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Recall Wigner Random Matrix:
H=H', Hy; i.i.d E(H;) =0, E(H;) =1/N

1<4,j<N
[n the lagt 1O years, we have geen many variations.

* Not identical digtribution
* Not mean zero

* Not uniform variance
*Not quite independent

* With gpikes (like E. R graph)
[n a Wigner random band matrix, we have the properties I, 3, 5, but the
mogt important ig that it i¢ a Non-mean-field model.

Hy,,=0, as if |[z—yl>W

In a eystem with gize length L, there ig no interaction between x and y,
if the digtance between them ie much greater than W (interaction gcale).

W ig called band width



A more precise definition:

H=H' Hy id E(H,) =0, E(H,>)=_5.
1<,y < (Zy)

Y Say=1, Say=O0@1/W), Soy=0if |z—y|>>W

The interegting cage i
W=L% 0<a<l



Global statigtice: 2009 Erdog, Yau and Y:
Semi-Circle law holde up to scale W {-d}.

ol taegr ) L0
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But it could be till a band matrix, even if the power K ig
very very large.



K->infinity

/ y
—> L // w“z

The reagon ig that in thie cage mogt eigenvectors of H are localized in
the gcale of W 2:

L ~0 Ur///f ~0 |
W2

Recall:

Hht= Z MAeul v
«

On the other hand, phygicists want to know why sometimes
it i delocalized



30 yearg ago, numerical caleulations (P. R L) and non-rigoroug
auper symmetry (PR L) argumente showed that there ig a phace
trangition between localization and delocalization.

Random Band Matrix Conjecture (bulk)
d=1 W~L'"?
d=2 W ~ (logL)}?

d>3 W>1 (W>3)

[t ig aleo the threghold for local statistics:

Small W Poiggon digtribution
Large W RM digtribution (Sine-kernel)

The main new work for thig talk ie: 2020, Yau, Yang and Y
Delocalization of eigenvectors holde if

d>10, W=L* a>0



A quick review on previous resulte

Univergality part:

W~L Bourgade, Erdog, Yauand Y 2015

W>L(3/4) Bourgade, Yau, Yang and Y 2017-18

Localization part: for d=I Gauggian band matrices
W<< L (1/8) J. Sehenker

We< L(1/7) R. Peled, J. Schenker, M. Shamig and S. Sodin



For delocalization part:  d=!

W>>L'(6/7)
W>> L '(4/5)

W>> L (7/9)

W>>L(3/4)

For Edge eigenvector:

W~ L(5/6)

Erdog and Knowleg
Erdog, Knowleg, Yau and Y.

Y. He and M. Marcozzi

Bourgade, Yau, Yang and Y

Q. Sodin (moment method)



For superaymmetry:

When the entriee are Gaugsian with some gpecific covariance profile,
one can apply  eupersymmetry techniqueg

W~L T. Sheherbina 2014
w~L1(6/7) Bao and Erdog 2017
W~ L1(l/2) T. Sheherbina and M. Sheherbina 2017, 2019

W~ L(t/2) M. Digertoril, M. Lohmann, S. Sodin 2018



For delocalization, d>!, W=Lga

6

a > T L. Erdog and A. Knowleg
d+2 L. Erdog, A. Knowleg, Yau and Y
a >
2d + 2
d+1 )
a > 2d 1 Y. He and M. Marcozzi
P Yangand Y.  2019-2020
2d + 2

Main new result of thig talk

a>0, d>=10 Yau, Yang andY 2020

Hope to finich the proof for d>= © in the next year.



Regolvent Tool
G=(H=z)pm=zeC

Delocalization of eigenvectors ig implied by the following senge of
delocalization of regolvent:

dn>0, s.t. VE€(-2,2), VLKL

Z|y—m}§£ |Gwy(z)|2
max 2
© 2 ]Gry(2)]

< 1, z= FEy+1in

Usually people chooge n~W?/L?

When efaie larger, the above inequality does not hold.



But actually regolvent polynomially decaye
(glower than power of d)

Gey° ~ L/W?E — d=1

Goyl? ~1/W2,  d=2

1
2
|Gayl” ~ e d>3
C_{xyl2
Ix-yl
_d : 1
max ~ W%, min ~ T

The main contribution comeg from Ix-yl ~ L (min part)

Therefore, really we need to prove thie profile for delocalization.



Drevioug tool / work

: ~ W%
Lpax : I?:Z’;( |Gwy| W (highly non-trivial)

Ly: Y |Goyl® ~1/n
Yy

[ thie work, we need to
Gy ~(W Y% —term) + (W2 — term) + (W 242 — term)
+ () F (W2 —term) + +(..)
+ (W2|z — y| " — term)

Actually, we do (term by term) prove thege termg are zerog,
except the last one.



Univergal - Expangion

We expand the regolvent with

gsome regolvent identitieg

some conditional expectation tricke

and a well degigned rule on expangion order,

(which will be the main component of the firet paper in thig gerieg)

Why Univereal:

There ig a large univergal expangion, for W = L a, for fixed 5>0,
we will only use a subpart of the whole expansion.

PaCPaf, a>a

The limit expangion hag a very clear fractal tructure

lim P, =P,

a—0

Different W cageg chare the game expangion ig a very important property
for our proof. (You will see soon)



(B hag 1

Toyi= > |Gyl

y': |y —y|~W

T=B+B-A-T, B=SI-5)", S, =E|H,

he profile ag above)

1Bl Lo ~
Here A(* is the sub graphs with > Ag;) ~ (W~42)k

With come non-trivial cancellation (ie., Z lemma idea), one can ghow
Al term ig zero.

Therefore, it would be an effective expansion if

—Trr7—d : 4+2
n WK1, 1te, LKW




Complexity of the expansion

Even for guch gimple cage:

Each free index: Kd
Each G edge. K (-d/2+) if [x-yl ~ K
Each B, T edge. K (-d+2)

E xpangion geemg not a good idea, <ince one extra edge can not
cancel the factor contributed by one free index.

The expangion does not produce enough edges .

The more expangion (with no correct plan),
the mesgier (out of control) the graphe will be.



The number of graphs

k-th order: A (k) hag about (2k) (3k) graphe.

k=2, with gome gimplification,
there are about hundreds of graphe
k=3, with help of computer (Matlab),
it took iMac [ hr on computation and me [ month in coding

k=4, computer bagically never stop



Due to shortage of time,
[ will only focug on one of main novelty in the proof.
The whole proof is compoged of 3 papers (or more).

SUM ZERO
) y
: / : : -
X X X
Sum up x and y
' = - 2
LdT] 1 n ZZ,Ai;

[t turng out if we chooge

L2w:.- w3t <1, LHW: wis1
Then

zl
2wy «
z! S



K y
= Lz/W2Z, —_—O

z

SUM  ZERO
Exaie A 7
) B
I e

Why is Universal go important:
For certain L, we obtain the eur zero property of some A (k)

From sum zero property, we know the cancellation between the

graphe in A (k)

Since for other (larger) L’s, we uge came graphg, g0 in thoge
cagee, A (k) aleo hag eum zero property for larger L cage.



Why ig it so important ¥

Z Bmz’Az’z = Z(Bmz’ — By, — 3szz(Z/ - z))Az’z
2 2

Thanks



