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Credits and references

Joint work with Ching Wei Ho (Indiana University)

Builds on work of Ho and Zhong [arXiv:1908.08150]

We use PDE method developed by Driver–Hall–Kemp
[arXiv:1903.11015]

Some of these results were previously obtained by Jarosz and Nowak
by a different method [J. Phys. A 2006 and arXiv:math-ph/0402057]
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Part 1: The random matrix problem
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Sum of Hermitian random matrix imaginary multiple of
GUE

Take S to be GUE (Gaussian-distributed Hermitian random matrix)

Take X0 Hermitian and independent of S

Can take X0 to be diagonal with fixed eigenvalue distribution

Consider
Z := X0 + i

√
tS , t > 0.

Study eigenvalue distribution of Z in C
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Example: Bernoulli case, t = 1
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Bernoulli case, t = 1.05

-1 0 1

-0.5 0.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Brian C. Hall (University of Notre Dame) Eigenvalues for sums RMTA 2020 6 / 46



Bernoulli with t = 1.05, stretched

Density of eigenvalues is constant in the vertical direction inside the
domain
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Uniform case, t = 0.1
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Quadratic case, t = 1/4
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Part 2: Girko’s method and the Brown measure
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Girko’s formula

Girko [1984] worked on general circular law: entries are i.i.d. but not
Gaussian

Matrix is not Hermitian (or normal); method of moments is not
applicable

No explicit formulas as in Gaussian case

How to compute eigenvalues in this case?
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Girko’s formula

For matrix A, define

S(λ) =
1

N
Trace[log((A− λ)∗(A− λ))]

Then

S(λ) =
2

N

N

∑
j=1

log |λ− λj |

This function is harmonic except at λ = λj and

1

4π
∆S =

1

N

N

∑
j=1

δλj
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The function S(λ)

Plot of −S(λ) with 5 eigenvalues
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Operator algebra formalism

For random matrix XN , define ∗-moments as

E

{
1

N
Trace[word in XN and (XN)∗]

}
Take large-N limit of these ∗-moments

Seek operator algebra (A, τ) with trace τ : A → C AND operator
a ∈ A such that

lim
N→∞

E

{
1

N
Trace[word in XN and (XN)∗]

}
= τ[word in a and a∗]
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Operator algebra formalism

a not an operator-valued random variable—just one fixed operator in
A
Limits of this sort constructed using methods of free probability
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Definition of Brown measure [Brown 1986]

Given a ∈ (A, τ), want something like “empirical eigenvalue
distribution”

Don’t assume a is normal, so can’t use spectral theorem

Imitate Girko’s formula!

Define
S(λ) = τ[log((a− λ)∗(a− λ))]

then take Laplacian
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Definition of Brown measure

To be sure S is well defined, introduce regularization ε > 0:

S(λ, ε) = τ[log((a− λ)∗(a− λ) + ε)]

Then
s(λ) := lim

ε→0
S(λ, ε)

exists as a subharmonic function

Then Brown measure Brown(a) defined as

Brown(a) =
1

4π
∆s

Then Brown(a) is probability measure supported on spectrum of a
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Part 3: The PDE method
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The goal: Brown measure for the sum

Large-N limit of
√
tS : “semicircular Brownian motion” σt

Large-N limit of X0: s.a. element x0 that is “freely independent” of σt

Let µ = “law of x0” = large-N limit of eigenvalue distribution of X0

Problem

Compute Brown measure of x0 + iσt (in terms of the law µ of x0).

We believe that Brown(x0 + iσt) is large-N limit of eigenvalue
distribution of X0 + i

√
tS
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Work of Biane, Ho–Zhong, and Jarosz–Nowak

Biane: computed the distribution of x0 + σt (without the “i”)

If x0 = y0 + σ̃t for another semicircular Brownian motion σ̃t , results
of Ho and Zhong apply

Jarosz and Nowak have general algorithm for computing Brown
measures for x + iy ;

Their results agree with ours in case of x0 + iσt , but we get additional
information
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The PDE method

Apply definition of Brown measure to x0 + iσt

Define

S(t, λ, ε) = τ[log((x0 + iσt − λ)∗(x0 + iσt − λ) + ε)]

Theorem

The function S satisfies the PDE

∂S

∂t
= ε

(
∂S

∂ε

)2

+
1

4

((
∂S

∂a

)2

−
(

∂S

∂b

)2
)

, λ = a+ ib

with initial condition

S(0, λ, ε) = τ[log(x∗0 x0 + ε)].
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The PDE method

ε is a variable in the PDE

Want to solve PDE, then evaluate at ε = 0

Take ∆ with respect to λ of S(t, λ, 0)
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The Hamilton–Jacobi method

Define “Hamiltonian” function H from PDE, replacing derivatives on
RHS with “momenta” (and overall sign change):

H(a, b, ε, pa, pb, pε) = −εp2ε −
1

4
(p2a − p2b)

Then introduce auxiliary system of ODE’s (Hamilton’s equations):

du

dt
=

∂H

∂pu
;

dpu
dt

= −∂H

∂u
; u ∈ {a, b, ε}.

These ODE’s can be solved explicitly
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The Hamilton–Jacobi formula

Hamilton–Jacobi formula:

S(t, λ(t), ε(t)) = S(0, λ0, ε0) + tH0

where
H0 = H(a0, b0, ε0, pa,0, pb,0, pε,0)

Initial momenta are

pu,0 =
∂

∂u
S(0, λ0, ε0).

Get S along solutions to ODE’s—in terms of λ0 and ε0
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Part 4: Where the Brown measure is zero
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Simple strategy for applying Hamilton–Jacobi method

H-J method tells us S(t, λ(t), ε(t))

To get S(t, λ, 0), choose (λ0, ε0) so that λ(t) = λ and ε(t) = 0

Simple strategy: to get ε(t) ≈ 0, try ε0 ≈ 0
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Small-ε0 existence time

Problem: If ε0 ≈ 0, solution may cease to exist before time t

Define

T (λ0) = existence time of solution with λ(0) = λ0, ε(0) ≈ 0

Explicitly,

T (a0 + ib0) =

(∫
R

1

(a0 − x)2 + b20
dµ(x)

)−1
,

where µ is the distribution of x0
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Small-ε0 existence time

Taking ε0 ≈ 0 only allowed if T (λ0) > t

T(λ0)
t

ϵ0

ϵ(t)
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Results of simple strategy

If T (λ0) > t, taking ε0 ≈ 0 works

Find that λ(t) is a holomorphic function of λ0

Find that S(t, λ, 0) is harmonic

Conclude that Brown measure is zero
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Good Sets

“Good Set” in λ0-plane

{λ0 ∈ C|T (λ0) > t}

[This set also appears in work of Biane and Ho–Zhong]

“Good Set” in λ-plane

{λ(t)| λ0 ∈ Good Set} ,

Theorem

The Brown measure of x0 + iσt is zero in Good Set in λ-plane.
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Good Sets in Bernoulli case
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Conformal map

With λ0 in Good Set and ε0 = 0, get

λ(t) = Jt(λ0)

where

Jt(λ0) = λ0 − t
∫

1

λ0 − x
dµ(x)

and µ = Law(x0)

Jt is a conformal map of Good Set in λ0-plane to Good Set in λ-plane
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Part 5: Where the Brown measure is not zero
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Air assault!

Part 4 was “ground assault”: Run along with ε(t) ≈ 0

Where the Brown measure is not zero, need “air assault”!

Find λ0 and ε0 > 0 so ODE’s will “land” with ε(t) = 0, λ(t) = λ
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Landing the cannonballs

For each λ0 in Bad Set in λ0-plane, ∃ ε0 > 0 making ε(t) = 0

Compute λ(t) with this ε0

Surjectivity: each point in Bad Set in λ-plane gets hit this way

Decoupling:

b(t) = 2b0

a(t) = ft(a0)
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Decoupling visualized
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Main result

Get S(t, λ, 0) as a function of λ0

λ0 and λ are related by map on previous slide

Then take Laplacian in λ

Theorem (H–Ho 2020)

In the Bad Set in λ-plane, Brown measure has a strictly positive density
that depends only on a = Re λ. Specifically, the density is given by

1

2πt

(
dat0(a)

da
− 1

2

)
,

where at0 is the real part of the λ0 that maps to λ = a+ ib.
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Bernoulli case, t = 1.05
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Uniform case
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Part 6: Connection to the law of x0 + σt
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Relating x0 + σt and x0 + iσt

Biane [1997] computed law of x0 + σt using subordination method

Connection between x0 + σt and x0 + iσt suggested by work of Janik,
Nowak, Papp, Wambach, and Zahed [1997]

We obtain a direct relationship between Brown measure of x0 + iσt
and law of x0 + σt

Brian C. Hall (University of Notre Dame) Eigenvalues for sums RMTA 2020 41 / 46



Defining the map

Define a map Qt from Bad Set in λ-plane to R by:

Qt(a+ ib) = 2at0(a)− a
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The connection

Theorem

The push-forward of the Brown measure of x0 + iσt under Qt is the law of
x0 + σt , as computed by Biane.

Compute eigenvalues of X0 + i
√
tS in C

Map to real line by Qt

Distribution of points in R will be just like eigenvalues of X0 +
√
tS

A mysterious connection between X0 + i
√
tS and X0 +

√
tS
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Epilog
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Results of Driver–H–Kemp

Studied Brownian motion in GL(N; C) as N → ∞ by similar method
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Conclusion

THANK YOU FOR YOUR ATTENTION!
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