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ErdGs-Rényi graph

Let A = (A;;) be the adjacency matrix of the Erdés-Rényi graph G(N,d/N).
0 < d < N/2 is the expected degree.
Denote by A\; > Ay > --- > Ay the eigenvalues of A/+/d(1 — d/N).

If d — 0o as N — oo then the empirical measure = 3, 0, converges to the
semicircle law.
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Goal: fluctuations of individual eigenvalues near the edges, e.g. A2 and An.



Previous results

Notation: write X <Y to mean X = O.(N~¢Y) for some ¢ > 0.

e [Erdés, K, Yau, Yin; 2012]: If d > N2/3 then A, has GOE Tracy-Widom
fluctuations:
N23(\y — EX) -5 TW,

e [Lee, Schnelli; 2016]: The same holds for d > N'/3.

e [Huang, Landon, Yau; 2017]: If N2/9 <« d < N1/3 then Ay has Gaussian
fluctuations:

VNd (X2 — EXs) -5 N(0,2) .

Crossover from Tracy-Widom to Gaussian fluctuations at d =< N1/3.



Remarks

e The expectation EXy undergoes a shift, first observed by [Lee, Schnelli;
2016] and refined by [Huang, Landon, Yau; 2017]
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e The Gaussian fluctuations are explicitly given by the random variable

Z=—-1

1
7 , D:= N ZA” (average degree),

4,J
satisfying VNdZ —& N(0,2).
Then [Huang, Landon, Yau; 2017] show with very high probability
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|A2—EA2—Z|<N()(2/3+d3>.



Result

Theorem [He, K; 2020]. If 1 < d < N'/3 then

VN (A — EXy) -5 N(0,2).

In fact, we prove a rigidity result for all eigenvalues:
zZ N—¢
A= EXN) 1+ = +O(>
@a(1+2)+0( I
with very high probability for 2 < ¢ < N. (Shown in bulk by [He; 2019].)

Interpretation: the Gaussian fluctuations vanish to leading order if one replaces
the determinstic scaling A/+/d(1 — d/N) with the random scaling

A/\/DA— /N
\/g)‘i =E\ + O(%) .




Heurstic picture of eigenvalue fluctuations of sparse matrices

The fluctuations of the eigenvalues of a sparse random matrix consists of two
components:

e Random matrix component coinciding with fluctuations of GOE.
Order v/log N/N in bulk ([Gustavsson; 2005], [O'Rourke; 2010])
Order N—2/3 at edge.

e Sparseness component from Z.

Order 1/+/Nd everywhere except origin.

Sparseness component dominates over random matrix component for d < N in
bulk and d < N'/3 at edge.



Proof

Essence of proof: rigidity bounds for eigenvalue locations with accuracy
N*C
VNd

Previously: accuracy
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N2/3 + de’

with a =1 [Erdés, K, Yau, Yin; 2012], a = 2 [Lee, Schnelli; 2016], a = 3
[Huang, Landon, Yau; 2017].

Need to go beyond a 1/d-expansion to reach sparseness d > 1.



Main estimate: upper bound on spectrum of H := (A — EA)/+/d with
eigenvalues (1 > o = -+ 2 un.

Use the Green function and its normalized trace
1
G(z):=(H—2)"", G(z) ::NTrG(z), z=FE+ineC,.

Simple observation: if

1 n 1
ImG(z) = — e K —
=% ;(E—ui)QﬂLn? N7

then there is no eigenvalue in [E —n, E + 7).

Main work: estimate Im G(z) just outside the spectrum.



Starting point: construction of self-consistent polynomial from [Huang, Landon,
Yau; 2017], generalizing [Lee, Schnelli; 2016].

Lemma [Huang, Landon, Yau]. There exists a deterministic polynomial

Py(z, )—1+zx+x—|—d +d2 64 ...
such that N 1
o(1 mG(2
R Gla)] < N0 (EEE 1 1)
for > 1/N. Here as,as, ... are universal constants.

Note: this says nothing about the size of Py(z,G(z)). In fact, Py(z,G(z)) is
typically much bigger than the RHS.



Define the random polynomial P(z,z) := Py(z,2) + Z22.

Lemma [Huang, Landon, Yau]. There exists a random algebraic function
m : C4 — C, satisfying
P(z,m(z)) =0,

such that m is the Stieltjes transform of a random symmetric probability
measure 9. We have supp o = [—L, L], where

L-ro+z+o( N2
—Lo+Z+
0 (d¢Nd>

and b b
Lo =94 2L 22
0=2+ T+ 5+
Here by, bo, ... are universal constants (e.g. by = 1, by = —5/4).

Interpretation: L is the approximate location of the right spectral edge, and we
have to prove that
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p1 < Lo+ Z +



To that end, choose z = Lo + Z + w with w = k + in deterministic.
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The proof follows from the following result.

- . _  N-c
Proposition. There exists n > N~ such that for k = VN e have
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All previous works on eigenvalue rigidity use the following steps:
(i) |P(z,G(#))| < 1 with very high probability;

(i) |G(z) —m(z)] < 1 is small with very high probability, by inversion of
self-consistent equation associated with P;

(i) ImG(z) < Imm(z) + |G(z) — m(2)| < Nin

Problem: if d is small enough there is no choice of 7 such that both terms in
(iii) are small enough.

Instead, in (i) we estimate |Im G(z) — Imm(2)|.

To that end, we estimate [Im P(z, G(z))| instead of |P(z,G(z))|. Exploits a
crucial cancellation which ensures that [Im P(z, G(2))| < |P(z,G(z2))].



How to invert self-consistent equation associated with Im P?

Expand
1
P(z,G) = 02P(z,m)(G — m) + §8§P(z,m)(g — m)2 NI

As 05 P(z,m) = 2, taking the imaginary part and rearranging terms yields

Re 32 P(z,m)Im(G — m) =Im P(z,G) — Im 02 P(z,m) Re(G — m)
—2Re(G —m)Im(G —m) + -
To solve this in Im(G — m) we need
|G —m| < |Red2P(z,m)| < Vk.
Thus, the proof splits into two main steps:
(a) Show |G —m| < /k by estimating |P(z,G(2))|.
(b) Estimate [Im P(z, G)|.

Step (a) is harder because we cannot exploit the cancellation from Im.



Basic strategy for proving (a) and (b): recursive high moment estimates using
cumulant expansion.

Recall that

Pizyz)=14zz+Q(z)+ Z, Q(x)::12+%x4+%x6+....

Abbreviate P = P(z,G(2)), Q = Q(G(z)) and write

1
E|P[" = & ) EH;;G;iP""'P*™" + E(Q + Z)P" ' P™,

4,J

since
1+2G=HG.

Then use cumlant expansion (or generalized Stein lemma)

4
E[h- f(0)] =3 = Chya (WELf ) ()] + Ress

where C(h) is the kth cumulant of h.



The cumulant expansion yields

as(P”—lp*n) ak_st'

2n __ 7

E|P|*" = Z I Z ( > ch+1 i) { 8H§j OHF—>
o ?, ¥}
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The polynomial P is designed so that

1
EP = > EH;;Gji +E(Q+ 2)

0,J

1 <1 oG
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OHF

and for the same reason there is a near-exact cancellation between the blue
terms above.

Dangerous terms: red ones, which capture the fluctuations of P.



Example of dangerous term (k = 3 and s = 2):

264 ’L] [ 62P*) —1(G*2)ii0;jGiiij‘P|2n—2} .

Unlike in [Erdés, K, Yau, Yin], [Lee, Schnelli], [Huang, Landon, Yau]: taking
absolute value inside expectation is not affordable.

Instead, we have to exploit higher-order cancellations arising from construction
of P. Use key identity

(02P")G*2 = 0, P(+",G") — G*
and approximations (to be justified)

(G*2)u ~ Gi*Qa G;] ~ G* s Giia ij ~ Q

to write

(02 P*)N (G*Q)“G GyGj; =N~ law*P( Q*)@QQ + error.



Thus, up to error terms,

T— % > Cu(HE |00 P2, GG G2 P2
i,

1
- N3 Z C4(Hij)]E|:aw*(Hle?k)Q*Q2|P|27L—2}
6.4,k

+ % ZCAL(HU‘)E {Gw* (Q* + Z)Q*Q2|P|27L_2:| .
5J

Now apply cumulant expansion again, using that d,,- and 9/0H;; commute.
Thus, we can exploit the cancellation built into P.

Need a systematic machinery to track the algebraic structure of all terms
generated by this procedure and the corresponding higher-order cancellations.
This is done by constructing a hierarchy of Schwinger-Dyson equations for a
sufficiently large class of polynomials in (Gij)f\fj:l.



