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Unitary β− ensembles and interacting fermions :

Consider a unitary N × N matrix U and denote the corresponding unimodular
eigenvalues as zj = eiθj , j = 1, . . . , N , with phases −π < θi ≤ π. For any
given β > 0 one can construct the so-called Circular β-Ensemble CUEβ(N) in such
a way that the expectation of a function F ≡ F (θ1, . . . , θn) is given by

E(F ) = cN
∏N
j=1

∫ π
−π dθi

∏
1≤j<k≤N |eiθj − eiθk|β F

For β = 2 such matrices can be thought of as drawn uniformly according to the
corresponding Haar’s measure on U(N), whereas for a generic β > 0 the explicit
construction is more involved, see Killip-Nenciu ’04. Such eigenvalues essentially
behave as classical particles with 1-d logarithmic repulsion at inverse temperature
β > 0. On the other hand, the r.h.s can be interpreted as the quantum expectation
value of F in the ground state of N spinless fermions, of coordinates θi on the unit
circle, described by the Sutherland Hamiltonian:

H = −
∑
i
∂2

∂θ2
i

+
∑
i<j

β(β−2)

8 sin2
(
θi−θj

2

)
Thus, for β = 2 the eigenvalues behave as non-interacting fermions, while for
β 6= 2 the fermions interact, via an inverse square distance pairwise potential.



Define the number NθA(θ) of eigenvalues eiθj of a random unitary N × N matrix,
drawn from CUEβ(N), in the interval θj ∈ [θA, θ]. As a function of θ this is a
staircase with unit jumps upwards at random positions θj ∈ [θA, θ]. The mean profile
is E(NθA(θ)) = N(θ−θA)

2π .

Constructing an instance of δN0(θ) for θ ∈ [0, π] for β = 2 and N = 20. Left: eigenvalues

λ = eiθi. Right: counting staircase (top), with mean subtracted (bottom).



Staircase-deviation process:

In a given random matrix realization/sample one can define the deviation to the mean,
δNθA(θ) = NθA(θ)− E(NθA(θ)), and study it as a random process as a function of
variable θ for a fixed θA.

A single realization of δN−π(θ) for the full circle θ ∈ [−π, π] for β = 2 and N = 200.



Staircase-deviation process, non-local properties:

Outstanding: Kolmogorov-Smirnov-type statistics

maxθ∈[θA,θB] |δNθA(θ) := NθA(θ)− E(NθA(θ))|

Some recent results for β = 2 in: Clayes et al ’19.

We are able to shed some light on ‘half’ of the problem by calculating cumulants of
the distribution of the one-sided maximum value for the process δNθA(θ), i.e

δNm := maxθ∈[θA,θB]

[
δNθA(θ)

]
for any β > 0 and N � 1 at fixed ` = |θA − θB|.

Note: If we change above max =⇒ min, the distribution remains the same, but two
extremal values are expected to be highly correlated, cf. Cao-Le Doussal ’16

We also can characterize the location of the maximum:

θm := argmax∈[θA,θB]

[
δNθA(θ)

]
.



Relation to ‘log-correlated’ processes:

Naively, the process δNθA(θ) is given by the difference

δNθA(θ) = 1
πIm log ξN(θ)− 1

πIm log ξN(θA)

where ξN(θ) is the characteristic polynomial defined as ξN(θ) = det(1− e−iθU).

As has been shown in Hughes-Keating-O’Connell ’01 for β = 2 (see Chhaibi-
Madaule-Najnudel ’18 for general β > 0) the joint probability density of Im log ξN(θ)
at any fixed distinct points θ1 6= θ2 6= . . . 6= θk converges (in a suitable sense)
as N → ∞ to that of a mean-zero Gaussian process Wβ(θ) with the covariance

structure E(Wβ(θ1)Wβ(θ2)) = − 1
2β log

[
4 sin2

(
θ1−θ2

2

)]
which is a particular instance of the 1D log-correlated Gaussian field. A large but
finite N provides a natural small-scale regularization, augmenting Wβ(θ) with the
finite variance: E(WN,β(θ)2) = β−1 logN +O(1).

Note that δNθA(θ = θA) = 0 in any realization, hence the relevant object is the
pinned log-process closely related to fBm0. We shall however see that naively
replacing δNθA(θ) → 1

π [WN,β(θ)−WN,β(θA)] (the procedure closely related to
the bosonization approach to fermionic problems) is not sufficient for characterizing
the maximum of the process: it misses local ‘fermionic’ contributions.



Summary of the main results:

We predict that for any interval of the fixed length ` = θB − θA the mean value of
the maximum deviation δNm = maxθ∈[θA,θB]

[
δNθA(θ)

]
should exhibit, for N →∞,

the universal behavior of the log-correlated processes

2π
√

β
2E(δNm) ' 2 logN − 3

2 log logN + c
(β)
`

where c(β)
` = O(1) is an unknown `-dependent constant.

The variance for the maximum δNm exhibits to the leading order the extensive
universal logarithmic growth typical for pinned log-correlated field, on top of which
we can evaluate the corrections of the order of unity:

Ec(δN 2
m) ' 2

β(2π)2(2 logN + C̃
(β)
2 + C2(`))

Finally, the higher cumulants converge to a finite limit as N →∞:

Ec(δN k
m) ' 2k/2

βk/2(2π)k
(C̃

(β)
k + Ck(`)),

The constants C̃(β)
k depend on β but not on `, and reflect local fermion number

statistics, whereas Ck(`) depend on the length `, reflect log-correlated statistics
and are known only for the full circle ` = 2π and mesoscopic ∆� `� 2π.



Local ‘fermionic’ contribution to max-cumulants:

All odd cumulants C̃(β)
2p+1 vanish. All even cumulants for any β > 0 can be expressed

in terms of functions ψ(k)(x) = dk+1

dxk+1 log Γ(x) as convergent infinite “dual” series.
For the lowest cumulant we obtain:

C̃
(β)
2 = 2γE + 2

∑∞
k=0[β2ψ

(1)(1 + βk
2 )− 1

1+k]

= 2γE + 2 log β
2 + 2

∑∞
m=1(2

βψ
(1)(2m

β )− 1
m)

where γE = limn→∞
(
− lnn+

∑n
k=1

1
k

)
is the Euler-Mascheroni constant.

For higher even cumulants C̃(β)
2p with p ≥ 2 we find

C̃
(β)
2p = (−2)1−pβp

∑∞
k=0ψ

(2p−1)(1 + βk
2 ) = (−2)p+1 1

βp

∑∞
m=1ψ

(2p−1)(2m
β )

For rational β = 2s/r, with s, r mutually prime and k ≥ 2 we have an alternative
representation: C̃(β)

k = dk

dtk
|t=0 log (Aβ(t)Aβ(−t)), with

Aβ(t) = r−t
2/2
∏r−1
ν=0

∏s−1
p=0

G

(
1−ps+

ν+it
√

2/β
r

)
G(1−ps+

ν
r)

These expressions are intimately related to fermion number statistics.



Global ‘log-correlated’ contributions to max-cumulants:

By contrast the constants Ck(`) are β-independent and can be directly related to
the maximum of Fractional Brownian Motion with vanishing Hurst exponent (fBm0)
(‘pinned’ at one end for the interval or at both ends in ‘bridge‘ version for the full
circle) studied in YVF-Le Doussal ’16 and Cao-YVF-Le Doussal ’18. We find:

(i) maximum over the full circle ` = 2π. In that case we find:

Ck≥2(2π) = (−1)k d
k

dtk
|t=0 log

[
Γ(1+t)2G(2−2t)
G(2−t)3G(2+t)

]
(ii) maximum over a mesoscopic interval ∆� `� 1, where we obtain

Ck(`) ' 2 log ` δk,2 + (−1)k d
k

dtk
|t=0

[
2Γ(1+t)2G(2−2t)

G(2+t)2G(2−t)G(4−t)

]
Note that ` → 0 limit is expected to provide the L � 1 asymptotic for statistics of
the maximum of δNθA(θ) in intervals of the order L∆, comparable with the mean
eigenvalue spacing. In particular, our mean E(δNm) agrees with one found in
Holcomb-Paquette’18 for the large-L asymptotics of Sineβ process.



Distribution of the absolute maximum via Statistical Mechanics approach:

Given a random sequence {Vi, i = 1, . . . ,M} we are interested in finding the
distribution of V(m) = max(V1, . . . , VM) that is

P (v) = Prob(V(m) < v) = Prob(Vi < v, ∀i) = E
{∏M

i=1 χ(v − Vi)
}

where χ(v) =

{
1 , v > 0

0 , v < 0
is the indicator function.

Next we use: limb→∞ exp
[
−e−b(v−Vi)

]
=

{
1 v > Vi
0 v < Vi

≡ χ(v − Vi)

which immediately shows that:

P (v) = Prob(V(m) < v) = limb→∞E
{

exp
[
−e−bvZ(b)

]}
where Z(b) =

∑
i=1 e

bVi is a kind of Partition Function associated with the
problem, with b = 1/T playing the role of inverse temperature.

For a random process V (θ), θ ∈ I similar method works with Z(b) =
∫
I
ebV (θ) dθ.



Sketch of the Calculation I:

Method: introduce the following “partition sum”:

Z(b) = N
2π

∫ θB
θA

dφ e2πb
√
β/2 δNθA(φ),

thus mapping the search of the maximum to a statistical mechanics problem, with
the “inverse temperature" equal to −2πb

√
β/2. The maximum is retrieved from

the “free energy” F for b→ +∞ as

δNm = limb→+∞F , F = 1

2πb
√
β/2

logZ(b)

To study the statistics of the associated free energy we start with considering the
integer moments of Z(b). Using the representation of the counting function given by

NθA(θ) =
∑N
j=1 (χ(θ − θj)− χ(θA − θj)) , χ(u) =

{
1 , u > 0

0 , u < 0

we get E[Zn(b)] =
(
N
2π

)n ∫ θB
θA

e−b
√
β/2

∑n
a=1N(φa−θA) E[

∏N
j=1 g(θj)]

∏n
a=1 dφa

where we defined

log g(θ) = 2πb
√
β/2

∑n
a=1(χ(φa − θ)− χ(θA − θ))



Sketch of the Calculation II:

For β = 2

E[
∏N
j=1 g(θj)] = det1≤j,k≤N [gj−k] - Toeplitz determinant

where gp =
∫ π
−π

dθ
2πe
−ipθg(θ) is the associated symbol, and g(θ) has n jump

singularities. The corresponding asymptotics as N → ∞ is given by the famous
Fisher-Hartwig formula proved rigorously by Deift-Its-Krasovsky ’09 -’11. For a
general rational β the extension of FH formula has been conjectured by Forrester &
Frenkel ’04. Applying their formula to our case gives for N → +∞ and nb2 < 1:

E[Zn(b)] '
(
N
2π

)n
N b2(n+n2)|Aβ(b)|2n|Aβ(bn)|2 IC(n, b2)

where IC(n, b2) is the so-called ’Coulomb integral’ given by

IC :=
∫ θB
θA

∏
1≤a<c≤n |1− ei(φa−φc)|−2b2

∏
1≤a≤n |1− ei(φa−θA)|2nb2

∏n
a=1 dφa

Note: Had we used instead in our calculation an approximation replacing the
difference δNθA(θ) in the large−N limit with the logarithmically correlated Gaussian
process Wβ(θ) we would reproduce the Coulomb integral factor but completely
missed the factors Aβ(b). Hence, this product encapsulates the residual non-
Gaussianity of the process due to microscopic ’descrete’ fermionic nature.



Sketch of the Calculation III:

Further progress is possible in the two cases (full circle case and mesoscopic
interval case) when the Coulomb integrals IC(n, b2) can be explicitly calculated by
reducing them to Selberg integrals, for integer n and nb2 < 1. The same integrals
appeared in the problem of maximum in logarithmically correlated fBm0 ( Hurst index
H = 0) Cao-YVF-Le Doussal’18.

Combining those results with analytical continuation of factors |Aβ(b)|2n|Aβ(bn)|2
we find that appropriately continued partition function moments depend on b in the
whole high-temperature phase b < 1 only via the combination Q = b + 1

b , hence
satisfy the conditions of the Freezing-Duality Conjecture (FDC).

This allows to perform b→∞ limit arriving at a generation function for cumulants for
probabilty density of the maximum value, e.g. for the full circle:

E(e−2π

√
β
2δNmt) ' N−2t+t2 e(3

2 ln lnN+c)tAβ(t)Aβ(−t) Γ(1+t)2G(2−2t)
G(2−t)3G(2+t)

Finally, addressing the question of the location of the maximum θm ∈ [θA, θB] of
δNθA(θ), let us define ym = (θm − θA)/`. For the mesoscopic interval, we predict
the PDF of ym to be symmetric around 1

2, with E(y2
m) = 17

50 and E(y4
m) = 311

1470, thus
deviating from the uniform distribution.


