Fluctuations of extreme eigenvalues of sparse Erdős-Rényi graphs

Antti Knowles

With Yukun He

Erdős-Rényi graph

Let $A=\left(A_{i j}\right)$ be the adjacency matrix of the Erdős-Rényi graph $\mathbb{G}(N, d / N)$. $0<d \leqslant N / 2$ is the expected degree.
Denote by $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{N}$ the eigenvalues of $A / \sqrt{d(1-d / N)}$.
If $d \rightarrow \infty$ as $N \rightarrow \infty$ then the empirical measure $\frac{1}{N} \sum_{i} \delta_{\lambda_{i}}$ converges to the semicircle law.

Goal: fluctuations of individual eigenvalues near the edges, e.g. λ_{2} and λ_{N}.

Previous results

Notation: write $X \ll Y$ to mean $X=O_{\varepsilon}\left(N^{-\varepsilon} Y\right)$ for some $\varepsilon>0$.

- [Erdős, K, Yau, Yin; 2012]: If $d \gg N^{2 / 3}$ then λ_{2} has GOE Tracy-Widom fluctuations:

$$
N^{2 / 3}\left(\lambda_{2}-\mathbb{E} \lambda_{2}\right) \xrightarrow{\mathrm{d}} \mathrm{TW}_{1}
$$

- [Lee, Schnelli; 2016]: The same holds for $d \gg N^{1 / 3}$.
- [Huang, Landon, Yau; 2017]: If $N^{2 / 9} \ll d \ll N^{1 / 3}$ then λ_{2} has Gaussian fluctuations:

$$
\sqrt{N d}\left(\lambda_{2}-\mathbb{E} \lambda_{2}\right) \xrightarrow{\mathrm{d}} \mathcal{N}(0,2) .
$$

Crossover from Tracy-Widom to Gaussian fluctuations at $d \asymp N^{1 / 3}$.

Remarks

- The expectation $\mathbb{E} \lambda_{2}$ undergoes a shift, first observed by [Lee, Schnelli; 2016] and refined by [Huang, Landon, Yau; 2017]

$$
\mathbb{E} \lambda_{2}=2+\frac{1}{d}-\frac{5}{4 d^{2}}+\cdots
$$

- The Gaussian fluctuations are explicitly given by the random variable

$$
\mathcal{Z}:=\frac{\mathcal{D}}{d}-1, \quad \mathcal{D}:=\frac{1}{N} \sum_{i, j} A_{i j} \quad \text { (average degree) }
$$

satisfying $\sqrt{N d} \mathcal{Z} \xrightarrow{\mathrm{~d}} \mathcal{N}(0,2)$.
Then [Huang, Landon, Yau; 2017] show with very high probability

$$
\left|\lambda_{2}-\mathbb{E} \lambda_{2}-\mathcal{Z}\right| \leqslant N^{o(1)}\left(\frac{1}{N^{2 / 3}}+\frac{1}{d^{3}}\right) .
$$

Result

Theorem [He, K; 2020]. If $1 \ll d \ll N^{1 / 3}$ then

$$
\sqrt{N d}\left(\lambda_{2}-\mathbb{E} \lambda_{2}\right) \xrightarrow{\mathrm{d}} \mathcal{N}(0,2) .
$$

In fact, we prove a rigidity result for all eigenvalues:

$$
\lambda_{i}=\left(\mathbb{E} \lambda_{i}\right)\left(1+\frac{\mathcal{Z}}{2}\right)+O\left(\frac{N^{-c}}{\sqrt{N d}}\right)
$$

with very high probability for $2 \leqslant i \leqslant N$. (Shown in bulk by [He; 2019].)
Interpretation: the Gaussian fluctuations vanish to leading order if one replaces the determinstic scaling $A / \sqrt{d(1-d / N)}$ with the random scaling $A / \sqrt{\mathcal{D}(1-d / N)}:$

$$
\sqrt{\frac{d}{\mathcal{D}}} \lambda_{i}=\mathbb{E} \lambda_{i}+O\left(\frac{N^{-c}}{\sqrt{N d}}\right) .
$$

Heurstic picture of eigenvalue fluctuations of sparse matrices

The fluctuations of the eigenvalues of a sparse random matrix consists of two components:

- Random matrix component coinciding with fluctuations of GOE.

Order $\sqrt{\log N} / N$ in bulk ([Gustavsson; 2005], [O'Rourke; 2010])
Order $N^{-2 / 3}$ at edge.

- Sparseness component from \mathcal{Z}.

Order $1 / \sqrt{N d}$ everywhere except origin.

Sparseness component dominates over random matrix component for $d \ll N$ in bulk and $d \ll N^{1 / 3}$ at edge.

Proof

Essence of proof: rigidity bounds for eigenvalue locations with accuracy

$$
\frac{N^{-c}}{\sqrt{N d}} .
$$

Previously: accuracy

$$
\frac{1}{N^{2 / 3}}+\frac{1}{d^{a}},
$$

with $a=1$ [Erdős, K, Yau, Yin; 2012], $a=2$ [Lee, Schnelli; 2016], $a=3$ [Huang, Landon, Yau; 2017].

Need to go beyond a $1 / d$-expansion to reach sparseness $d \gg 1$.

Main estimate: upper bound on spectrum of $H:=(A-\mathbb{E} A) / \sqrt{d}$ with eigenvalues $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{N}$.
Use the Green function and its normalized trace

$$
G(z):=(H-z)^{-1}, \quad \underline{G}(z):=\frac{1}{N} \operatorname{Tr} G(z), \quad z=E+\mathrm{i} \eta \in \mathbb{C}_{+} .
$$

Simple observation: if

$$
\operatorname{Im} \underline{G}(z)=\frac{1}{N} \sum_{i} \frac{\eta}{\left(E-\mu_{i}\right)^{2}+\eta^{2}} \ll \frac{1}{N \eta}
$$

then there is no eigenvalue in $[E-\eta, E+\eta]$.
Main work: estimate $\operatorname{Im} \underline{G}(z)$ just outside the spectrum.

Starting point: construction of self-consistent polynomial from [Huang, Landon, Yau; 2017], generalizing [Lee, Schnelli; 2016].

Lemma [Huang, Landon, Yau]. There exists a deterministic polynomial

$$
P_{0}(z, x)=1+z x+x^{2}+\frac{a_{2}}{d} x^{4}+\frac{a_{3}}{d^{2}} x^{6}+\cdots
$$

such that

$$
\left|\mathbb{E} P_{0}(z, \underline{G}(z))\right| \leqslant N^{o(1)}\left(\frac{\mathbb{E} \operatorname{Im} \underline{G}(z)}{N \eta}+\frac{1}{N}\right)
$$

for $\eta \gg 1 / N$. Here a_{2}, a_{3}, \ldots are universal constants.

Note: this says nothing about the size of $P_{0}(z, \underline{G}(z))$. In fact, $P_{0}(z, \underline{G}(z))$ is typically much bigger than the RHS.

Define the random polynomial $P(z, x):=P_{0}(z, x)+\mathcal{Z} x^{2}$.
Lemma [Huang, Landon, Yau]. There exists a random algebraic function $m: \mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$satisfying

$$
P(z, m(z))=0,
$$

such that m is the Stieltjes transform of a random symmetric probability measure ϱ. We have supp $\varrho=[-L, L]$, where

$$
L=L_{0}+\mathcal{Z}+O\left(\frac{N^{o(1)}}{d \sqrt{N d}}\right)
$$

and

$$
L_{0}=2+\frac{b_{1}}{d}+\frac{b_{2}}{d^{2}}+\cdots
$$

Here b_{1}, b_{2}, \ldots are universal constants (e.g. $b_{1}=1, b_{2}=-5 / 4$).
Interpretation: L is the approximate location of the right spectral edge, and we have to prove that

$$
\mu_{1} \leqslant L_{0}+\mathcal{Z}+\frac{N^{-c}}{\sqrt{N d}}
$$

To that end, choose $z=L_{0}+\mathcal{Z}+w$ with $w=\kappa+\mathrm{i} \eta$ deterministic.

The proof follows from the following result.
Proposition. There exists $\eta \gg N^{-1}$ such that for $\kappa=\frac{N^{-c}}{\sqrt{N d}}$ we have

$$
\operatorname{Im} \underline{G}(z) \ll \frac{1}{N \eta} .
$$

All previous works on eigenvalue rigidity use the following steps:
(i) $|P(z, \underline{G}(z))| \ll 1$ with very high probability;
(ii) $|\underline{G}(z)-m(z)| \ll 1$ is small with very high probability, by inversion of self-consistent equation associated with P;
(iii) $\operatorname{Im} \underline{G}(z) \leqslant \operatorname{Im} m(z)+|\underline{G}(z)-m(z)| \ll \frac{1}{N \eta}$.

Problem: if d is small enough there is no choice of η such that both terms in (iii) are small enough.

Instead, in (iii) we estimate $|\operatorname{Im} \underline{G}(z)-\operatorname{Im} m(z)|$.
To that end, we estimate $|\operatorname{Im} P(z, \underline{G}(z))|$ instead of $|P(z, \underline{G}(z))|$. Exploits a crucial cancellation which ensures that $|\operatorname{Im} P(z, \underline{G}(z))| \ll|P(z, \underline{G}(z))|$.

How to invert self-consistent equation associated with $\operatorname{Im} P$?
Expand

$$
P(z, \underline{G})=\partial_{2} P(z, m)(\underline{G}-m)+\frac{1}{2} \partial_{2}^{2} P(z, m)(\underline{G}-m)^{2}+\cdots .
$$

As $\partial_{2}^{2} P(z, m) \approx 2$, taking the imaginary part and rearranging terms yields

$$
\begin{aligned}
\operatorname{Re} \partial_{2} P(z, m) \operatorname{Im}(\underline{G}-m)=\operatorname{Im} P(z, \underline{G}) & -\operatorname{Im} \partial_{2} P(z, m) \operatorname{Re}(\underline{G}-m) \\
& -2 \operatorname{Re}(\underline{G}-m) \operatorname{Im}(\underline{G}-m)+\cdots .
\end{aligned}
$$

To solve this in $\operatorname{Im}(\underline{G}-m)$ we need

$$
|\underline{G}-m| \ll\left|\operatorname{Re} \partial_{2} P(z, m)\right| \asymp \sqrt{\kappa} .
$$

Thus, the proof splits into two main steps:
(a) Show $|\underline{G}-m| \ll \sqrt{\kappa}$ by estimating $|P(z, \underline{G}(z))|$.
(b) Estimate $|\operatorname{Im} P(z, \underline{G})|$.

Step (a) is harder because we cannot exploit the cancellation from Im.

Basic strategy for proving (a) and (b): recursive high moment estimates using cumulant expansion.
Recall that

$$
P(z, x)=1+z x+Q(x)+\mathcal{Z}, \quad Q(x):=x^{2}+\frac{a_{2}}{d} x^{4}+\frac{a_{3}}{d^{2}} x^{6}+\cdots .
$$

Abbreviate $P=P(z, \underline{G}(z)), Q=Q(\underline{G}(z))$ and write

$$
\mathbb{E}|P|^{2 n}=\frac{1}{N} \sum_{i, j} \mathbb{E} H_{i j} G_{j i} P^{n-1} P^{* n}+\mathbb{E}(Q+\mathcal{Z}) P^{n-1} P^{* n}
$$

since

$$
1+z \underline{G}=\underline{H G} .
$$

Then use cumlant expansion (or generalized Stein lemma)

$$
\mathbb{E}[h \cdot f(h)]=\sum_{k=0}^{\ell} \frac{1}{k!} \mathcal{C}_{k+1}(h) \mathbb{E}\left[f^{(k)}(h)\right]+\mathcal{R}_{\ell+1},
$$

where $\mathcal{C}_{k}(h)$ is the k th cumulant of h.

The cumulant expansion yields

$$
\begin{aligned}
& \mathbb{E}|P|^{2 n}=\frac{1}{N} \sum_{k=1}^{\ell} \frac{1}{k!} \sum_{s=1}^{k}\binom{k}{s} \sum_{i, j} \mathcal{C}_{k+1}\left(H_{i j}\right) \mathbb{E}\left[\frac{\partial^{s}\left(P^{n-1} P^{* n}\right)}{\partial H_{i j}^{s}} \frac{\partial^{k-s} G_{i j}}{\partial H_{i j}^{k-s}}\right] \\
+ & \frac{1}{N} \sum_{k=1}^{\ell} \frac{1}{k!} \sum_{i, j} \mathcal{C}_{k+1}\left(H_{i j}\right) \mathbb{E}\left[\frac{\partial^{k} G_{i j}}{\partial H_{i j}^{k}} P^{n-1} P^{* n}\right]+\mathbb{E}(Q+\mathcal{Z}) P^{n-1} P^{* n}+\text { error. } .
\end{aligned}
$$

The polynomial P is designed so that

$$
\begin{aligned}
\mathbb{E} P & =\frac{1}{N} \sum_{i, j} \mathbb{E} H_{i j} G_{j i}+\mathbb{E}(Q+\mathcal{Z}) \\
& =\frac{1}{N} \sum_{k=1}^{\ell} \frac{1}{k!} \sum_{i, j} \mathcal{C}_{k+1}\left(H_{i j}\right) \mathbb{E}\left[\frac{\partial^{k} G_{i j}}{\partial H_{i j}^{k}}\right]+\mathbb{E}(Q+\mathcal{Z})+\text { error } \approx 0,
\end{aligned}
$$

and for the same reason there is a near-exact cancellation between the blue terms above.

Dangerous terms: red ones, which capture the fluctuations of P.

Example of dangerous term ($k=3$ and $s=2$):

$$
T:=\frac{1}{N} \sum_{i, j} \mathcal{C}_{4}\left(H_{i j}\right) \mathbb{E}\left[\left(\partial_{2} P^{*}\right) N^{-1}\left(G^{* 2}\right)_{i i} G_{j j}^{*} G_{i i} G_{j j}|P|^{2 n-2}\right] .
$$

Unlike in [Erdős, K, Yau, Yin], [Lee, Schnelli], [Huang, Landon, Yau]: taking absolute value inside expectation is not affordable.

Instead, we have to exploit higher-order cancellations arising from construction of P. Use key identity

$$
\left(\partial_{2} P^{*}\right) \underline{G^{* 2}}=\partial_{w^{*}} P\left(z^{*}, \underline{G}^{*}\right)-\underline{G^{*}}
$$

and approximations (to be justified)

$$
\left(G^{* 2}\right)_{i i} \approx \underline{G^{* 2}}, \quad G_{j j}^{*} \approx \underline{G^{*}}, \quad G_{i i}, G_{j j} \approx \underline{G}
$$

to write

$$
\left(\partial_{2} P^{*}\right) N^{-1}\left(G^{* 2}\right)_{i i} G_{j j}^{*} G_{i i} G_{j j}=N^{-1} \partial_{w^{*}} P\left(z^{*}, \underline{G}^{*}\right) \underline{G}^{*} \underline{G}^{2}+\text { error. }
$$

Thus, up to error terms,

$$
\begin{aligned}
T= & \frac{1}{N^{2}} \sum_{i, j} \mathcal{C}_{4}\left(H_{i j}\right) \mathbb{E}\left[\partial_{w^{*}} P\left(z^{*}, \underline{G}^{*}\right) \underline{G^{*}} \underline{G}^{2}|P|^{2 n-2}\right] \\
= & \frac{1}{N^{3}} \sum_{i, j, k, l} \mathcal{C}_{4}\left(H_{i j}\right) \mathbb{E}\left[\partial_{w^{*}}\left(H_{k l} G_{l k}^{*}\right) \underline{G^{*}} \underline{G}^{2}|P|^{2 n-2}\right] \\
& +\frac{1}{N^{2}} \sum_{i, j} \mathcal{C}_{4}\left(H_{i j}\right) \mathbb{E}\left[\partial_{w^{*}}\left(Q^{*}+\mathcal{Z}\right) \underline{G^{*}} \underline{G}^{2}|P|^{2 n-2}\right]
\end{aligned}
$$

Now apply cumulant expansion again, using that $\partial_{w^{*}}$ and $\partial / \partial H_{i j}$ commute. Thus, we can exploit the cancellation built into P.

Need a systematic machinery to track the algebraic structure of all terms generated by this procedure and the corresponding higher-order cancellations. This is done by constructing a hierarchy of Schwinger-Dyson equations for a sufficiently large class of polynomials in $\left(G_{i j}\right)_{i, j=1}^{N}$.

