Propagation of "signal" at random initialization

Eigenvalues of $X_{\ell}^{\top} X_{\ell}$, when $\mathbf{v}_{1}, \mathbf{v}_{2}$ are each supported on 20 samples

Propagation of "signal" at random initialization

Eigenvalues of $X_{\ell}^{\top} X_{\ell}$, when $\mathbf{v}_{1}, \mathbf{v}_{2}$ are each supported on 20 samples
Question: Can we understand the propagation of outlier eigenvalues and eigenvectors through these layers?

Related analysis of Gaussian mixture models for one hidden layer, and other kernels: [Couillet, Benaych-Georges '16], [Liao, Couillet '18]

Evolution of spectra over training

Eigenvalues of K^{CK} and K^{NTK} for a trained 3-layer network

$$
L=3, n=1000, d_{0}=800, d_{1}=d_{2}=d_{3}=800
$$

Evolution of spectra over training

Eigenvalues of K^{CK} and K^{NTK} for a trained 3-layer network

$$
L=3, n=1000, d_{0}=800, d_{1}=d_{2}=d_{3}=800
$$

Trained on ($\mathbf{x}_{\alpha}, y_{\alpha}$) pairs where \mathbf{x}_{α} are uniform on the sphere, and

$$
y_{\alpha}=\sigma\left(\mathbf{v}^{\top} \mathbf{x}_{\alpha}\right)
$$

Final prediction- R^{2} of the trained model was 0.81 . The spectral bulks elongate, and large outliers emerge over training.

Outliers contain information about training labels

Projection of training labels \mathbf{y} onto top 2 PC 's of the trained K^{CK} explains 96% of the variance. The emergence of these outliers is the main mechanism of training in this example.

Outliers contain information about training labels

Projection of training labels \mathbf{y} onto top 2 PC's of the trained K^{CK} explains 96% of the variance. The emergence of these outliers is the main mechanism of training in this example.

Question: Can we understand the evolutions of K^{CK} and/or K^{NTK} over training, from a spectral perspective?

Related work on the evolution of the NTK in an entrywise size: [Huang, Yau '19], [Dyer, Gur-Ari '19]

References

Graph matching:

Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu, "Spectral graph matching and regularized quadratic relaxations I: The Gaussian model", arxiv:1907.08880.

Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu, "Spectral graph matching and regularized quadratic relaxations II: Erdős-Rényi graphs and universality", arxiv:1907.08883.

Neural network kernel matrices:

Zhou Fan, Zhichao Wang, "Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks", arxiv to appear.

