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Moments

Let A be an N × N unitary matrix. Denote the eigenvalues of A by e iθn ,
1 ≤ n ≤ N, and the characteristic polynomial of A on the unit circle in the
complex plane by

PN(A, θ) = det(I − Ae−iθ) =
∏
n

(1− e iθn−iθ).

Moments:
MN(β) = EA∈U(N)|PN(A, θ)|2β

c.f. Moments of the Riemann-Zeta-Function

1

T

∫ T

0
|ζ (1/2 + it) |2βdt

[Hardy & Littlewood (1918), Ingham (1926), . . . ]
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Calculating RMT Moments

MN(β) = EA∈U(N)|PN(A, θ)|2β = EA∈U(N)

N∏
n=1

|1− e i(θn−θ)|2β

Using Weyl’s integration formula

MN(β) =
1

(2π)NN!

∫ 2π

0
· · ·
∫ 2π

0

N∏
n=1

|1− e i(θn−θ)|2β.

×
∏

1≤j<k≤N
|e iθj − e iθk |2dθ1 · · · dθN .

This integral can then be evaluated by relating it to one computed by
Selberg (Selberg 1941, 1944), giving, for Reβ > −1/2

MN(β) =
N∏
j=1

Γ(j)Γ(j + 2β)

Γ(j + β)2
.
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Hence (c.f. Keating & Snaith 2000), for Reβ > −1/2,

lim
N→∞

MN(β)

Nβ2 =
G (1 + β)2

G (1 + 2β)
,

where G (s) is the Barnes G -function,

and for k ∈ N

lim
N→∞

MN(k)

Nk2 =

(
k−1∏
m=0

m!

(m + k)!

)
=

gk
k2!

where g(k) is an integer.

N.B. gk is also the number of ways of filling a k × k array with the
integers 1, 2, . . . , k2 in such a way that the numbers increase along each
row and down each column (i.e. the number of k × k Young tableaux) –
c.f. Bump & Gamburd (2006)
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Moments of the zeta-function: RMT-inspired conjectures

Conjecture (Keating & Snaith 2000)

For Reβ > −1/2, as T →∞

1

T

∫ T

0
|ζ (1/2 + it) |2βdt ∼ a(β)

G (1 + β)2

G (1 + 2β)
(logT )β

2

and for k ∈ N, as T →∞

1

T

∫ T

0
|ζ (1/2 + it) |2kdt ∼ a(k)

k−1∏
m=0

m!

(m + k)!
(logT )k

2
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Joint Moments

Set

VN(A, θ) := exp

(
iN

(θ + π)

2
− i

N∑
n=1

θn
2

)
PN(A, θ),

(VN(A, θ) is real-valued for θ ∈ [0, 2π)).
The joint moments of the function VU(θ) and its derivative are

FN(k, h) := EA∈U(N)|VN(A, 0)|2k−2h|V ′N(A, 0)|2h,

where it is assumed that

h > −1

2
and k > h − 1

2
.

These joint moments have been studied by many authors, including
Hughes (2001), Conrey Rubinstein & Snaith (2006), Dehaye (2008, 2010),
Winn (2012), Riedtmann (2018), Basor et al. (2018), Bailey et al. (2019).
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Asymptotics

Conjecture (Hughes 2001)

When N →∞, for k > −1/2 and 0 ≤ h < k + 1/2

FN(k, h) ∼ F (k , h)Nk2+2h

i.e.

F (k , h) := lim
N→∞

FN(k , h)

Nk2+2h

exists and is non-zero for k > −1/2 and 0 ≤ h < k + 1/2
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Motivation

Set Θ(t) = Im log Γ
(

1
4 + i t2

)
− t

2 log π. Then Z (t) = eiΘ(t)ζ(1/2 + it) is
real-valued for t ∈ R
The joint moments

1

T

∫ T

0
|Z (t)|2k−2h|Z ′(t)|2hdt,

have been studied by many authors including Ingham (1926), Conrey
(1988), Conrey & Ghosh (1989), . . .

Conjecture (Hughes 2001)

When T →∞, for k > −1/2 and 0 ≤ h < k + 1/2,

1

T

∫ T

0
|Z (t)|2k−2h|Z ′(t)|2hdt ∼ a(k)F (k, h)(logT )k

2+2h
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Previous Results

Hughes (2001) proved the conjectured asymptotics for integer values of h
and k.

For integer and half-integer values of h and k , FN(k , h) is equal to a sum
over Young Tableaux, but now with a complicated summand (Dehaye
(2008, 2010), Winn (2012), and Riedtmann (2018)). The analysis of these
formulae is a major challenge.

For integer values of h and k, these formulae can be used to prove the
conjectured asymptotics, with, for a given h ∈ N, F (k, h) equal to a
product of G (1 + k)2/G (1 + 2k) and a rational function of k .

It is far from straightforward to prove that these formulae for F (k , h)
extend, for a given h ∈ N, to k > h − 1/2.
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Previous Results

For integer values of h and k, there is a formula for FN(k , h) in terms of a
(rational) solution of the σ-Painlevé V equation [Basor, Bleher,
Buckingham, Grava, Its, Its, & Keating (2018)].

Taking the limit N →∞, this yields a separate proof of Hughes’s
conjecture for integer values of h and k , with a formula for F (k , h) in
terms of a solution of the σ-Painlevé III equation [Basor, Bleher,
Buckingham, Grava, Its, Its, & Keating (2018)]; c.f. also [Bailey, Bettin,
Blower, Conrey, Prokhorov, Rubinstein & Snaith (2019)].

Finally, for integer values of h and k , there are also (conjectural)
conformal block expansions for FN(k , h) and F (k , h) [Basor, Bleher,
Buckingham, Grava, Its, Its, & Keating (2018)].
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A random variable of interest to our enquires

Let s > −1
2 . We consider the determinantal point process C(s) on

R∗ = (−∞, 0) ∪ (0,∞) with correlation kernel K(s)(x , y)given in
integrable form:

K(s)(x , y) =
1

2π

Γ(s + 1)2

Γ(2s + 1)Γ(2s + 2)

P(s)(x)Q(s)(y)− P(s)(y)Q(s)(x)

x − y
,

with

P(s)(x) = 22s− 1
2 Γ

(
s +

1

2

)
|x |−

1
2 Js− 1

2

(
1

|x |

)
,

Q(s)(x) = sgn(x)22s+ 1
2 Γ

(
s +

3

2

)
|x |−

1
2 Js+ 1

2

(
1

|x |

)
,

where Js(·) is the Bessel function.
Let −α−1 < −α−2 < −α−3 < · · · < 0 and α+

1 > α+
2 > α+

3 > · · · > 0 be the
corresponding random points of C(s).
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Then the random variable

X(s) = lim
m→∞

[ ∞∑
i=1

α+
i 1

(
α+
i >

1

m2

)
−
∞∑
i=1

α−i 1

(
α−i >

1

m2

)]

is well defined [Qiu (2017)].

X(s) can be thought of as a kind of principal value sum of the points in
C(s).

This random variable will play a central role in our results.
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Context

The ergodic measures for the action of the infinite dimensional unitary
group U(∞) = lim

→
U(N) on the space of infinite Hermitian matrices

H = lim
←

H(N) were classified by Pickrell (1991), and by Olshanski &

Vershik (1996).

They are in bijection with a certain infinite dimensional space Ω of
parameters

(
{α+

i }∞i=1, {α
−
i }∞i=1, γ1, γ2

)
⊂ R2∞+2.

Borodin and Olshanski proved that for any U(∞)-invariant probability
measure M on H, there exists a unique probability measure νM on Ω such
that M (dH) =

∫
Ω ν

M(dω)Nω (dH)

[This is a special case of the more general problem of classifying ergodic
measures for actions of inductively compact groups
G(1) ⊂ G(2) ⊂ · · · ⊂ G(N) ⊂ · · · .]
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The Hua-Pickrell measures M(s) are a distinguished family of
U(∞)-invariant probability measures on H related to the Cauchy/Jacobi
Ensembles of RMT.

In this case the law of the parameters
(
{α+

i }∞i=1, {α
−
i }∞i=1

)
was determined

by Borodin and Olshanski:

{α+
i } t {−α

−
i }

d
= C(s)

The law of the parameters (γ1, γ2) was an open question until recent work
of Qiu, who proved that almost surely γ2 ≡ 0 and

γ1
d
= X(s).
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The Hua-Pickrell Measures

Let WN denote the Weyl chamber:

WN = {x = (x1, x2, . . . , xN) ∈ RN : x1 ≥ x2 ≥ · · · ≥ xN}.

For N ≥ 1 and s > −1
2 , the Hua-Pickrell probability measure M

(s)
N on WN

is

M
(s)
N (dx) =

1

c
(s)
N

N∏
j=1

1

(1 + x2
j )N+s

∆N(x)2dx1 · · · dxN

where ∆N(x) =
∏

1≤i<j≤N(xj − xi ) and

c
(s)
N = (2π)N2−N

2−2sNG (N + 1)
N∏
j=1

Γ(2s + N − j + 1)

Γ(s + N − j + 1)2
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Let s > −1
2 . Then,

1

N

N∑
i=1

x
(N)
i

d−→ X(s), as N →∞,

where (x
(N)
1 , . . . , x

(N)
N ) has law M

(s)
N and X(s) is the random variable

defined earlier [Borodin & Olshanski (2001), Qiu (2017)].

This plays an important role in our calculations.
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Results [Assiotis, Keating & Warren (2020)]

Theorem Let s > −1
2 and 0 ≤ h < s + 1

2 . Then,

lim
N→∞

1

Ns2+2h
FN(s, h)

def
= F (s, h) = F (s, 0)2−2hE

[
|X(s)|2h

]
with the limit F (s, h) satisfying 0 < F (s, h) <∞. The function F (s, 0) is
given by

F (s, 0) =
G (s + 1)2

G (2s + 1)
,

where G is the Barnes G-function.
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Outline of Proof

The first key ingredient is a representation of FN(s, h) in terms of FN(s, 0)

and the moments E
[∣∣∑N

i=1
x

(N)
i
N

∣∣2h], where (x
(N)
1 , . . . , x

(N)
N ) have the same

distribution as the non-increasing eigenvalues of a random Hermitian

matrix with law M
(s)
N .

To prove convergence of the moments:

E

[∣∣∣∣ N∑
i=1

x
(N)
i

N

∣∣∣∣2h
]
−→ E

[
|X(s)|2h

]
, as N →∞,

one needs to prove uniform integrability or, as we do, show uniform
boundedness for some higher moment.

The averages that we want to control uniformly in N do not converge if we
bring the absolute values inside, and it is essential that a cancellation due

to symmetry around the origin of the points in C
(s)
N is taken into account.
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The second key step is to observe that
∑N

i=1
x

(N)
i
N is simply the trace of the

associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell

measures M
(s)
N , for all N ≥ 1 the diagonal elements of the random

matrices in question turn out to be exchangeable, identically distributed
random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues (x
(N)
1 , . . . , x

(N)
N )

do.

This leads directly to a proof of uniform boundedness of the moments
when s > 0.

Extending this to the range −1
2 < s ≤ 0 takes more work.
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Moments of X(s)

Let h ∈ N. Denote by E(s)
N the expectation with respect to the probability

measure M
(s)
N on ordered configurations in RN . Then, for s > h − 1

2 we
have:

E
[
X(s)2h

]
=

1

(2h)!

2h∑
k=1

(−1)2h−k
(

2h

k

)
E(s)
k

[(
x

(k)
1 + · · ·+ x

(k)
k

)2h
]
.

Moreover, for any N ≥ 1 and s > h − 1
2 , the expectation in the summand

is a rational function of s.
For example

E
[
X(s)2

]
=

1

4s2 − 1
, s >

1

2
.
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Let s, h ∈ N with h ≤ s. Then,

E
[
X(s)2h

]
= 22h(−1)h

d2h

dt2h

[
exp

∫ t

0

τ(x)

x
dx

] ∣∣∣∣
t=0

,

where τ(x) is a non-trivial solution to a special case of the σ-Painlevé III’
equation with two parameters:(

x
d2τ

dx2

)2

= −4x

(
dτ

dx

)3

+ (4s2 + 4τ)

(
dτ

dx

)2

+ x
dτ

dx
− τ,

with initial conditions:

τ(0) = 0, τ ′(0) = 0.

Moreover, E
[
X(s)2h

]
can also be expressed as a determinant involving the

modified Bessel function Ir .
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Let s ∈ N>1 = {2, 3, 4, . . . } and define:

Ξ(s)(t) = t
d

dt
logE

[
e i

t
2

X(s)
]
.

Then, there exists T > 0 such that Ξ(s) is C 2 in [0,T ] and Ξ(s) satisfies a
special case of the σ-Painlevé III’ equation with two parameters:(
t
d2Ξ(s)

dt2

)2

= −4t

(
dΞ(s)

dt

)3

+ (4s2 + 4Ξ(s))

(
dΞ(s)

dt

)2

+ t
dΞ(s)

dt
− Ξ(s),

with initial conditions:

Ξ(s)(0) = 0,
d

dt
Ξ(s)(t)

∣∣
t=0

= 0.
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Using the connection between the joint moments of the characteristic
polynomials and the moments of X(s) allows one to prove various special
values in the latter case using results previously obtained in the former
case that it is hard to see how to derive directly.

For example, it follows from a result of Winn (2012) that

E [|X(1)|] =
e2 − 5

2π
.
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Conjecture for the Riemann zeta-function

It is natural to conjecture that for s > −1
2 and 0 ≤ h < s + 1

2 as T →∞

1

T

∫ T

0
|Z (t)|2k−2h|Z ′(t)|2hdt ∼ a(s)F (s, 0)2−2hE

[
|X(s)|2h

]
(logT )s

2+2h ,

and it would be interesting to see whether this could be justified directly
using number-theoretic techniques.
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Last words . . .

Thank you to the organisers!

And for weekly Zoom RMT seminars, held on Tuesdays at 3.30pm UK
time, see

https://www.maths.ox.ac.uk/events/list/3669

June 2 – Paul Bourgade

June 9 – Nick Simm

June 16 – Christian Webb
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