Eigenvalues for sums of self-adjoint and skew-self-adjoint

 random matricesBrian C. Hall
University of Notre Dame

RMTA 2020

DEPARTMENT OF MATHEMATICS

Credits and references

- Joint work with Ching Wei Ho (Indiana University)
- Builds on work of Ho and Zhong [arXiv:1908.08150]
- We use PDE method developed by Driver-Hall-Kemp [arXiv:1903.11015]
- Some of these results were previously obtained by Jarosz and Nowak by a different method [J. Phys. A 2006 and arXiv:math-ph/0402057]

Part 1: The random matrix problem

Sum of Hermitian random matrix imaginary multiple of GUE

- Take S to be GUE (Gaussian-distributed Hermitian random matrix)
- Take X_{0} Hermitian and independent of S
- Can take X_{0} to be diagonal with fixed eigenvalue distribution
- Consider

$$
Z:=X_{0}+i \sqrt{t} S, \quad t>0 .
$$

- Study eigenvalue distribution of Z in \mathbb{C}

Example: Bernoulli case, $t=1$

Bernoulli case, $t=1.05$

Bernoulli with $t=1.05$, stretched

- Density of eigenvalues is constant in the vertical direction inside the domain

Uniform case, $t=0.1$

Quadratic case, $t=1 / 4$

Part 2: Girko's method and the Brown measure

Girko's formula

- Girko [1984] worked on general circular law: entries are i.i.d. but not Gaussian
- Matrix is not Hermitian (or normal); method of moments is not applicable
- No explicit formulas as in Gaussian case
- How to compute eigenvalues in this case?

Girko's formula

- For matrix A, define

$$
S(\lambda)=\frac{1}{N} \operatorname{Trace}\left[\log \left((A-\lambda)^{*}(A-\lambda)\right)\right]
$$

- Then

$$
S(\lambda)=\frac{2}{N} \sum_{j=1}^{N} \log \left|\lambda-\lambda_{j}\right|
$$

- This function is harmonic except at $\lambda=\lambda_{j}$ and

$$
\frac{1}{4 \pi} \Delta S=\frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}}
$$

The function $S(\lambda)$

- Plot of $-S(\lambda)$ with 5 eigenvalues

Operator algebra formalism

- For random matrix X^{N}, define $*$-moments as

$$
\mathbb{E}\left\{\frac{1}{N} \text { Trace }\left[\text { word in } X^{N} \text { and }\left(X^{N}\right)^{*}\right]\right\}
$$

- Take large- N limit of these $*$-moments
- Seek operator algebra (\mathcal{A}, τ) with trace $\tau: \mathcal{A} \rightarrow \mathbb{C}$ AND operator $a \in \mathcal{A}$ such that

$$
\begin{aligned}
& \left.\lim _{N \rightarrow \infty} \mathbb{E}\left\{\frac{1}{N} \text { Trace[word in } X^{N} \text { and }\left(X^{N}\right)^{*}\right]\right\} \\
& =\tau\left[\text { word in } a \text { and } a^{*}\right]
\end{aligned}
$$

Operator algebra formalism

- a not an operator-valued random variable-just one fixed operator in \mathcal{A}
- Limits of this sort constructed using methods of free probability

Definition of Brown measure [Brown 1986]

- Given $a \in(\mathcal{A}, \tau)$, want something like "empirical eigenvalue distribution"
- Don't assume a is normal, so can't use spectral theorem
- Imitate Girko's formula!
- Define

$$
S(\lambda)=\tau\left[\log \left((a-\lambda)^{*}(a-\lambda)\right)\right]
$$

then take Laplacian

Definition of Brown measure

- To be sure S is well defined, introduce regularization $\varepsilon>0$:

$$
S(\lambda, \varepsilon)=\tau\left[\log \left((a-\lambda)^{*}(a-\lambda)+\varepsilon\right)\right]
$$

- Then

$$
s(\lambda):=\lim _{\varepsilon \rightarrow 0} S(\lambda, \varepsilon)
$$

exists as a subharmonic function

- Then Brown measure Brown(a) defined as

$$
\operatorname{Brown}(a)=\frac{1}{4 \pi} \Delta s
$$

- Then $\operatorname{Brown}(a)$ is probability measure supported on spectrum of a

Part 3: The PDE method

The goal: Brown measure for the sum

- Large- N limit of $\sqrt{t} S$: "semicircular Brownian motion" σ_{t}
- Large- N limit of X_{0} : s.a. element x_{0} that is "freely independent" of σ_{t}
- Let $\mu=$ "law of x_{0} " $=$ large- N limit of eigenvalue distribution of X_{0}

Problem

Compute Brown measure of $x_{0}+i \sigma_{t}$ (in terms of the law μ of x_{0}).

- We believe that Brown $\left(x_{0}+i \sigma_{t}\right)$ is large- N limit of eigenvalue distribution of $X_{0}+i \sqrt{t} S$

Work of Biane, Ho-Zhong, and Jarosz-Nowak

- Biane: computed the distribution of $x_{0}+\sigma_{t}$ (without the " i ")
- If $x_{0}=y_{0}+\tilde{\sigma}_{t}$ for another semicircular Brownian motion $\tilde{\sigma}_{t}$, results of Ho and Zhong apply
- Jarosz and Nowak have general algorithm for computing Brown measures for $x+i y$;
- Their results agree with ours in case of $x_{0}+i \sigma_{t}$, but we get additional information

The PDE method

- Apply definition of Brown measure to $x_{0}+i \sigma_{t}$
- Define

$$
S(t, \lambda, \varepsilon)=\tau\left[\log \left(\left(x_{0}+i \sigma_{t}-\lambda\right)^{*}\left(x_{0}+i \sigma_{t}-\lambda\right)+\varepsilon\right)\right]
$$

Theorem

The function S satisfies the PDE

$$
\frac{\partial S}{\partial t}=\varepsilon\left(\frac{\partial S}{\partial \varepsilon}\right)^{2}+\frac{1}{4}\left(\left(\frac{\partial S}{\partial a}\right)^{2}-\left(\frac{\partial S}{\partial b}\right)^{2}\right), \quad \lambda=a+i b
$$

with initial condition

$$
S(0, \lambda, \varepsilon)=\tau\left[\log \left(x_{0}^{*} x_{0}+\varepsilon\right)\right] .
$$

The PDE method

- ε is a variable in the PDE
- Want to solve PDE, then evaluate at $\varepsilon=0$
- Take Δ with respect to λ of $S(t, \lambda, 0)$

The Hamilton-Jacobi method

- Define "Hamiltonian" function H from PDE, replacing derivatives on RHS with "momenta" (and overall sign change):

$$
H\left(a, b, \varepsilon, p_{a}, p_{b}, p_{\varepsilon}\right)=-\varepsilon p_{\varepsilon}^{2}-\frac{1}{4}\left(p_{a}^{2}-p_{b}^{2}\right)
$$

- Then introduce auxiliary system of ODE's (Hamilton's equations):

$$
\frac{d u}{d t}=\frac{\partial H}{\partial p_{u}} ; \quad \frac{d p_{u}}{d t}=-\frac{\partial H}{\partial u} ; \quad u \in\{a, b, \varepsilon\} .
$$

- These ODE's can be solved explicitly

The Hamilton-Jacobi formula

- Hamilton-Jacobi formula:

$$
S(t, \lambda(t), \varepsilon(t))=S\left(0, \lambda_{0}, \varepsilon_{0}\right)+t H_{0}
$$

where

$$
H_{0}=H\left(a_{0}, b_{0}, \varepsilon_{0}, p_{a, 0}, p_{b, 0}, p_{\varepsilon, 0}\right)
$$

- Initial momenta are

$$
p_{u, 0}=\frac{\partial}{\partial u} S\left(0, \lambda_{0}, \varepsilon_{0}\right) .
$$

- Get S along solutions to ODE's-in terms of λ_{0} and ε_{0}

Part 4: Where the Brown measure is zero

Simple strategy for applying Hamilton-Jacobi method

- H-J method tells us $S(t, \lambda(t), \varepsilon(t))$
- To get $S(t, \lambda, 0)$, choose $\left(\lambda_{0}, \varepsilon_{0}\right)$ so that $\lambda(t)=\lambda$ and $\varepsilon(t)=0$
- Simple strategy: to get $\varepsilon(t) \approx 0$, try $\varepsilon_{0} \approx 0$

Small- ϵ_{0} existence time

- Problem: If $\varepsilon_{0} \approx 0$, solution may cease to exist before time t
- Define

$$
T\left(\lambda_{0}\right)=\text { existence time of solution with } \lambda(0)=\lambda_{0}, \varepsilon(0) \approx 0
$$

- Explicitly,

$$
T\left(a_{0}+i b_{0}\right)=\left(\int_{\mathbb{R}} \frac{1}{\left(a_{0}-x\right)^{2}+b_{0}^{2}} d \mu(x)\right)^{-1}
$$

where μ is the distribution of x_{0}

Small- ϵ_{0} existence time

- Taking $\varepsilon_{0} \approx 0$ only allowed if $T\left(\lambda_{0}\right)>t$

Results of simple strategy

- If $T\left(\lambda_{0}\right)>t$, taking $\varepsilon_{0} \approx 0$ works
- Find that $\lambda(t)$ is a holomorphic function of λ_{0}
- Find that $S(t, \lambda, 0)$ is harmonic
- Conclude that Brown measure is zero

Good Sets

- "Good Set" in λ_{0}-plane

$$
\left\{\lambda_{0} \in \mathbb{C} \mid T\left(\lambda_{0}\right)>t\right\}
$$

[This set also appears in work of Biane and Ho-Zhong]

- "Good Set" in λ-plane

$$
\left\{\lambda(t) \mid \lambda_{0} \in \text { Good Set }\right\}
$$

Theorem

The Brown measure of $x_{0}+i \sigma_{t}$ is zero in Good Set in λ-plane.

Good Sets in Bernoulli case

Good set in λ-plane

Conformal map

- With λ_{0} in Good Set and $\varepsilon_{0}=0$, get

$$
\lambda(t)=J_{t}\left(\lambda_{0}\right)
$$

where

$$
J_{t}\left(\lambda_{0}\right)=\lambda_{0}-t \int \frac{1}{\lambda_{0}-x} d \mu(x)
$$

and $\mu=\operatorname{Law}\left(x_{0}\right)$

- J_{t} is a conformal map of Good Set in λ_{0}-plane to Good Set in λ-plane

Part 5: Where the Brown measure is not zero

Air assault!

- Part 4 was "ground assault": Run along with $\varepsilon(t) \approx 0$
- Where the Brown measure is not zero, need "air assault"!
- Find λ_{0} and $\varepsilon_{0}>0$ so ODE's will "land" with $\varepsilon(t)=0, \lambda(t)=\lambda$

Landing the cannonballs

- For each λ_{0} in Bad Set in λ_{0}-plane, $\exists \varepsilon_{0}>0$ making $\varepsilon(t)=0$
- Compute $\lambda(t)$ with this ε_{0}
- Surjectivity: each point in Bad Set in λ-plane gets hit this way
- Decoupling:

$$
\begin{aligned}
b(t) & =2 b_{0} \\
a(t) & =f_{t}\left(a_{0}\right)
\end{aligned}
$$

Decoupling visualized

Main result

- Get $S(t, \lambda, 0)$ as a function of λ_{0}
- λ_{0} and λ are related by map on previous slide
- Then take Laplacian in λ

Theorem (H-Ho 2020)

In the Bad Set in λ-plane, Brown measure has a strictly positive density that depends only on $a=\operatorname{Re} \lambda$. Specifically, the density is given by

$$
\frac{1}{2 \pi t}\left(\frac{d a_{0}^{t}(a)}{d a}-\frac{1}{2}\right)
$$

where a_{0}^{t} is the real part of the λ_{0} that maps to $\lambda=a+i b$.

Bernoulli case, $t=1.05$

Uniform case

$-\frac{1}{-0.5}$

Part 6: Connection to the law of $x_{0}+\sigma_{t}$

Relating $x_{0}+\sigma_{t}$ and $x_{0}+i \sigma_{t}$

- Biane [1997] computed law of $x_{0}+\sigma_{t}$ using subordination method
- Connection between $x_{0}+\sigma_{t}$ and $x_{0}+i \sigma_{t}$ suggested by work of Janik, Nowak, Papp, Wambach, and Zahed [1997]
- We obtain a direct relationship between Brown measure of $x_{0}+i \sigma_{t}$ and law of $x_{0}+\sigma_{t}$

Defining the map

- Define a map Q_{t} from Bad Set in λ-plane to \mathbb{R} by:

$$
Q_{t}(a+i b)=2 a_{0}^{t}(a)-a
$$

The connection

Theorem

The push-forward of the Brown measure of $x_{0}+i \sigma_{t}$ under Q_{t} is the law of $x_{0}+\sigma_{t}$, as computed by Biane.

- Compute eigenvalues of $X_{0}+i \sqrt{t} S$ in \mathbb{C}
- Map to real line by Q_{t}
- Distribution of points in \mathbb{R} will be just like eigenvalues of $X_{0}+\sqrt{t} S$
- A mysterious connection between $X_{0}+i \sqrt{t} S$ and $X_{0}+\sqrt{t} S$

Epilog

Results of Driver-H-Kemp

- Studied Brownian motion in $G L(N ; \mathbb{C})$ as $N \rightarrow \infty$ by similar method

Conclusion

THANK YOU FOR YOUR ATTENTION!

