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Recall  Wigner Random Matrix: 

In the last 10 years, we have seen many variations. 

* Not identical distribution 
* Not mean zero
* Not uniform variance
* Not quite independent
* With spikes (like E. R graph)

 In a Wigner random band matrix, we have the properties 1, 3, 5, but the 
most important is that it is a Non-mean-field model. 

In a system with size length L , there is no interaction between x and y, 
if the distance between them is much greater than W (interaction scale). 

W is called band width 

.



A more precise definition:  

WL

0

0

The interesting case is 

.



Global statistics:  2009  Erdos, Yau and Y: 

Semi-Circle law holds up to scale  W^{-d}. 
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Interest property : 
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But it could be still a band matrix, even if the power K is 
very very large. 
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WL

0

0

K->infinity

—> W^2L

~0

~0

d=1

The reason is that in this case most eigenvectors of H are localized in 
the scale of W^2: 

~ 0 ~ 0
W^2

Recall: 

On the other hand,  physicists want to know why sometimes 
it is delocalized
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30 years ago, numerical calculations (P. R.L) and non-rigorous 
super symmetry (P.R.L) arguments showed that there is a phase 
transition between localization and delocalization. 

Random Band Matrix Conjecture (bulk)

It is also the threshold for local statistics: 

Small W                          Poisson distribution
Large W                          RM distribution (Sine-kernel) 

The main new work for this talk is:    2020, Yau, Yang and Y  
Delocalization of eigenvectors holds  if 



A quick review on previous results

Universality part: 

W ~ L                    Bourgade, Erdos, Yau and Y   2015

W >> L^(3/4)          Bourgade, Yau, Yang and Y   2017-18

Localization part: 

       W<< L^(1/8)                        J. Schenker 
         
        W<< L^(1/7)                       R. Peled, J. Schenker, M. Shamis and S. Sodin

for d=1  Gaussian band matrices



W>> L^(6/7)                             Erdos and  Knowles 

W>> L^(4/5)                             Erdos, Knowles,  Yau and Y.

W>> L^(7/9)                               Y. He and M. Marcozzi

W >> L^(3/4)                              Bourgade, Yau, Yang and Y 

For delocalization part:    d=1

W ~  L^(5/6),                                    S. Sodin  (moment method)

For Edge eigenvector: 



For supersymmetry:  

When the entries  are Gaussian with some specific covariance profile, 
one can apply   supersymmetry techniques

W ~ L                                      T. Shcherbina 2014

W ~ L^(6/7)                             Bao and Erdos  2017

W ~ L^(1/2)                 T. Shcherbina and M. Shcherbina 2017, 2019

W ~ L^(1/2)                       M. Disertori1, M. Lohmann, S. Sodin 2018



For delocalization,   d>1 ,     W = L^a

                        L. Erdos and A. Knowles
              
                         L. Erdos,  A. Knowles, Yau   and   Y
                

                          Y. He and M. Marcozzi
             
                          Yang and Y.        2019-2020

a > 0,  d >= 10                  Yau, Yang  and Y   2020

Hope to finish the proof for d>= 6 in the next year. 

Main new result of this talk 



Resolvent Tool

Delocalization of eigenvectors is implied by the following sense of 
delocalization of resolvent: 

Usually people choose 

When eta is  larger, the above inequality does not hold. 



But actually resolvent polynomially decays 
            (slower than power of d)

|x-y|

|G_{xy}|^2

The main contribution comes from |x-y| ~  L (min part)

Therefore, really we need to prove this profile for delocalization. 
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Previous tool / work 

(highly non-trivial)

In this work, we need to 

Actually, we do (term by term) prove these terms are zeros, 
except the last one.  
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Universal - Expansion 

We expand the resolvent with 
some resolvent identities 
some conditional expectation tricks
and a well designed rule on expansion order, 
(which will be the main component of the first paper in this series)   

Why Universal:  

There is a  large universal expansion,  for  W = L^a , for fixed a>0, 
we will only use a subpart of the whole expansion.  

The limit expansion has a very clear fractal structure

Different W cases share the same expansion is a very important property 
for our proof.  (You will see soon)
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With some non-trivial cancellation  (i.e., Z lemma idea), one can show 
A^1 term  is zero. 

Therefore,   it would be  an effective expansion if 

(B has the profile as above)
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Complexity of the expansion

Even for such simple case:  

Each free index:            K^d
Each G edge.                 K^(-d/2+1)
Each B, T edge.             K^(-d+2)

Expansion seems not a good idea,  since one extra edge can not 
cancel the factor contributed by  one free index. 

The expansion does not produce enough edges . 

The more expansion (with no correct plan), 
the messier (out of control) the graphs will be. 

G
G *
T^2
B

if |x-y| ~ K

e.
# E

'

.



The number of graphs

k-th order:  A^(k) has about (2k)^(3k) graphs. 

k=2,            with some simplification, 

                  there are about hundreds of graphs

k=3,             with  help of computer  (Matlab), 

             it took iMac 1 hr on computation and me  1 month in coding

k=4,              computer basically never stop

.
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Due to shortage of time, 
    I will only focus on one of main novelty in the proof.  
    The whole proof is composed of  3 papers (or more). 

SUM   ZERO
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Sum up x and y

It turns out  if we choose 

Then
<< 1
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    = 0

SUM   ZERO

Example: 
z’’

z’
z

— 

z’

z’’
z

S - edge

Why is Universal so important: 

For certain L, we obtain the sum zero property of some A^(k) 

From sum zero property, we know the cancellation between the 
graphs in A^(k) 

Since for other  (larger) L’s, we use same graphs, so in those 
cases,  A^(k)  also has sum zero property for larger L case.  
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Why is it so important ?

Thanks 
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