Statistics of extremes in eigenvalue-counting staircases

Yan V Fyodorov

Department of Mathematics

Based on: YVF & P Le Doussal arXiv: 2001.04135 (accepted to PRL)

Unitary β - ensembles and interacting fermions :

Consider a unitary $N \times N$ matrix U and denote the corresponding unimodular eigenvalues as $z_j = e^{i\theta_j}$, j = 1, ..., N, with phases $-\pi < \theta_i \leq \pi$. For any given $\beta > 0$ one can construct the so-called Circular β -Ensemble $\text{CUE}_{\beta}(N)$ in such a way that the expectation of a function $F \equiv F(\theta_1, ..., \theta_n)$ is given by

$$\mathbb{E}(F) = c_N \prod_{j=1}^N \int_{-\pi}^{\pi} d\theta_i \prod_{1 \le j < k \le N} |e^{i\theta_j} - e^{i\theta_k}|^{\beta} F$$

For $\beta = 2$ such matrices can be thought of as drawn uniformly according to the corresponding Haar's measure on U(N), whereas for a generic $\beta > 0$ the explicit construction is more involved, see **Killip-Nenciu** '04. Such eigenvalues essentially behave as classical particles with 1-d logarithmic repulsion at inverse temperature $\beta > 0$. On the other hand, the r.h.s can be interpreted as the **quantum expectation** value of *F* in the ground state of *N* spinless fermions, of coordinates θ_i on the unit circle, described by the **Sutherland** Hamiltonian:

$$H = -\sum_{i} \frac{\partial^2}{\partial \theta_i^2} + \sum_{i < j} \frac{\beta(\beta - 2)}{8\sin^2\left(\frac{\theta_i - \theta_j}{2}\right)}$$

Thus, for $\beta = 2$ the eigenvalues behave as **non-interacting** fermions, while for $\beta \neq 2$ the fermions interact, via an inverse square distance pairwise potential.

Define the number $\mathcal{N}_{\theta_A}(\theta)$ of eigenvalues $e^{i\theta_j}$ of a random unitary $N \times N$ matrix, drawn from $\text{CUE}_{\beta}(N)$, in the interval $\theta_j \in [\theta_A, \theta]$. As a function of θ this is a staircase with unit jumps upwards at random positions $\theta_j \in [\theta_A, \theta]$. The mean profile is $\mathbb{E}(\mathcal{N}_{\theta_A}(\theta)) = \frac{N(\theta - \theta_A)}{2\pi}$.

Constructing an instance of $\delta N_0(\theta)$ for $\theta \in [0, \pi]$ for $\beta = 2$ and N = 20. Left: eigenvalues $\lambda = e^{i\theta_i}$. Right: counting staircase (top), with mean subtracted (bottom).

Staircase-deviation process:

In a given random matrix realization/sample one can define the deviation to the mean, $\delta N_{\theta_A}(\theta) = N_{\theta_A}(\theta) - \mathbb{E}(N_{\theta_A}(\theta))$, and study it as a random process as a function of variable θ for a fixed θ_A .

A single realization of $\delta N_{-\pi}(\theta)$ for the full circle $\theta \in [-\pi, \pi]$ for $\beta = 2$ and N = 200.

Staircase-deviation process, non-local properties:

Outstanding: Kolmogorov-Smirnov-type statistics

 $\max_{\theta \in [\theta_A, \theta_B]} |\delta \mathcal{N}_{\theta_A}(\theta) := \mathcal{N}_{\theta_A}(\theta) - \mathbb{E}(\mathcal{N}_{\theta_A}(\theta))|$

Some recent results for $\beta = 2$ in: Clayes et al '19.

We are able to shed some light on 'half' of the problem by calculating **cumulants** of the distribution of the **one-sided maximum value** for the process $\delta \mathcal{N}_{\theta_A}(\theta)$, i.e $\delta \mathcal{N}_m := \max_{\theta \in [\theta_A, \theta_B]} \left[\delta \mathcal{N}_{\theta_A}(\theta) \right]$ for any $\beta > 0$ and $N \gg 1$ at fixed $\ell = |\theta_A - \theta_B|$.

Note: If we change above $\max \implies \min$, the distribution remains the same, but two extremal values are expected to be highly correlated, cf. Cao-Le Doussal '16

We also can characterize the location of the maximum:

$$\theta_m := argmax_{\in [\theta_A, \theta_B]} \left[\delta \mathcal{N}_{\theta_A}(\theta) \right]$$

Relation to 'log-correlated' processes:

Naively, the process $\delta N_{\theta_A}(\theta)$ is given by the difference

$$\delta \mathcal{N}_{\theta_A}(\theta) = \frac{1}{\pi} \operatorname{Im} \log \xi_N(\theta) - \frac{1}{\pi} \operatorname{Im} \log \xi_N(\theta_A)$$

where $\xi_N(\theta)$ is the characteristic polynomial defined as $\xi_N(\theta) = \det(1 - e^{-i\theta}U)$.

As has been shown in Hughes-Keating-O'Connell '01 for $\beta = 2$ (see Chhaibi-Madaule-Najnudel '18 for general $\beta > 0$) the joint probability density of $\operatorname{Im} \log \xi_N(\theta)$ at any fixed distinct points $\theta_1 \neq \theta_2 \neq \ldots \neq \theta_k$ converges (in a suitable sense) as $N \to \infty$ to that of a mean-zero Gaussian process $W_{\beta}(\theta)$ with the covariance structure $\mathbb{E}(W_{\beta}(\theta_1)W_{\beta}(\theta_2)) = -\frac{1}{2\beta}\log\left[4\sin^2\left(\frac{\theta_1-\theta_2}{2}\right)\right]$

which is a particular instance of the 1D log-correlated Gaussian field. A large but finite N provides a natural small-scale regularization, augmenting $W_{\beta}(\theta)$ with the finite variance: $\mathbb{E}(W_{N,\beta}(\theta)^2) = \beta^{-1} \log N + O(1)$.

Note that $\delta \mathcal{N}_{\theta_A}(\theta = \theta_A) = 0$ in any realization, hence the relevant object is the **pinned** log-process closely related to fBm0. We shall however see that naively replacing $\delta \mathcal{N}_{\theta_A}(\theta) \rightarrow \frac{1}{\pi} [W_{N,\beta}(\theta) - W_{N,\beta}(\theta_A)]$ (the procedure closely related to the **bosonization** approach to fermionic problems) is not sufficient for characterizing the maximum of the process: it misses local 'fermionic' contributions.

Summary of the main results:

We predict that for any interval of the fixed length $\ell = \theta_B - \theta_A$ the mean value of the maximum deviation $\delta \mathcal{N}_m = \max_{\theta \in [\theta_A, \theta_B]} [\delta \mathcal{N}_{\theta_A}(\theta)]$ should exhibit, for $N \to \infty$, the universal behavior of the log-correlated processes

$$2\pi\sqrt{\frac{\beta}{2}}\mathbb{E}(\delta\mathcal{N}_m) \simeq 2\log N - \frac{\mathbf{3}}{2}\log\log N + c_\ell^{(\beta)}$$

where $c_{\ell}^{(\beta)} = O(1)$ is an unknown ℓ -dependent constant.

The variance for the maximum δN_m exhibits to the leading order the extensive universal logarithmic growth typical for **pinned** log-correlated field, on top of which we can evaluate the corrections of the order of unity:

$$\mathbb{E}^c(\delta \mathcal{N}_m^2) \simeq \frac{2}{\beta(2\pi)^2} (2\log N + \tilde{C}_2^{(\beta)} + C_2(\ell))$$

Finally, the higher cumulants converge to a finite limit as $N \to \infty$:

$$\mathbb{E}^{c}(\delta \mathcal{N}_{m}^{k}) \simeq \frac{2^{k/2}}{\beta^{k/2}(2\pi)^{k}} (\tilde{C}_{k}^{(\beta)} + C_{k}(\ell)),$$

The constants $\tilde{C}_k^{(\beta)}$ depend on β but not on ℓ , and reflect local fermion number statistics, whereas $C_k(\ell)$ depend on the length ℓ , reflect log-correlated statistics and are known only for the full circle $\ell = 2\pi$ and mesoscopic $\Delta \ll \ell \ll 2\pi$.

Local 'fermionic' contribution to max-cumulants:

All odd cumulants $\tilde{C}_{2p+1}^{(\beta)}$ vanish. All even cumulants for any $\beta > 0$ can be expressed in terms of functions $\psi^{(k)}(x) = \frac{d^{k+1}}{dx^{k+1}} \log \Gamma(x)$ as convergent infinite "dual" series. For the lowest cumulant we obtain:

$$\tilde{C}_{2}^{(\beta)} = 2\gamma_{E} + 2\sum_{k=0}^{\infty} \left[\frac{\beta}{2}\psi^{(1)}\left(1 + \frac{\beta k}{2}\right) - \frac{1}{1+k}\right] \\ = 2\gamma_{E} + 2\log\frac{\beta}{2} + 2\sum_{m=1}^{\infty} \left(\frac{2}{\beta}\psi^{(1)}\left(\frac{2m}{\beta}\right) - \frac{1}{m}\right)$$

where $\gamma_E = \lim_{n \to \infty} \left(-\ln n + \sum_{k=1}^n \frac{1}{k} \right)$ is the Euler-Mascheroni constant.

For higher even cumulants $\tilde{C}_{2p}^{(\beta)}$ with $p\geq 2$ we find

$$\tilde{C}_{2p}^{(\beta)} = (-2)^{1-p} \beta^p \sum_{k=0}^{\infty} \psi^{(2p-1)} \left(1 + \frac{\beta k}{2}\right) = (-2)^{p+1} \frac{1}{\beta^p} \sum_{m=1}^{\infty} \psi^{(2p-1)} \left(\frac{2m}{\beta}\right)$$

For rational $\beta = 2s/r$, with s, r mutually prime and $k \ge 2$ we have an alternative representation: $\tilde{C}_k^{(\beta)} = \frac{d^k}{dt^k}|_{t=0} \log (A_\beta(t)A_\beta(-t))$, with

$$A_{\beta}(t) = r^{-t^{2}/2} \prod_{\nu=0}^{r-1} \prod_{p=0}^{s-1} \frac{G\left(1 - \frac{p}{s} + \frac{\nu + it\sqrt{2/\beta}}{r}\right)}{G\left(1 - \frac{p}{s} + \frac{\nu}{r}\right)}$$

These expressions are intimately related to fermion number statistics.

By contrast the constants $C_k(\ell)$ are β -independent and can be directly related to the maximum of Fractional Brownian Motion with **vanishing Hurst exponent** (fBm0) ('**pinned**' at one end for the interval or at both ends in '**bridge**' version for the full circle) studied in **YVF-Le Doussal** '16 and **Cao-YVF-Le Doussal** '18. We find:

(i) maximum over the full circle $\ell = 2\pi$. In that case we find:

$$C_{k\geq 2}(2\pi) = (-1)^k \frac{d^k}{dt^k}|_{t=0} \log\left[\frac{\Gamma(1+t)^2 G(2-2t)}{G(2-t)^3 G(2+t)}\right]$$

(ii) maximum over a mesoscopic interval $\Delta \ll \ell \ll 1,$ where we obtain

$$C_k(\ell) \simeq 2\log \ell \,\delta_{k,2} + (-1)^k \frac{d^k}{dt^k}|_{t=0} \left[\frac{2\Gamma(1+t)^2 G(2-2t)}{G(2+t)^2 G(2-t)G(4-t)} \right]$$

Note that $\ell \to 0$ limit is expected to provide the $L \gg 1$ asymptotic for statistics of the maximum of $\delta N_{\theta_A}(\theta)$ in intervals of the order $L\Delta$, comparable with the mean eigenvalue spacing. In particular, our mean $\mathbb{E}(\delta N_m)$ agrees with one found in **Holcomb-Paquette**'18 for the large-*L* asymptotics of *Sine*_{β} process.

Distribution of the absolute maximum via Statistical Mechanics approach:

Given a random sequence $\{V_i, i = 1, ..., M\}$ we are interested in finding the distribution of $V_{(m)} = \max(V_1, ..., V_M)$ that is $P(v) = \operatorname{Prob}(V_{(m)} < v) = \operatorname{Prob}(V_i < v, \forall i) = \mathbb{E}\left\{\prod_{i=1}^M \chi(v - V_i)\right\}$ where $\chi(v) = \begin{cases} 1, v > 0 \\ 0, v < 0 \end{cases}$ is the indicator function. Next we use: $\lim_{b \to \infty} \exp\left[-e^{-b(v-V_i)}\right] = \begin{cases} 1 & v > V_i \\ 0 & v < V_i \end{cases} \equiv \chi(v - V_i)$

which immediately shows that:

$$P(v) = \operatorname{Prob}(V_{(m)} < v) = \lim_{b \to \infty} \mathbb{E}\left\{ \exp\left[-e^{-bv}Z(b)\right] \right\}$$

where $Z(b) = \sum_{i=1} e^{bV_i}$ is a kind of **Partition Function** associated with the problem, with b = 1/T playing the role of **inverse temperature**.

For a random process $V(\theta)$, $\theta \in I$ similar method works with $Z(b) = \int_{I} e^{bV(\theta)} d\theta$.

Sketch of the Calculation I:

Method: introduce the following "partition sum":

$$Z(b) = \frac{N}{2\pi} \int_{\theta_A}^{\theta_B} d\phi \, e^{2\pi b \sqrt{\beta/2} \, \delta \mathcal{N}_{\theta_A}(\phi)},$$

thus mapping the search of the maximum to a statistical mechanics problem, with the "inverse temperature" equal to $-2\pi b \sqrt{\beta/2}$. The maximum is retrieved from the "free energy" \mathcal{F} for $b \to +\infty$ as

$$\delta \mathcal{N}_m = \lim_{b \to +\infty} \mathcal{F} \quad , \quad \mathcal{F} = \frac{1}{2\pi b \sqrt{\beta/2}} \log Z(b)$$

To study the statistics of the associated free energy we start with considering the integer moments of Z(b). Using the representation of the counting function given by

$$\mathcal{N}_{\theta_A}(\theta) = \sum_{j=1}^N \left(\chi(\theta - \theta_j) - \chi(\theta_A - \theta_j) \right) , \ \chi(u) = \begin{cases} 1 , \ u > 0 \\ 0 , \ u < 0 \end{cases}$$

we get $\mathbb{E}[Z^n(b)] = \left(\frac{N}{2\pi}\right)^n \int_{\theta_A}^{\theta_B} e^{-b\sqrt{\beta/2}\sum_{a=1}^n N(\phi_a - \theta_A)} \mathbb{E}[\prod_{j=1}^N g(\theta_j)] \prod_{a=1}^n d\phi_a$ where we defined

$$\log g(\theta) = 2\pi b \sqrt{\beta/2} \sum_{a=1}^{n} (\chi(\phi_a - \theta) - \chi(\theta_A - \theta))$$

Sketch of the Calculation II:

For $\beta = 2$ $\mathbb{E}[\prod_{j=1}^{N} g(\theta_j)] = \det_{1 \leq j,k \leq N}[g_{j-k}] \text{ - Toeplitz determinant}$ where $g_p = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-ip\theta} g(\theta)$ is the associated symbol, and $g(\theta)$ has n jump singularities. The corresponding asymptotics as $N \to \infty$ is given by the famous Fisher-Hartwig formula proved rigorously by Deift-Its-Krasovsky '09 -'11. For a general rational β the extension of FH formula has been conjectured by Forrester & Frenkel '04. Applying their formula to our case gives for $N \to +\infty$ and $nb^2 < 1$: $\mathbb{E}[Z^n(b)] \simeq \left(\frac{N}{2\pi}\right)^n N^{b^2(n+n^2)} |A_{\beta}(b)|^{2n} |A_{\beta}(bn)|^2 I_C(n, b^2)$

where $I_C(n, b^2)$ is the so-called '**Coulomb integral**' given by

$$I_C := \int_{\theta_A}^{\theta_B} \prod_{1 \le a < c \le n} |1 - e^{i(\phi_a - \phi_c)}|^{-2b^2} \prod_{1 \le a \le n} |1 - e^{i(\phi_a - \theta_A)}|^{2nb^2} \prod_{a=1}^n d\phi_a$$

Note: Had we used instead in our calculation an approximation replacing the difference $\delta \mathcal{N}_{\theta_A}(\theta)$ in the large-N limit with the logarithmically correlated Gaussian process $W_{\beta}(\theta)$ we would reproduce the Coulomb integral factor but completely missed the factors $A_{\beta}(b)$. Hence, this product encapsulates the residual non-Gaussianity of the process due to microscopic 'descrete' fermionic nature.

Sketch of the Calculation III:

Further progress is possible in the two cases (full circle case and mesoscopic interval case) when the Coulomb integrals $I_C(n, b^2)$ can be explicitly calculated by reducing them to Selberg integrals, for integer n and $nb^2 < 1$. The same integrals appeared in the problem of maximum in logarithmically correlated fBm0 (Hurst index H = 0) Cao-YVF-Le Doussal'18.

Combining those results with analytical continuation of factors $|A_{\beta}(b)|^{2n}|A_{\beta}(bn)|^{2}$ we find that appropriately continued partition function moments depend on b in the whole high-temperature phase b < 1 only via the combination $Q = b + \frac{1}{b}$, hence satisfy the conditions of the **Freezing-Duality Conjecture** (FDC).

This allows to perform $b \to \infty$ limit arriving at a generation function for cumulants for probability density of the maximum value, e.g. for the full circle:

$$\mathbb{E}(e^{-2\pi\sqrt{\frac{\beta}{2}}\delta\mathcal{N}_m t}) \simeq N^{-2t+t^2} e^{(\frac{3}{2}\ln\ln N + c)t} A_\beta(t) A_\beta(-t) \frac{\Gamma(1+t)^2 G(2-2t)}{G(2-t)^3 G(2+t)}$$

Finally, addressing the question of the location of the maximum $\theta_m \in [\theta_A, \theta_B]$ of $\delta \mathcal{N}_{\theta_A}(\theta)$, let us define $y_m = (\theta_m - \theta_A)/\ell$. For the mesoscopic interval, we predict the PDF of y_m to be symmetric around $\frac{1}{2}$, with $\mathbb{E}(y_m^2) = \frac{17}{50}$ and $\mathbb{E}(y_m^4) = \frac{311}{1470}$, thus deviating from the uniform distribution.