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Mn: random matrix of size n whose entries are i.i.d.
Rademacher random variables (taking values ±1 with
probability 1/2). I

Msym
n : random symmetric matrix of size n whose (upper

triangular) entries are i.i.d. Rademacher random variables.

Adjacency matrix of a random graph. This matrix is (0, 1)
symmetric.

Laplacian of a random graph.



Let pn be the probability that Mn is singular:

pn ≥ 2−n.

By choosing any two rows (columns) and considering signs

pn ≥ (4− o(1))

(
n

2

)
2−n = (

1

2
+ o(1))n. (1)

Conjecture (Singularity, non-symmetric)

pn = (
1

2
+ o(1))n.



Phenomenon I. The dominating reason for singularity of a
random matrix is the dependency between a few rows/columns.

Conjecture

pn = (2 + o(1))n22−n.



Komlós (1967): pn = o(1).
Komlós (1975): pn = O(n−1/2).
Kahn-Komlós-Szemrédi (1996): p(n) ≤ .999n.
Tao-V. (2004): pn = O(.958n).
Tao-V. (2007): p(n) ≤ (3/4 + o(1))n.
Bourgain-V.-P. M. Wood (2009): p(n) ≤ ( 1√

2
+ o(1))n.

| cos x | ≤ 3

4
+

1

4
cos 2x ,

| cos x |2 =
1

2
+

1

2
cos 2x .



In 2018, Tikhomirov proved the Singularity Conjecture

Theorem (Tikhomirov 2018)

pn = (
1

2
+ o(1))n.

April 2020, Irmatov claimed the strong form (singularity comes
from two equal rows)

pn = (2 + o(1))n22−n.

Litvak and Tikhomirov (about the same time) announced a similar
result, but for sparse matrices.
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Anti-concentration. The probability that a random variable takes
value in a small interval is small.

Let v = {v1, . . . , vn} be a set of n non-zero real numbers and
ξ1, . . . , ξn be i.i.d random Rademacher variables. Define
S :=

∑n
i=1 ξivi , pv(a) = P(S = a), and pv = supa∈Z pv(a).

Theorem (Littlewood-Offord-Erdös, 1943)

pv ≤

( n
bn/2c

)
2n

= O(n−1/2).



Build Mn by adding one random row at a time. Assume that the
first n − 1 rows are independent and form a hyperplane with
normal vector v = (v1, . . . , vn). Conditioned on these rows, the
probability that Mn is singular is

P(X · v = 0) = P(ξ1v1 + · · ·+ ξnvn = 0),

where X = (ξ1, . . . , ξn) is the last row.

Phenomenon II. [Inverse Littlewood-Offord theory] If
P(X · v = 0) is relatively large, then the coefficients v1, . . . , vn
posses a strong additive structure.

Continuous version: smallest singular value (Tao-V,
Rudelson-Vershinin, Tikhomirov, Tikhomirov-Litvak).
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Estimate psymn , the probability that the symmetric matrix Msym
n

singular.

Conjecture (B. Weiss, 1980s)

psymn = o(1).

Theorem (Costello-Tao-V. 2006)

psymn = o(1).
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Build the matrix by growing its from size k to k + 1. Last step:
from (n − 1)× (n − 1) submatrix Msym

n−1, to obtain Msym
n , we add a

random row X = (ξ1, . . . , ξn) and its transpose

detMsym
n =

∑
1≤i ,j≤n−1

aijξiξj + detMsym
n−1,

where aij are the cofactors of Mn−1.
If Msym

n is singular, then its determinant is 0,

Q :=
∑

1≤i ,j≤n−1
aijξiξj = − detMsym

n−1.

Theorem (LOE for quadratic forms: Costello-Tao-V. 2006,
Make-O. Nguyen-V. 2014)

If aij 6= 0, then

P(Q = x) = Õ(n−1/2).



Conjecture (Singularity, symmetric)

psymn = (1/2 + o(1))n.

Costello-Tao-V.(2006): n−1/4.
Costello (2010): n−1/2+ε

Nguyen (2012) n−ω(1).
Vershynin (2014): exp(−nc), for some small constant c > 0.
Ferber-Jain (2019) c = 1/4.
Campos-Mattos-Morris-Morrison(2020): c = 1/2.

Question. Inverse Littlewood-Offord theory for quadratic forms ?
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The same proof holds for the adjacency matrix of the random
graph G (n, 1/2).

Question. What about other densities ?

If p < log n/n, there are isolated vertices, so the matrix is singular.

Theorem (Threshold of Singularity; Costello-V. 2008)

For any constant ε > 0, with probability 1− o(1),

A(n, (1 + ε) log n/n) = 0.

Basak-Rudelson (2018): log n/n + γ(n)/n where γ(n) is any
function tending to infinity.
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Addario-Berry-Eslava (2014) Hitting time: we generate the random
graph by adding random edges one by one (the next random edge
is uniformly chosen from the set of all available edges). Let T be
the first time when the graph has no isolated vertices.

Theorem (Hitting time of Singularity)

With probability 1− o(1), the graph is full rank at time T .
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Question. Below the threshold, what is the co-rank ?

Phenomenon I. The dominating reason for singularity of a
random matrix is the dependency between a few rows/columns.

Theorem (Costello-V. 2010)

For any constant ε > 0 and
(1/2 + ε) log n/n < p < (1− ε) log n/n, with probability 1− o(1),
A(n, p) equals the number of isolated vertices.

For a smaller p, one needs to take into account other small
structures such as cherries (a cherry is a pair of vertices of degree
one with a common neighbor; in the matrix, this subgraph forces
two identical rows).
Costello-V. showed that if p = Θ(log n/n), the co-rank are
determined by small subgraphs with more vertices than edges.



When p = c/n, c > 1, G (n, p) consists of a giant component and
many small components. Since Giant(n, p) has cherries , the
adjacency matrix of Giant(n, p) is singular (with high probability).

Conjecture (k-core)

Let c > 1 be a constant and set p = c/n. There is a constant k0
such that for all k ≥ k0 the following holds. With probability
1− o(1), the adjacency matrix of the k-core of Giant(n, p) is
non-singular.

Theorem (Bordenave, Lelarge, and Salez (2011))

Consider G (n, c/n) for some constant c > 0. Then with
probability (1− o(1))n,

rank(A(n, c/n)) = (2− q − e−cq − cqe−cq + o(1))n,

where 0 < q < 1 is the smallest solution of q = exp(−c exp−cq).



Coja-Oghlan-Ergür-Gao-Hetterich-Rolvier: asymptotic rank of
random matrices with prescribed number of non-zeroes in each
row/column.
Random regular graph Gn,d . For d = 2, Gn,d is just the union of
disjoint circles. A circle with length divisible by 4 is singular.

Conjecture (Singularity of Random regular graphs, V. 2006)

For any 3 ≤ d ≤ n − 1, with probability 1− o(1) An,d is
non-singular.

Landon, Sose, and Yau (2016): true for d ≥ nc for any constant c .
The most challenging case, d being a constant, was solved recently
by Meszaros (2018) and Huang (2018).

Theorem (Meszaros 2018, Huang 2018)

For any fixed d ≥ 3, the probability that An,d is singular is o(1).



The finite field embedding idea:
Embed {−1, 1} in Fq for some prime q.
Show that with high probability, no vector v ∈ F n

q satisfies
Mnv = 0. (Union bound; Anti-concentration in finite fields.)
Adjust q to optimize the failure probability.

Theorem (Nguyen-Wood (2018))

For different primes q1, . . . , qk , detMn (mod qi ) are asymptotically
independent.
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Mn defines a map from Zn to itself. As Mn is non-singular, this
map is (whp) injective.
But is it surjective ? The answer is ””NO” as detMn is divisible
by 2n−1.

Consider a n × (n + 1) random matrix with iid ±1 entries. This
matrix defines a map from Zn+1 to Zn.
Question What is the probability that this map is surjective ?

Theorem (Nguyen and Wood 2018)

(1 + o(1))
∏
k≥2

ζ(k)−1 ≈ .4358.
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Question. How big is detMn.

Each row has length
√
n, so by Hadamard’s inequality

| detMn| ≤ nn/2.

Tao-V. (2004): whp | detMn| ≥ nn/2−o(n).

We now know that log | detMn| satisfies the CLT with mean
(n/2 + o(n)) log n and variance log n (Nguyen-V. 2014). A similar
result holds for Msym

n (Bourgade-Mudy 2019)

Conjecture (Determinant)

For any x 6= 0, P(detMn = x) ≤ n−(1/2+o(1))n.

It is not known that Mn has a super- exponential range.
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Permanent: E(Per Mn)2 = n!.
It suggests that |Per Mn| is typically n(1/2−o(1))n.

Conjecture

P(Per Mn = 0) = o(1).

Theorem (Tao-V. 2007)

With probability 1− o(1)

|Per Mn| = n(1/2−o(1))n.

Conjecture (Permanent)

The probability that Per Mn = 0 is super exponentially small in n.



A matrix has simple spectrum if its eigenvalues are different.

Question

Are random matrices simple ?

Conjecture (Babai, 1980)

With probability 1− o(1), G (n, 1/2) has a simple spectrum.

The motivation came from the well-known result (proved by
Leighton-Miller and Babai-Grigoriev-Mount that the notorious
graph isomorphism problem is in P within the class of graphs with
simple spectrum.

Theorem (Tao-V. 2016)

Babai’s conjecture holds.

Conjecture (Simplicity)

sn = (4 + o(1))−n.

The current best upper bound is sn ≤ e−n
c

for some small
constant c > 0 ; Nguyen-Tao-V. (2016).



Conjecture

With probability 1− o(1), the singular values of Msym
n are different.

Notice that the singular values of a symmetric matrix are the
absolute values of its eigenvalues. Thus, this conjecture asserts
that there is no two eigenvalues adding up to zero.
One can pose the same questions for Mn. In this direction, Ge
proved that with probability 1− o(1), the spectrum of Mn is
simple. In 2019, Luh and O’rourke proved the first exponential
bound, showing that the probability that the spectrum of Mn is not
simple is at most 2−cn, for some constant c > 0.



An n × n real matrix A normal if AAT = ATA.

Question

How often is a random matrix normal?

The probability that Mn is symmetric is 2−(0.5+o(1))n2 ,

νn ≥ 2−(0.5+o(1))n2 .

Conjecture (Normality)

νn = 2−(0.5+o(1))n2 .

Theorem (Deneanu-V. 2017)

νn ≤ 2−(0.302+o(1))n2 .



Conjecture (Integral spectrum)

The probability that Msym
n has an integral spectrum is 2−(.5+o(1))n2 .

Ahmadi, Alon, Blake, and Shparlinski (2009) 2−n/400.

Costello and Williams (2016): 2−cn
3/2

.


