Eigenvalues for sums of self-adjoint and skew-self-adjoint random matrices

Brian C. Hall

University of Notre Dame

RMTA 2020

DEPARTMENT OF MATHEMATICS

- Joint work with Ching Wei Ho (Indiana University)
- Builds on work of Ho and Zhong [arXiv:1908.08150]
- We use PDE method developed by Driver-Hall-Kemp [arXiv:1903.11015]
- Some of these results were previously obtained by Jarosz and Nowak by a different method [J. Phys. A 2006 and arXiv:math-ph/0402057]

Part 1: The random matrix problem

Sum of Hermitian random matrix imaginary multiple of GUE

- Take S to be GUE (Gaussian-distributed Hermitian random matrix)
- Take X_0 Hermitian and independent of S
- Can take X_0 to be diagonal with fixed eigenvalue distribution

Consider

$$Z:=X_0+i\sqrt{t}S,\quad t>0.$$

• Study eigenvalue distribution of Z in ${\mathbb C}$

Example: Bernoulli case, t = 1

Bernoulli case, t = 1.05

Brian C. Hall (University of Notre Dame)

Eigenvalues for sums

RMTA 2020 6 / 46

Bernoulli with t = 1.05, stretched

• Density of eigenvalues is *constant in the vertical direction* inside the domain

Uniform case, t = 0.1

3

・ロト ・ 日 ト ・ 田 ト ・

Quadratic case, t = 1/4

Part 2: Girko's method and the Brown measure

- Girko [1984] worked on general circular law: entries are i.i.d. but not Gaussian
- Matrix is not Hermitian (or normal); method of moments is not applicable
- No explicit formulas as in Gaussian case
- How to compute eigenvalues in this case?

• For matrix A, define

$$S(\lambda) = \frac{1}{N} \operatorname{Trace}[\log((A - \lambda)^*(A - \lambda))]$$

• Then

$$S(\lambda) = rac{2}{N} \sum_{j=1}^{N} \log |\lambda - \lambda_j|$$

• This function is harmonic except at $\lambda = \lambda_j$ and

$$rac{1}{4\pi}\Delta S = rac{1}{N}\sum_{j=1}^N \delta_{\lambda_j}$$

Brian C. Hall (University of Notre Dame)

The function $S(\lambda)$

• Plot of $-S(\lambda)$ with 5 eigenvalues

Operator algebra formalism

• For random matrix X^N , define *-moments as

$$\mathbb{E}\left\{\frac{1}{N}\operatorname{Trace}[\operatorname{word} \text{ in } X^{N} \text{ and } (X^{N})^{*}]\right\}$$

- Take large-N limit of these *-moments
- Seek operator algebra (A, τ) with trace $\tau : A \to \mathbb{C}$ AND operator $a \in A$ such that

$$\lim_{N \to \infty} \mathbb{E} \left\{ \frac{1}{N} \operatorname{Trace}[\text{word in } X^N \text{ and } (X^N)^*] \right\}$$
$$= \tau[\text{word in } a \text{ and } a^*]$$

- a not an operator-valued random variable—just one fixed operator in A
- Limits of this sort constructed using methods of free probability

- Given $a \in (\mathcal{A}, \tau)$, want something like "empirical eigenvalue distribution"
- Don't assume a is normal, so can't use spectral theorem
- Imitate Girko's formula!
- Define

$$\mathcal{S}(\lambda) = \tau[\log((\mathbf{a} - \lambda)^*(\mathbf{a} - \lambda))]$$

then take Laplacian

• To be sure S is well defined, introduce regularization $\varepsilon > 0$:

$$S(\lambda, \varepsilon) = \tau[\log((a - \lambda)^*(a - \lambda) + \varepsilon)]$$

Then

$$s(\lambda) := \lim_{\varepsilon \to 0} S(\lambda, \varepsilon)$$

exists as a subharmonic function

• Then **Brown measure** Brown(a) defined as

$$\operatorname{Brown}(a) = \frac{1}{4\pi} \Delta s$$

• Then Brown(a) is probability measure supported on spectrum of a

Brian C. Hall (University of Notre Dame)

э

Image: A math a math

- Large-N limit of $\sqrt{t}S$: "semicircular Brownian motion" σ_t
- Large-N limit of X_0 : s.a. element x_0 that is "freely independent" of σ_t
- Let $\mu =$ "law of x_0 " = large-N limit of eigenvalue distribution of X_0

Problem

Compute Brown measure of $x_0 + i\sigma_t$ (in terms of the law μ of x_0).

• We **believe** that $\operatorname{Brown}(x_0 + i\sigma_t)$ is large-*N* limit of eigenvalue distribution of $X_0 + i\sqrt{t}S$

- Biane: computed the distribution of $x_0 + \sigma_t$ (without the "*i*")
- If x₀ = y₀ + σ̃_t for another semicircular Brownian motion σ̃_t, results of Ho and Zhong apply
- Jarosz and Nowak have general algorithm for computing Brown measures for x + iy;
- Their results agree with ours in case of $x_0 + i\sigma_t$, but we get additional information

The PDE method

• Apply definition of Brown measure to $x_0 + i\sigma_t$

Define

$$S(t, \lambda, \varepsilon) = \tau [\log((x_0 + i\sigma_t - \lambda)^* (x_0 + i\sigma_t - \lambda) + \varepsilon)]$$

Theorem

The function S satisfies the PDE

$$\frac{\partial S}{\partial t} = \varepsilon \left(\frac{\partial S}{\partial \varepsilon}\right)^2 + \frac{1}{4} \left(\left(\frac{\partial S}{\partial a}\right)^2 - \left(\frac{\partial S}{\partial b}\right)^2 \right), \quad \lambda = a + ib$$

with initial condition

$$S(0, \lambda, \varepsilon) = \tau [\log(x_0^* x_0 + \varepsilon)].$$

- **4 ∃ ≻** 4

- ε is a *variable* in the PDE
- Want to solve PDE, then evaluate at $\varepsilon = 0$
- Take Δ with respect to λ of $S(t, \lambda, 0)$

• Define "Hamiltonian" function *H* from PDE, replacing derivatives on RHS with "momenta" (and overall sign change):

$$H(a, b, \varepsilon, p_a, p_b, p_\varepsilon) = -\varepsilon p_\varepsilon^2 - \frac{1}{4}(p_a^2 - p_b^2)$$

• Then introduce auxiliary system of ODE's (Hamilton's equations):

$$\frac{du}{dt} = \frac{\partial H}{\partial p_u}; \quad \frac{dp_u}{dt} = -\frac{\partial H}{\partial u}; \quad u \in \{a, b, \varepsilon\}.$$

These ODE's can be solved explicitly

• Hamilton–Jacobi formula:

$$S(t, \lambda(t), \varepsilon(t)) = S(0, \lambda_0, \varepsilon_0) + tH_0$$

where

$$H_0 = H(a_0, b_0, \varepsilon_0, p_{a,0}, p_{b,0}, p_{\varepsilon,0})$$

• Initial momenta are

$$p_{u,0}=\frac{\partial}{\partial u}S(0,\lambda_0,\varepsilon_0).$$

• Get S along solutions to ODE's—in terms of λ_0 and ε_0

Part 4: Where the Brown measure is zero

- H-J method tells us $S(t, \lambda(t), \varepsilon(t))$
- To get $S(t, \lambda, 0)$, choose $(\lambda_0, \varepsilon_0)$ so that $\lambda(t) = \lambda$ and $\varepsilon(t) = 0$
- Simple strategy: to get $\varepsilon(t) \approx 0$, try $\varepsilon_0 \approx 0$

• **Problem**: If $\varepsilon_0 \approx 0$, solution may cease to exist before time t• Define

 $\mathcal{T}(\lambda_0)=$ existence time of solution with $\lambda(0)=\lambda_0,\, \epsilon(0)\approx 0$

Explicitly,

$$T(a_0 + ib_0) = \left(\int_{\mathbb{R}} \frac{1}{(a_0 - x)^2 + b_0^2} d\mu(x)\right)^{-1},$$

where μ is the distribution of x_0

Small- ϵ_0 existence time

• Taking $\varepsilon_0 \approx 0$ only allowed if $T(\lambda_0) > t$

- If $T(\lambda_0) > t$, taking $\varepsilon_0 \approx 0$ works
- Find that $\lambda(t)$ is a holomorphic function of λ_0
- Find that $S(t, \lambda, 0)$ is harmonic
- Conclude that Brown measure is zero

• "Good Set" in λ_0 -plane

$$\{\lambda_0 \in \mathbb{C} \mid T(\lambda_0) > t\}$$

[This set also appears in work of Biane and Ho-Zhong]

• "Good Set" in λ -plane

$$\left\{ \left. \lambda(t)
ight| \, \lambda_{\mathsf{0}} \in \mathsf{Good} \, \, \mathsf{Set}
ight\}$$
 ,

Theorem

The Brown measure of $x_0 + i\sigma_t$ is zero in Good Set in λ -plane.

Good Sets in Bernoulli case

• With λ_0 in Good Set and $\varepsilon_0 = 0$, get

$$\lambda(t) = J_t(\lambda_0)$$

where

$$J_t(\lambda_0) = \lambda_0 - t \int \frac{1}{\lambda_0 - x} d\mu(x)$$

and $\mu = \text{Law}(x_0)$

• J_t is a conformal map of Good Set in λ_0 -plane to Good Set in λ -plane

Part 5: Where the Brown measure is not zero

Air assault!

- Part 4 was "ground assault": Run along with $\varepsilon(t) pprox 0$
- Where the Brown measure is not zero, need "air assault"!
- Find λ_0 and $\varepsilon_0 > 0$ so ODE's will "land" with $\varepsilon(t) = 0$, $\lambda(t) = \lambda$

- For each λ_0 in Bad Set in λ_0 -plane, $\exists \ \varepsilon_0 > 0$ making $\varepsilon(t) = 0$
- Compute $\lambda(t)$ with this ε_0
- Surjectivity: each point in Bad Set in λ -plane gets hit this way
- Decoupling:

$$b(t) = 2b_0$$
$$a(t) = f_t(a_0)$$

Decoupling visualized

- Get $S(t, \lambda, 0)$ as a function of λ_0
- λ_0 and λ are related by map on previous slide
- Then take Laplacian in λ

Theorem (H–Ho 2020)

In the Bad Set in λ -plane, Brown measure has a strictly positive density that **depends only on** $a = \operatorname{Re} \lambda$. Specifically, the density is given by

$$rac{1}{2\pi t}\left(rac{ extsf{da}_0^t(extsf{a})}{ extsf{da}}-rac{1}{2}
ight)$$
 ,

where a_0^t is the real part of the λ_0 that maps to $\lambda = a + ib$.

Bernoulli case, t = 1.05

- (A 🖓

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Part 6: Connection to the law of $x_0 + \sigma_t$

Image: Image:

- Biane [1997] computed law of $x_0 + \sigma_t$ using subordination method
- Connection between $x_0 + \sigma_t$ and $x_0 + i\sigma_t$ suggested by work of Janik, Nowak, Papp, Wambach, and Zahed [1997]
- We obtain a *direct relationship* between Brown measure of $x_0 + i\sigma_t$ and law of $x_0 + \sigma_t$

Defining the map

• Define a map Q_t from Bad Set in λ -plane to \mathbb{R} by:

$$Q_t(a+ib) = 2a_0^t(a) - a$$

Theorem

The push-forward of the Brown measure of $x_0 + i\sigma_t$ under Q_t is the law of $x_0 + \sigma_t$, as computed by Biane.

- Compute eigenvalues of $X_0 + i\sqrt{t}S$ in $\mathbb C$
- Map to real line by Q_t
- Distribution of points in $\mathbb R$ will be just like eigenvalues of $X_0 + \sqrt{t}S$
- A mysterious connection between $X_0 + i\sqrt{t}S$ and $X_0 + \sqrt{t}S$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Results of Driver-H-Kemp

• Studied Brownian motion in $GL(N; \mathbb{C})$ as $N \to \infty$ by similar method

THANK YOU FOR YOUR ATTENTION!

Image: A math a math