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Erdős-Rényi graph

Let A = (Aij) be the adjacency matrix of the Erdős-Rényi graph G(N, d/N).

0 < d 6 N/2 is the expected degree.

Denote by λ1 > λ2 > · · · > λN the eigenvalues of A/
√
d(1− d/N).

If d→∞ as N →∞ then the empirical measure 1
N

∑
i δλi

converges to the
semicircle law.
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Goal: fluctuations of individual eigenvalues near the edges, e.g. λ2 and λN .



Previous results

Notation: write X � Y to mean X = Oε(N
−εY ) for some ε > 0.

• [Erdős, K, Yau, Yin; 2012]: If d� N2/3 then λ2 has GOE Tracy-Widom
fluctuations:

N2/3(λ2 − Eλ2)
d−→ TW1

• [Lee, Schnelli; 2016]: The same holds for d� N1/3.

• [Huang, Landon, Yau; 2017]: If N2/9 � d� N1/3 then λ2 has Gaussian
fluctuations: √

Nd (λ2 − Eλ2)
d−→ N (0, 2) .

Crossover from Tracy-Widom to Gaussian fluctuations at d � N1/3.



Remarks

• The expectation Eλ2 undergoes a shift, first observed by [Lee, Schnelli;
2016] and refined by [Huang, Landon, Yau; 2017]

Eλ2 = 2 +
1

d
− 5

4d2
+ · · · .

• The Gaussian fluctuations are explicitly given by the random variable

Z ..=
D
d
− 1 , D ..=

1

N

∑
i,j

Aij (average degree) ,

satisfying
√
NdZ d−→ N (0, 2).

Then [Huang, Landon, Yau; 2017] show with very high probability

|λ2 − Eλ2 −Z| 6 No(1)

(
1

N2/3
+

1

d3

)
.



Result

Theorem [He, K; 2020]. If 1� d� N1/3 then

√
Nd (λ2 − Eλ2)

d−→ N (0, 2) .

In fact, we prove a rigidity result for all eigenvalues:

λi = (Eλi)
(
1 +
Z
2

)
+O

(
N−c√
Nd

)
with very high probability for 2 6 i 6 N . (Shown in bulk by [He; 2019].)

Interpretation: the Gaussian fluctuations vanish to leading order if one replaces
the determinstic scaling A/

√
d(1− d/N) with the random scaling

A/
√
D(1− d/N): √

d

D
λi = Eλi +O

(
N−c√
Nd

)
.



Heurstic picture of eigenvalue fluctuations of sparse matrices

The fluctuations of the eigenvalues of a sparse random matrix consists of two
components:

• Random matrix component coinciding with fluctuations of GOE.

Order
√
logN/N in bulk ([Gustavsson; 2005], [O’Rourke; 2010])

Order N−2/3 at edge.

• Sparseness component from Z.

Order 1/
√
Nd everywhere except origin.

Sparseness component dominates over random matrix component for d� N in
bulk and d� N1/3 at edge.



Proof

Essence of proof: rigidity bounds for eigenvalue locations with accuracy

N−c√
Nd

.

Previously: accuracy
1

N2/3
+

1

da
,

with a = 1 [Erdős, K, Yau, Yin; 2012], a = 2 [Lee, Schnelli; 2016], a = 3
[Huang, Landon, Yau; 2017].

Need to go beyond a 1/d-expansion to reach sparseness d� 1.



Main estimate: upper bound on spectrum of H ..= (A− EA)/
√
d with

eigenvalues µ1 > µ2 > · · · > µN .

Use the Green function and its normalized trace

G(z) ..= (H − z)−1 , G(z) ..=
1

N
TrG(z) , z = E + iη ∈ C+ .

Simple observation: if

ImG(z) =
1

N

∑
i

η

(E − µi)2 + η2
� 1

Nη

then there is no eigenvalue in [E − η,E + η].

Main work: estimate ImG(z) just outside the spectrum.



Starting point: construction of self-consistent polynomial from [Huang, Landon,
Yau; 2017], generalizing [Lee, Schnelli; 2016].

Lemma [Huang, Landon, Yau]. There exists a deterministic polynomial

P0(z, x) = 1 + zx+ x2 +
a2
d
x4 +

a3
d2
x6 + · · ·

such that ∣∣EP0(z,G(z))
∣∣ 6 No(1)

(
E ImG(z)

Nη
+

1

N

)
for η � 1/N . Here a2, a3, . . . are universal constants.

Note: this says nothing about the size of P0(z,G(z)). In fact, P0(z,G(z)) is
typically much bigger than the RHS.



Define the random polynomial P (z, x) ..= P0(z, x) + Zx2.

Lemma [Huang, Landon, Yau]. There exists a random algebraic function
m .. C+ → C+ satisfying

P (z,m(z)) = 0 ,

such that m is the Stieltjes transform of a random symmetric probability
measure %. We have supp % = [−L,L], where

L = L0 + Z +O

(
No(1)

d
√
Nd

)
and

L0 = 2 +
b1
d

+
b2
d2

+ · · · .

Here b1, b2, . . . are universal constants (e.g. b1 = 1, b2 = −5/4).

Interpretation: L is the approximate location of the right spectral edge, and we
have to prove that

µ1 6 L0 + Z +
N−c√
Nd

.



To that end, choose z = L0 + Z + w with w = κ+ iη deterministic.

2 L0 L Re z

%

κ

The proof follows from the following result.

Proposition. There exists η � N−1 such that for κ = N−c
√
Nd

we have

ImG(z)� 1

Nη
.



All previous works on eigenvalue rigidity use the following steps:

(i) |P (z,G(z))| � 1 with very high probability;

(ii) |G(z)−m(z)| � 1 is small with very high probability, by inversion of
self-consistent equation associated with P ;

(iii) ImG(z) 6 Imm(z) + |G(z)−m(z)| � 1
Nη .

Problem: if d is small enough there is no choice of η such that both terms in
(iii) are small enough.

Instead, in (iii) we estimate |ImG(z)− Imm(z)|.

To that end, we estimate |ImP (z,G(z))| instead of |P (z,G(z))|. Exploits a
crucial cancellation which ensures that |ImP (z,G(z))| � |P (z,G(z))|.



How to invert self-consistent equation associated with ImP?

Expand

P (z,G) = ∂2P (z,m)(G−m) +
1

2
∂22P (z,m)(G−m)2 + · · · .

As ∂22P (z,m) ≈ 2, taking the imaginary part and rearranging terms yields

Re ∂2P (z,m) Im(G−m) = ImP (z,G)− Im ∂2P (z,m)Re(G−m)

− 2Re(G−m) Im(G−m) + · · · .

To solve this in Im(G−m) we need

|G−m| � |Re ∂2P (z,m)| �
√
κ .

Thus, the proof splits into two main steps:

(a) Show |G−m| �
√
κ by estimating |P (z,G(z))|.

(b) Estimate |ImP (z,G)|.

Step (a) is harder because we cannot exploit the cancellation from Im.



Basic strategy for proving (a) and (b): recursive high moment estimates using
cumulant expansion.

Recall that

P (z, x) = 1 + zx+Q(x) + Z , Q(x) ..= x2 +
a2
d
x4 +

a3
d2
x6 + · · · .

Abbreviate P = P (z,G(z)), Q = Q(G(z)) and write

E|P |2n =
1

N

∑
i,j

EHijGjiP
n−1P ∗n + E(Q+ Z)Pn−1P ∗n ,

since
1 + zG = HG .

Then use cumlant expansion (or generalized Stein lemma)

E
[
h · f(h)

]
=
∑̀
k=0

1

k!
Ck+1(h)E[f (k)(h)] +R`+1 ,

where Ck(h) is the kth cumulant of h.



The cumulant expansion yields

E|P |2n =
1

N

∑̀
k=1

1

k!

k∑
s=1

(
k

s

)∑
i,j

Ck+1(Hij)E
[
∂s(Pn−1P ∗n)

∂Hs
ij

∂k−sGij

∂Hk−s
ij

]

+
1

N

∑̀
k=1

1

k!

∑
i,j

Ck+1(Hij)E
[
∂kGij
∂Hk

ij

Pn−1P ∗n
]
+E(Q+ Z)Pn−1P ∗n+error .

The polynomial P is designed so that

EP =
1

N

∑
i,j

EHijGji + E(Q+ Z)

=
1

N

∑̀
k=1

1

k!

∑
i,j

Ck+1(Hij)E
[
∂kGij
∂Hk

ij

]
+ E(Q+ Z) + error ≈ 0 ,

and for the same reason there is a near-exact cancellation between the blue
terms above.

Dangerous terms: red ones, which capture the fluctuations of P .



Example of dangerous term (k = 3 and s = 2):

T ..=
1

N

∑
i,j

C4(Hij)E
[
(∂2P

∗)N−1(G∗2)iiG
∗
jjGiiGjj |P |2n−2

]
.

Unlike in [Erdős, K, Yau, Yin], [Lee, Schnelli], [Huang, Landon, Yau]: taking
absolute value inside expectation is not affordable.

Instead, we have to exploit higher-order cancellations arising from construction
of P . Use key identity

(∂2P
∗)G∗2 = ∂w∗P (z∗, G∗)−G∗

and approximations (to be justified)

(G∗2)ii ≈ G∗2 , G∗jj ≈ G∗ , Gii, Gjj ≈ G

to write

(∂2P
∗)N−1(G∗2)iiG

∗
jjGiiGjj = N−1∂w∗P (z∗, G∗)G∗G2 + error .



Thus, up to error terms,

T =
1

N2

∑
i,j

C4(Hij)E
[
∂w∗P (z∗, G∗)G∗G2|P |2n−2

]
=

1

N3

∑
i,j,k,l

C4(Hij)E
[
∂w∗(HklG

∗
lk)G

∗G2|P |2n−2
]

+
1

N2

∑
i,j

C4(Hij)E
[
∂w∗(Q∗ + Z)G∗G2|P |2n−2

]
.

Now apply cumulant expansion again, using that ∂w∗ and ∂/∂Hij commute.
Thus, we can exploit the cancellation built into P .

Need a systematic machinery to track the algebraic structure of all terms
generated by this procedure and the corresponding higher-order cancellations.
This is done by constructing a hierarchy of Schwinger-Dyson equations for a
sufficiently large class of polynomials in (Gij)

N
i,j=1.


