Recent progress in combinatorial random matrix theory

Van H. Vu

Department of Mathematics Yale University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Survey: Recent progress in combinatorial random matrix theory https://arxiv.org/abs/2005.02797

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- *M_n*: random matrix of size *n* whose entries are i.i.d. Rademacher random variables (taking values ±1 with probability 1/2).
- *M^{sym}*: random symmetric matrix of size *n* whose (upper triangular) entries are i.i.d. Rademacher random variables.
- Adjacency matrix of a random graph. This matrix is (0,1) symmetric.

Laplacian of a random graph.

Let p_n be the probability that M_n is singular:

$$p_n \geq 2^{-n}$$
.

By choosing any two rows (columns) and considering signs

$$p_n \ge (4 - o(1)) {n \choose 2} 2^{-n} = (\frac{1}{2} + o(1))^n.$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conjecture (Singularity, non-symmetric)

$$p_n = (\frac{1}{2} + o(1))^n.$$

Phenomenon I. The dominating reason for singularity of a random matrix is the dependency between a few rows/columns.

Conjecture

$$p_n = (2 + o(1))n^2 2^{-n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Komlós (1967): $p_n = o(1)$. Komlós (1975): $p_n = O(n^{-1/2})$. Kahn-Komlós-Szemrédi (1996): $p(n) \le .999^n$. Tao-V. (2004): $p_n = O(.958^n)$. Tao-V. (2007): $p(n) \le (3/4 + o(1))^n$. Bourgain-V.-P. M. Wood (2009): $p(n) \le (\frac{1}{\sqrt{2}} + o(1))^n$.

$$|\cos x| \le \frac{3}{4} + \frac{1}{4}\cos 2x,$$

 $|\cos x|^2 = \frac{1}{2} + \frac{1}{2}\cos 2x.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In 2018, Tikhomirov proved the Singularity Conjecture

Theorem (Tikhomirov 2018)

$$p_n = (\frac{1}{2} + o(1))^n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

In 2018, Tikhomirov proved the Singularity Conjecture

Theorem (Tikhomirov 2018)

$$p_n = (rac{1}{2} + o(1))^n.$$

April 2020, Irmatov claimed the strong form (singularity comes from two equal rows)

$$p_n = (2 + o(1))n^2 2^{-n}.$$

Litvak and Tikhomirov (about the same time) announced a similar result, but for sparse matrices.

Anti-concentration. The probability that a random variable takes value in a small interval is small.

Let $\mathbf{v} = \{v_1, \dots, v_n\}$ be a set of *n* non-zero real numbers and ξ_1, \dots, ξ_n be i.i.d random Rademacher variables. Define $S := \sum_{i=1}^n \xi_i v_i$, $p_{\mathbf{v}}(a) = \mathbf{P}(S = a)$, and $p_{\mathbf{v}} = \sup_{a \in \mathbb{Z}} p_{\mathbf{v}}(a)$.

Theorem (Littlewood-Offord-Erdös, 1943)

$$p_{\mathbf{V}} \leq rac{\binom{n}{\lfloor n/2
floor}}{2^n} = O(n^{-1/2}).$$

Build M_n by adding one random row at a time. Assume that the first n-1 rows are independent and form a hyperplane with normal vector $\mathbf{v} = (v_1, \ldots, v_n)$. Conditioned on these rows, the probability that M_n is singular is

$$\mathbf{P}(X \cdot \mathbf{v} = 0) = \mathbf{P}(\xi_1 v_1 + \cdots + \xi_n v_n = 0),$$

where $X = (\xi_1, \ldots, \xi_n)$ is the last row.

Phenomenon II. [Inverse Littlewood-Offord theory] *If* $P(X \cdot v = 0)$ *is relatively large, then the coefficients* v_1, \ldots, v_n *posses a strong additive structure.*

Build M_n by adding one random row at a time. Assume that the first n-1 rows are independent and form a hyperplane with normal vector $\mathbf{v} = (v_1, \ldots, v_n)$. Conditioned on these rows, the probability that M_n is singular is

$$\mathbf{P}(X \cdot \mathbf{v} = 0) = \mathbf{P}(\xi_1 v_1 + \cdots + \xi_n v_n = 0),$$

where $X = (\xi_1, \ldots, \xi_n)$ is the last row.

Phenomenon II. [Inverse Littlewood-Offord theory] If $P(X \cdot v = 0)$ is relatively large, then the coefficients v_1, \ldots, v_n posses a strong additive structure.

Continuous version: smallest singular value (Tao-V, Rudelson-Vershinin, Tikhomirov, Tikhomirov-Litvak). Estimate p_n^{sym} , the probability that the symmetric matrix M_n^{sym} singular.

Conjecture (B. Weiss, 1980s)

 $p_n^{sym} = o(1).$

Estimate p_n^{sym} , the probability that the symmetric matrix M_n^{sym} singular.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjecture (B. Weiss, 1980s)

 $p_n^{sym} = o(1).$

Theorem (Costello-Tao-V. 2006)

 $p_n^{sym} = o(1).$

Build the matrix by growing its from size k to k + 1. Last step: from $(n-1) \times (n-1)$ submatrix M_{n-1}^{sym} , to obtain M_n^{sym} , we add a random row $X = (\xi_1, \ldots, \xi_n)$ and its transpose

$$\det M_n^{sym} = \sum_{1 \le i,j \le n-1} a_{ij}\xi_i\xi_j + \det M_{n-1}^{sym},$$

where a_{ij} are the cofactors of M_{n-1} . If M_n^{sym} is singular, then its determinant is 0,

$$Q := \sum_{1 \le i,j \le n-1} a_{ij}\xi_i\xi_j = -\det M^{sym}_{n-1}.$$

Theorem (LOE for quadratic forms: Costello-Tao-V. 2006, Make-O. Nguyen-V. 2014)

If $a_{ij} \neq 0$, then

$$\mathbf{P}(Q=x)=\tilde{O}(n^{-1/2}).$$

Conjecture (Singularity, symmetric)

 $p_n^{sym} = (1/2 + o(1))^n.$

Costello-Tao-V.(2006): $n^{-1/4}$. Costello (2010): $n^{-1/2+\epsilon}$ Nguyen (2012) $n^{-\omega(1)}$. Vershynin (2014): $\exp(-n^c)$, for some small constant c > 0. Ferber-Jain (2019) c = 1/4. Campos-Mattos-Morriso-Morrison(2020): c = 1/2.

Conjecture (Singularity, symmetric)

 $p_n^{sym} = (1/2 + o(1))^n.$

Costello-Tao-V.(2006): $n^{-1/4}$. Costello (2010): $n^{-1/2+\epsilon}$ Nguyen (2012) $n^{-\omega(1)}$. Vershynin (2014): $\exp(-n^c)$, for some small constant c > 0. Ferber-Jain (2019) c = 1/4. Campos-Mattos-Morrison(2020): c = 1/2.

Question. Inverse Littlewood-Offord theory for quadratic forms ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The same proof holds for the adjacency matrix of the random graph G(n, 1/2).

Question. What about other densities ?

If $p < \log n/n$, there are isolated vertices, so the matrix is singular.

Theorem (Threshold of Singularity; Costello-V. 2008)

For any constant $\epsilon > 0$, with probability 1 - o(1),

 $A(n,(1+\epsilon)\log n/n)=0.$

The same proof holds for the adjacency matrix of the random graph G(n, 1/2).

Question. What about other densities ?

If $p < \log n/n$, there are isolated vertices, so the matrix is singular.

Theorem (Threshold of Singularity; Costello-V. 2008)

For any constant $\epsilon > 0$, with probability 1 - o(1),

 $A(n,(1+\epsilon)\log n/n)=0.$

Basak-Rudelson (2018): log $n/n + \gamma(n)/n$ where $\gamma(n)$ is any function tending to infinity.

Addario-Berry-Eslava (2014) Hitting time: we generate the random graph by adding random edges one by one (the next random edge is uniformly chosen from the set of all available edges). Let T be the first time when the graph has no isolated vertices.

Addario-Berry-Eslava (2014) Hitting time: we generate the random graph by adding random edges one by one (the next random edge is uniformly chosen from the set of all available edges). Let T be the first time when the graph has no isolated vertices.

Theorem (Hitting time of Singularity)

With probability 1 - o(1), the graph is full rank at time T.

Question. Below the threshold, what is the co-rank ?

Phenomenon I. The dominating reason for singularity of a random matrix is the dependency between a few rows/columns.

Theorem (Costello-V. 2010)

For any constant $\epsilon > 0$ and $(1/2 + \epsilon) \log n/n , with probability <math>1 - o(1)$, A(n, p) equals the number of isolated vertices.

For a smaller p, one needs to take into account other small structures such as *cherries* (a cherry is a pair of vertices of degree one with a common neighbor; in the matrix, this subgraph forces two identical rows).

Costello-V. showed that if $p = \Theta(\log n/n)$, the co-rank are determined by small subgraphs with more vertices than edges.

When p = c/n, c > 1, G(n, p) consists of a giant component and many small components. Since Giant(n, p) has cherries, the adjacency matrix of Giant(n, p) is singular (with high probability).

Conjecture (k-core)

Let c > 1 be a constant and set p = c/n. There is a constant k_0 such that for all $k \ge k_0$ the following holds. With probability 1 - o(1), the adjacency matrix of the k-core of Giant(n, p) is non-singular.

Theorem (Bordenave, Lelarge, and Salez (2011))

Consider G(n, c/n) for some constant c > 0. Then with probability (1 - o(1))n,

$$\operatorname{rank}(A(n,c/n)) = (2-q-e^{-cq}-cqe^{-cq}+o(1))n,$$

where 0 < q < 1 is the smallest solution of $q = \exp(-c \exp -cq)$.

Coja-Oghlan-Ergür-Gao-Hetterich-Rolvier: asymptotic rank of random matrices with prescribed number of non-zeroes in each row/column.

Random regular graph $G_{n,d}$. For d = 2, $G_{n,d}$ is just the union of disjoint circles. A circle with length divisible by 4 is singular.

Conjecture (Singularity of Random regular graphs, V. 2006)

For any $3 \le d \le n - 1$, with probability $1 - o(1) A_{n,d}$ is non-singular.

Landon, Sose, and Yau (2016): true for $d \ge n^c$ for any constant c. The most challenging case, d being a constant, was solved recently by Meszaros (2018) and Huang (2018).

Theorem (Meszaros 2018, Huang 2018)

For any fixed $d \ge 3$, the probability that $A_{n,d}$ is singular is o(1).

The finite field embedding idea:

Embed $\{-1,1\}$ in F_q for some prime q. Show that with high probability, no vector $v \in F_q^n$ satisfies $M_n v = 0$. (Union bound; Anti-concentration in finite fields.) Adjust q to optimize the failure probability.

The finite field embedding idea:

Embed $\{-1,1\}$ in F_q for some prime q. Show that with high probability, no vector $v \in F_q^n$ satisfies $M_n v = 0$. (Union bound; Anti-concentration in finite fields.) Adjust q to optimize the failure probability.

Theorem (Nguyen-Wood (2018))

For different primes q_1, \ldots, q_k , det $M_n \pmod{q_i}$ are asymptotically independent.

 M_n defines a map from \mathbf{Z}^n to itself. As M_n is non-singular, this map is (whp) injective.

But is it *surjective* ? The answer is ""NO" as det M_n is divisible by 2^{n-1} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 M_n defines a map from \mathbb{Z}^n to itself. As M_n is non-singular, this map is (whp) injective.

But is it *surjective* ? The answer is ""NO" as det M_n is divisible by 2^{n-1} .

Consider a $n \times (n+1)$ random matrix with iid ± 1 entries. This matrix defines a map from \mathbf{Z}^{n+1} to \mathbf{Z}^n .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question What is the probability that this map is surjective ?

 M_n defines a map from \mathbb{Z}^n to itself. As M_n is non-singular, this map is (whp) injective.

But is it *surjective* ? The answer is ""NO" as det M_n is divisible by 2^{n-1} .

Consider a $n \times (n+1)$ random matrix with iid ± 1 entries. This matrix defines a map from Z^{n+1} to Z^n .

Question What is the probability that this map is surjective ?

Theorem (Nguyen and Wood 2018)

$$(1+o(1))\prod_{k\geq 2}\zeta(k)^{-1}\approx .4358.$$

Question. How big is det M_n .

Question. How big is det M_n .

Each row has length \sqrt{n} , so by Hadamard's inequality

 $|\det M_n| \leq n^{n/2}.$

Tao-V. (2004): whp $|\det M_n| \ge n^{n/2-o(n)}$.

We now know that $\log |\det M_n|$ satisfies the CLT with mean $(n/2 + o(n)) \log n$ and variance $\log n$ (Nguyen-V. 2014). A similar result holds for M_n^{sym} (Bourgade-Mudy 2019)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conjecture (Determinant)

For any $x \neq 0$, $\mathbf{P}(\det M_n = x) \leq n^{-(1/2 + o(1))n}$.

It is not known that M_n has a super- exponential range.

Permanent: $\mathbf{E}(\operatorname{Per} M_n)^2 = n!$. It suggests that $|\operatorname{Per} M_n|$ is typically $n^{(1/2-o(1))n}$.

Conjecture

 $\mathbf{P}(\operatorname{Per}\ M_n=0)=o(1).$

Theorem (Tao-V. 2007)

With probability 1 - o(1)

$$|\text{Per } M_n| = n^{(1/2 - o(1))n}$$

Conjecture (Permanent)

The probability that $Per M_n = 0$ is super exponentially small in n.

A matrix has simple spectrum if its eigenvalues are different.

Question

Are random matrices simple ?

Conjecture (Babai, 1980)

With probability 1 - o(1), G(n, 1/2) has a simple spectrum.

The motivation came from the well-known result (proved by Leighton-Miller and Babai-Grigoriev-Mount that the notorious graph isomorphism problem is in **P** within the class of graphs with simple spectrum.

Theorem (Tao-V. 2016)

Babai's conjecture holds.

Conjecture (Simplicity)

 $s_n = (4 + o(1))^{-n}$.

Conjecture

With probability 1 - o(1), the singular values of M_n^{sym} are different.

Notice that the singular values of a symmetric matrix are the absolute values of its eigenvalues. Thus, this conjecture asserts that there is no two eigenvalues adding up to zero. One can pose the same questions for M_n . In this direction, Ge proved that with probability 1 - o(1), the spectrum of M_n is simple. In 2019, Luh and O'rourke proved the first exponential bound, showing that the probability that the spectrum of M_n is not simple is at most 2^{-cn} , for some constant c > 0.

An $n \times n$ real matrix A normal if $AA^T = A^T A$.

Question

How often is a random matrix normal?

The probability that M_n is symmetric is $2^{-(0.5+o(1))n^2}$,

$$\nu_n \ge 2^{-(0.5+o(1))n^2}.$$

Conjecture (Normality)

$$\nu_n = 2^{-(0.5 + o(1))n^2}$$

Theorem (Deneanu-V. 2017)

$$\nu_n \le 2^{-(0.302+o(1))n^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Conjecture (Integral spectrum)

The probability that M_n^{sym} has an integral spectrum is $2^{-(.5+o(1))n^2}$.

Ahmadi, Alon, Blake, and Shparlinski (2009) $2^{-n/400}$. Costello and Williams (2016): $2^{-cn^{3/2}}$.