A CLT for characteristic polynomial of $\mathbf{G} \beta \mathrm{E}$

Ofer Zeitouni
with Fanny Augeri and Raphael Butez

May 2020

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance $1 / N$ off diagonal, $2 / N$ on diagonal.

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance $1 / \mathrm{N}$ off diagonal, $2 / \mathrm{N}$ on diagonal.
Empirical measure $L_{N}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ converges weakly (in probability) to the semicircle law σ of density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance $1 / \mathrm{N}$ off diagonal, $2 / \mathrm{N}$ on diagonal.
Empirical measure $L_{N}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ converges weakly (in probability) to the semicircle law σ of density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

Central limit theorem

Asymptotically Gaussian fields in random matrix theory

X_{N} - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance $1 / N$ off diagonal, $2 / N$ on diagonal.
Empirical measure $L_{N}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ converges weakly (in probability) to the semicircle law σ of density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}}
$$

Central limit theorem $f: \mathbb{R} \rightarrow \mathbb{R}$ compactly supported, smooth. Consider

$$
W_{f, N}=\sum_{i=1}^{N} f\left(\lambda_{i}\right)-N \int f d \sigma
$$

CLT

Theorem (Johansson '98; β ensembles)
$W_{f, N}$ satisfies CLT, mean $(2 / \beta-1) \int f d \nu$, variance

$$
\frac{(2 / \beta)}{4 \pi^{2}} \iint_{-2}^{2} f(t) f^{\prime}(s) \frac{\sqrt{4-s^{2}}}{(t-s) \sqrt{4-t^{2}}} d s d t
$$

CLT

Theorem (Johansson '98; β ensembles)
$W_{f, N}$ satisfies CLT, mean $(2 / \beta-1) \int f d \nu$, variance

$$
\frac{(2 / \beta)}{4 \pi^{2}} \iint_{-2}^{2} f(t) f^{\prime}(s) \frac{\sqrt{4-s^{2}}}{(t-s) \sqrt{4-t^{2}}} d s d t
$$

The measure ν in the mean expression is explicit.
The variance has an alternative expression

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta)\right)^{2} d \theta
$$

CLT

Theorem (Johansson '98; β ensembles)
$W_{f, N}$ satisfies CLT, mean $(2 / \beta-1) \int f d \nu$, variance

$$
\frac{(2 / \beta)}{4 \pi^{2}} \iint_{-2}^{2} f(t) f^{\prime}(s) \frac{\sqrt{4-s^{2}}}{(t-s) \sqrt{4-t^{2}}} d s d t
$$

The measure ν in the mean expression is explicit.
The variance has an alternative expression

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta)\right)^{2} d \theta
$$

CLT's of this type go back at least to CLT of Jonsson for moments ('82), Pastur and co-workers, Bai-Silverstein, Shcherbina,

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong ' $13 H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$. Thus if could expand only to $k \sim N$, would get logarithmic variance. Justify? More later.

CLT

$$
\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k\left(\int_{0}^{\pi} f(2 \cos (\theta)) \cos (k \theta) d \theta\right)^{2}
$$

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.
Formally, if f has log singularity then contributions at all scales, and k th coefficient gives roughly contribution $\int_{0}^{\epsilon} \log (x) \sin (k x) \sim 1 / k$. Thus if could expand only to $k \sim N$, would get logarithmic variance. Justify? More later. Our basic object of interest: $\log \left|P_{N}(z)\right|=\log \left|\operatorname{det}\left(z I-X_{N}\right)\right|$.

The CLT

$$
\begin{aligned}
& f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z l-x_{N}\right)\right| \text {. } \\
& \text { For } z \in(-2,2) \backslash\{0\} \text {, define } \omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4 \text {, and } \\
& \alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1} .
\end{aligned}
$$

The CLT

$f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z I-x_{N}\right)\right|$.
For $z \in(-2,2) \backslash\{0\}$, define $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and
$\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$.
Introduce the rescaled variable

$$
\hat{f}_{N}(z)=\frac{N^{N / 2}}{\sqrt{N!}} f_{N}(z) \prod_{k=1}^{k_{0}} \frac{1}{\alpha\left(\omega_{k}\right)}
$$

The CLT

$f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z l-X_{N}\right)\right|$.
For $z \in(-2,2) \backslash\{0\}$, define $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and
$\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$.
Introduce the rescaled variable

$$
\hat{f}_{N}(z)=\frac{N^{N / 2}}{\sqrt{N!}} f_{N}(z) \prod_{k=1}^{k_{0}} \frac{1}{\alpha\left(\omega_{k}\right)}
$$

The α rescaling is natural as it relates to eigenvalues of certain transfer matrices. At exponential scale, the product of $\alpha^{\prime} s$ relates to the logarithmic potential of the semicircle.

The CLT

$f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z l-X_{N}\right)\right|$.
For $z \in(-2,2) \backslash\{0\}$, define $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and
$\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$.
Introduce the rescaled variable

$$
\hat{f}_{N}(z)=\frac{N^{N / 2}}{\sqrt{N!}} f_{N}(z) \prod_{k=1}^{k_{0}} \frac{1}{\alpha\left(\omega_{k}\right)}
$$

Theorem (Augeri-Butez-Z. '20) $\log \hat{f}_{N}(z)$ satisfies a CLT with mean $-(\log N) / 6$ and variance $(\log N) / \beta$.

The CLT

$f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z l-x_{N}\right)\right|$.
For $z \in(-2,2) \backslash\{0\}$, define $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and
$\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$.
Introduce the rescaled variable

$$
\hat{f}_{N}(z)=\frac{N^{N / 2}}{\sqrt{N!}} f_{N}(z) \prod_{k=1}^{k_{0}} \frac{1}{\alpha\left(\omega_{k}\right)}
$$

Theorem (Augeri-Butez-Z. '20) $\log \hat{f}_{N}(z)$ satisfies a CLT with mean $-(\log N) / 6$ and variance $(\log N) / \beta$.

The case of $z=0$ was handled by Tao-Vu, more later.

The CLT

$f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z \mid-x_{N}\right)\right|$.
For $z \in(-2,2) \backslash\{0\}$, define $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and
$\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$.
Introduce the rescaled variable

$$
\hat{f}_{N}(z)=\frac{N^{N / 2}}{\sqrt{N!}} f_{N}(z) \prod_{k=1}^{k_{0}} \frac{1}{\alpha\left(\omega_{k}\right)}
$$

Theorem (Augeri-Butez-Z. '20)

$\log \hat{f}_{N}(z)$ satisfies a CLT with mean $-(\log N) / 6$ and variance $(\log N) / \beta$.
The case of $z=0$ was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models. Also, can actually get good error bounds.

The CLT

$f_{N}(z)=\left|P_{N}(z)\right|=\left|\operatorname{det}\left(z \mid-x_{N}\right)\right|$.
For $z \in(-2,2) \backslash\{0\}$, define $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and
$\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$.
Introduce the rescaled variable

$$
\hat{f}_{N}(z)=\frac{N^{N / 2}}{\sqrt{N!}} f_{N}(z) \prod_{k=1}^{k_{0}} \frac{1}{\alpha\left(\omega_{k}\right)} .
$$

Theorem (Augeri-Butez-Z. '20)

$\log \hat{f}_{N}(z)$ satisfies a CLT with mean $-(\log N) / 6$ and variance $(\log N) / \beta$.
The case of $z=0$ was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models. Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense: mixed moments of total degree $<N$ are exactly those for independent Gaussians.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense: mixed moments of total degree $<N$ are exactly those for independent Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester '97, Keating-Snaith '00: $\log \left|\operatorname{det} U_{N}\right|$ is Gaussian of mean 0 and variance $c \log N$.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense: mixed moments of total degree $<N$ are exactly those for independent Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester ' 97 , Keating-Snaith ' $00: \log \left|\operatorname{det} U_{N}\right|$ is Gaussian of mean 0 and variance $c \log N$.
Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log \left|\operatorname{det}\left(z_{i} I-U_{N}\right)\right|$ is jointly Gaussian, log correlated structure.

The Lab: circular ensembles

U_{N}-CUE (aka Haar unitary on \mathcal{U}_{N}).
Diaconis-Shahshahani ' 94 : $\operatorname{Tr} U_{N}^{k} \sim N(0, k)$ independent, very strong sense: mixed moments of total degree $<N$ are exactly those for independent Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester ' 97 , Keating-Snaith ' $00: \log \left|\operatorname{det} U_{N}\right|$ is Gaussian of mean 0 and variance $c \log N$.
Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log \left|\operatorname{det}\left(z_{i} I-U_{N}\right)\right|$ is jointly Gaussian, log correlated structure.
If it is log-correlated, what about the extrema?

CUE char poly

Figure 1: Realizations of $\log \left|\mathrm{P}_{N}\left(e^{\mathrm{i} h}\right)\right|, 0 \leq h<2 \pi$, for $N=50$ and $N=1024$. At microscopic scales, the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and macroscopic scales.
(From Arguin, Belius, Bourgade '17)

Circular ensembles

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$.

Circular ensembles

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels.

Circular ensembles

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress.

Circular ensembles

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress.
Arguin, Belius, Bourgade '17-Identify the '1'.

Circular ensembles

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress.
Arguin, Belius, Bourgade '17-Identify the '1'. Paquette, Zeitouni ' 18 - Identify the ' $-3 / 4$ '.

Circular ensembles

Set $M_{N}(\theta)=\log \left|P_{N}\left(e^{i \theta}\right)\right|, M_{N}^{*}=\max _{\theta \in[0,2 \pi]} M_{N}(\theta)$.
Conjecture (Fyodorov-Hiary-Keating '12)

$$
M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W
$$

where W has the law of the sum of two independent Gumbels.
Still open, although much progress.
Arguin, Belius, Bourgade '17-Identify the ' 1 '.
Paquette, Zeitouni ' 18 - Identify the ' $-3 / 4$ '.
Both use in essential way CUE (aka $\beta=2$), where joint distribution of eigenvalues is

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{2}
$$

for which Gaussianity of traces follows from Diaconis-Shashahani and moments of determinant (=exponential moments of $M_{N}(z)$) are Toeplitz determinants.

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients),

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$
\binom{\Phi_{k+1}(z)}{\Phi_{k+1}^{*}(z)}=\left(\begin{array}{ll}
z & -\bar{\alpha}_{k}^{*} \\
-\alpha_{k} z & 1
\end{array}\right)\binom{\Phi_{k}(z)}{\Phi_{k}^{*}(z)}, \Phi_{k}^{*}(z)=z^{k} \overline{\Phi_{k}\left(\bar{z}^{-1}\right)} .
$$

$\alpha_{k}=B_{k} e^{2 \pi i \theta_{k}}, E B_{k}^{2} \sim 2 / \beta k$, beta variable. $\alpha_{k} \sim g_{k}+i g_{k}^{\prime}$, Gaussian.

$M_{N}^{*}=\log N-\frac{3}{4} \log \log N+W$

The clincher:

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}, \beta>0
$$

Chhaibi-Madaule-Najnudel ' $18 M_{N}^{*}=\log N-\frac{3}{4} \log \log N+O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$
\binom{\Phi_{k+1}(z)}{\Phi_{k+1}^{*}(z)}=\left(\begin{array}{ll}
z & -\bar{\alpha}_{k}^{*} \\
-\alpha_{k} z & 1
\end{array}\right)\binom{\Phi_{k}(z)}{\Phi_{k}^{*}(z)}, \Phi_{k}^{*}(z)=z^{k} \overline{\Phi_{k}\left(\bar{z}^{-1}\right)} .
$$

$\alpha_{k}=B_{k} e^{2 \pi i \theta_{k}}, E B_{k}^{2} \sim 2 / \beta k$, beta variable. $\alpha_{k} \sim g_{k}+i g_{k}^{\prime}$, Gaussian.
In addition, $\sup _{|z|=1}|\log | M_{N}(z)|-\log | \Phi_{k}^{*}(z)| |$ is tight.

Recursions - Circular ensembles

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) .
\end{gathered}
$$

Recursions - Circular ensembles

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) .
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.

Recursions - Circular ensembles

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian.

Recursions - Circular ensembles

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian. Use a branching structure.

Recursions - Circular ensembles

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \psi_{k-1}(\theta)}\right) .
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian. Use a branching structure. Chhaibi-Najnudel '19 $P_{N}(\cdot)$ converges to the GMC with parameter $\sqrt{2 / \beta}$. $\beta=2$: Nikula, Saksman, Webb '18, Webb '15

Recursions - Circular ensembles

$$
\begin{gathered}
\log \Phi_{k}^{*}\left(e^{i \theta}\right)-\log \Phi_{k-1}^{*}\left(e^{i \theta}\right)=\log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right) \sim-\alpha_{j} e^{i \Psi_{k-1}(\theta)} \\
\Psi_{k}(\theta)=\Psi_{k}(\theta)+\theta-2 \Im \log \left(1-\alpha_{j} e^{i \Psi_{k-1}(\theta)}\right)
\end{gathered}
$$

Thus, marginal of $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ is essentially Gaussian, of variance $(2 / \beta) \log N$.
Log correlated, but joint law is not Gaussian.
Use a branching structure.
Chhaibi-Najnudel '19 $P_{N}(\cdot)$ converges to the GMC with parameter $\sqrt{2 / \beta}$.
$\beta=2$: Nikula, Saksman, Webb '18, Webb '15
Work in progress: Paquette-Z ('20?) Convergence in law of max $\log \left|\Phi_{N}^{*}\left(e^{i \theta}\right)\right|$ to Gumbel shifted by (unknown) r.v.. Some new phenomena for log-determinant of random permutations: Cook-Z. '20

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

Back to $G \beta E$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13) Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13) Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18 What about $\log \left|\operatorname{det}\left(z I-X_{N}\right)\right|$?

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18
What about $\log \left|\operatorname{det}\left(z I-X_{N}\right)\right|$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18
What about $\log \left|\operatorname{det}\left(z I-X_{N}\right)\right|$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential). Also, connection to GMC for $\beta=2$: Berestycki-Webb-Wong '18 (L^{2} phase)

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18
What about $\log \left|\operatorname{det}\left(z I-X_{N}\right)\right|$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential). Also, connection to GMC for $\beta=2$: Berestycki-Webb-Wong '18 (L^{2} phase) For general β : even CLT of log-det not clear!

Back to $\mathrm{G} \beta \mathrm{E}$

We take $X_{N} \sim \mathrm{G} \beta \mathrm{E}$, ie joint distribution of eigenvalues on \mathbb{R}^{N} :

$$
\prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\beta \frac{N}{4} \sum \lambda_{i}^{2}}
$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98-loop equations; Guionnet-Borot '13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18
What about $\log \left|\operatorname{det}\left(z I-X_{N}\right)\right|$?
$\beta=2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).
Also, connection to GMC for $\beta=2$: Berestycki-Webb-Wong '18 (L^{2} phase) For general β : even CLT of log-det not clear!
Recent result of Claeys, Fahs, Lambert, Webb: sharp CLT's for counting functions, GMC convergence.

log-det trajectory

Empirical facts

Empirical facts

Skewed?

Reason for skewness in simulations

CLT for log determinant $\mathbf{G} \beta \mathbf{E}$

The case $z=0$ is special.
Theorem (Tao-Vu '11)
$\left(M_{N}(0)-a N-b \log N\right) / \sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments.

CLT for log determinant $\mathbf{G} \beta \mathrm{E}$

The case $z=0$ is special.
Theorem (Tao-Vu '11)
$\left(M_{N}(0)-a N-b \log N\right) / \sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $\mathrm{G} \beta \mathrm{E}, \beta=1,2$.

CLT for log determinant $\mathbf{G} \beta \mathrm{E}$

The case $z=0$ is special.
Theorem (Tao-Vu '11)
$\left(M_{N}(0)-a N-b \log N\right) / \sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $\mathrm{G} \beta \mathrm{E}, \beta=1,2$. Their proof extends to general $\beta>0$, and is based on recursions.

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman '05)
X_{N} from $G \beta E$ is unitarily equivalent to the following 3-diagonal Jacobi matrix

$$
\frac{1}{\sqrt{N}} X_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{lllll}
b_{1} & a_{1} & 0 & \ldots & 0 \\
a_{1} & b_{2} & a_{2} & 0 & \ldots \\
0 & a_{2} & b_{3} & a_{3} & 0 \\
\cdots & \cdots & \cdots & \cdots & \ldots \\
0 & 0 & 0 & a_{N-1} & b_{N}
\end{array}\right)
$$

where $b_{i} \sim N(0, \sqrt{2 / \beta}), a_{i} \sim \chi_{i \beta} / \sqrt{\beta}$.
Here $a_{i} \sim \chi_{i \beta} / \sqrt{\beta}$; here $\chi_{i \beta}^{2}$ has chi-square distribution with $i \beta$ degrees of freedom, ie $\chi_{i \beta} / \sqrt{\beta} \sim \sqrt{i \beta}+G / \sqrt{2 \beta}+O(1 / i)$.

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}.

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}. From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}. From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

Recall: $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and $\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$ if $k<k_{0}$, $\alpha\left(\omega_{k}\right)=1$ if $k \geq k_{0}$.

Recursions

Let $\varphi_{k}(\cdot)$ denote the characteristic polynomial of the top k-by- k block of X_{N}. From the 3-diagonal representation,

$$
\varphi_{k}(z \sqrt{N})=\left(z \sqrt{N}-b_{k}\right) \varphi_{k}(z \sqrt{N})-a_{k-1}^{2} \varphi_{k-1}(z \sqrt{N}), \varphi_{-1}=0, \varphi_{0}=1 .
$$

Recall: $\omega_{k}=z \sqrt{n / k}, k_{0}=z^{2} n / 4$, and $\alpha\left(\omega_{k}\right)=\omega_{k} / 2+\sqrt{\omega_{k}^{2} / 4-1}$ if $k<k_{0}$, $\alpha\left(\omega_{k}\right)=1$ if $k \geq k_{0}$.
We set

$$
\Psi_{k}(z)=\phi_{k}(z \sqrt{N}) \frac{1}{\sqrt{k!} \prod_{i=1}^{k} \alpha\left(\omega_{i}\right)}
$$

and then

$$
\Psi_{k}(z)=\frac{z \sqrt{N}-b_{k}}{\sqrt{k} \alpha\left(\omega_{k}\right)} \Psi_{k-1}(z)-\frac{a_{k-1}^{2}}{\sqrt{k(k-1)} \alpha\left(\omega_{k}\right) \alpha\left(\omega_{k-1}\right)} \Psi_{k-2}(z) .
$$

Recursions

Recall that k_{0} satisfies $\omega_{k_{0}}=2$ (if $z=0$ then $k_{0}=1$). In matrix form, for $k \geq k_{0}$,

$$
\begin{aligned}
& \binom{\Psi_{k+1}(z)}{\Psi_{k}(z)} \\
& \sim\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+\left(\begin{array}{ll}
b_{k} / \sqrt{k} & g_{k} / \sqrt{k} \\
0 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
\end{aligned}
$$

where $\omega_{k}=z \sqrt{n / k}$, and b_{k}, g_{k} are (essentially) iid Gaussian of variance $2 / \beta$.

Recursions

Recall that k_{0} satisfies $\omega_{k_{0}}=2$ (if $z=0$ then $k_{0}=1$). In matrix form, for $k \geq k_{0}$,

$$
\begin{aligned}
& \binom{\Psi_{k+1}(z)}{\Psi_{k}(z)} \\
& \sim\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+\left(\begin{array}{ll}
b_{k} / \sqrt{k} & g_{k} / \sqrt{k} \\
0 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
\end{aligned}
$$

where $\omega_{k}=z \sqrt{n / k}$, and b_{k}, g_{k} are (essentially) iid Gaussian of variance $2 / \beta$. In the Tao-Vu $z=0$ case, $\omega_{k}=0$, and except for perturbation, we have a pure rotation.

Recursions

Recall that k_{0} satisfies $\omega_{k_{0}}=2$ (if $z=0$ then $k_{0}=1$). In matrix form, for $k \geq k_{0}$,

$$
\begin{aligned}
& \binom{\Psi_{k+1}(z)}{\Psi_{k}(z)} \\
& \sim\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+\left(\begin{array}{ll}
b_{k} / \sqrt{k} & g_{k} / \sqrt{k} \\
0 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
\end{aligned}
$$

where $\omega_{k}=z \sqrt{n / k}$, and b_{k}, g_{k} are (essentially) iid Gaussian of variance $2 / \beta$. In the Tao-Vu $z=0$ case, $\omega_{k}=0$, and except for perturbation, we have a pure rotation.
Tao-Vu show that $\Psi_{k-1}(z)^{2}+\Psi_{k-1}(z)^{2}$ (essentially) forms a martingale with quadratic variation process of increment $\sim 1 / k$. This gives the CLT.

$$
\binom{\Psi_{k+1}(z)}{\Psi_{k}(z)}=A_{k}\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+E_{k}\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
$$

where

$$
A_{k}=\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}, \quad \omega_{k}=z \sqrt{n / k}
$$

and E_{k} is a small noise matrix.

$$
\binom{\Psi_{k+1}(z)}{\Psi_{k}(z)}=A_{k}\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+E_{k}\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
$$

where

$$
A_{k}=\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}, \quad \omega_{k}=z \sqrt{n / k}
$$

and E_{k} is a small noise matrix.
The eigenvalues of A_{k} are roughly $\frac{1}{2} \omega_{k} \pm \frac{1}{2} \sqrt{\omega_{k}^{2}-4}$.

$$
\binom{\Psi_{k+1}(z)}{\Psi_{k}(z)}=A_{k}\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}+E_{k}\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}
$$

where

$$
A_{k}=\left(\begin{array}{ll}
\omega_{k} & -1+1 / 2 k \\
1 & 0
\end{array}\right)\binom{\Psi_{k}(z)}{\Psi_{k-1}(z)}, \quad \omega_{k}=z \sqrt{n / k}
$$

and E_{k} is a small noise matrix.
The eigenvalues of A_{k} are roughly $\frac{1}{2} \omega_{k} \pm \frac{1}{2} \sqrt{\omega_{k}^{2}-4}$.
For $k<k_{0}$, eigenvalues real and smaller that 1 .
For $k>k_{0}$, eigenvalues imaginary, of modulus roughly 1.

Recursions - general z

There are several regimes to consider. Fix $\epsilon>0$, recall that $k_{0}=z^{2} N / 4$.

- $k<(1-\epsilon) k_{0}$: one checks that $\Psi_{k}(z) \sim 1$.
- $k \in\left[(1-\epsilon) k_{0}, k_{0}\right]$: write

$$
X_{k}=\Psi_{k} / \Psi_{k-1}=1+\delta_{k}, \quad X_{k}=A_{k}+B_{k} / X_{k-1}
$$

for appropriate A_{k}, B_{k}.

Recursions - general z

There are several regimes to consider. Fix $\epsilon>0$, recall that $k_{0}=z^{2} N / 4$.

- $k<(1-\epsilon) k_{0}$: one checks that $\Psi_{k}(z) \sim 1$.
- $k \in\left[(1-\epsilon) k_{0}, k_{0}\right]$: write

$$
X_{k}=\Psi_{k} / \Psi_{k-1}=1+\delta_{k}, \quad X_{k}=A_{k}+B_{k} / X_{k-1}
$$

for appropriate A_{k}, B_{k}. In this regime, $\delta_{k} \sim 0$ and one obtains a recursion

$$
\delta_{k} \sim u_{k}+v_{k} \delta_{k-1}
$$

where, with $\alpha_{k}=\alpha\left(\omega_{k}\right)$,

$$
u_{k} \sim \frac{b_{k}}{\sqrt{k \alpha_{k}^{2}}}+\frac{1}{2 k \alpha_{k}^{2}}-\frac{g_{k}}{\sqrt{k \alpha_{k}^{4}}}, \quad v_{k}=\frac{1-\frac{1}{2 k}+\frac{g_{k}}{\sqrt{k}}}{\alpha_{k}^{2}},
$$

which one solves.

- $k>k_{0}$: Oscillatory regime, most interesting.

Recursions - general z - the scalar regime

$$
\begin{gathered}
\delta_{k} \sim u_{k}+v_{k} \frac{\delta_{k-1}}{1+\delta_{k-1}} \\
u_{k} \sim \frac{b_{k}}{\sqrt{k \alpha_{k}^{2}}}+\frac{1}{2 k \alpha_{k}^{2}}-\frac{g_{k}}{\sqrt{k \alpha_{k}^{4}}}, \quad v_{k}=\frac{1-\frac{1}{2 k}+\frac{g_{k}}{\sqrt{k}}}{\alpha_{k}^{2}}
\end{gathered}
$$

Recursions - general z - the scalar regime

$$
\begin{gathered}
\delta_{k} \sim u_{k}+v_{k} \frac{\delta_{k-1}}{1+\delta_{k-1}} \\
u_{k} \sim \frac{b_{k}}{\sqrt{k \alpha_{k}^{2}}}+\frac{1}{2 k \alpha_{k}^{2}}-\frac{g_{k}}{\sqrt{k \alpha_{k}^{4}}}, \quad v_{k}=\frac{1-\frac{1}{2 k}+\frac{g_{k}}{\sqrt{k}}}{\alpha_{k}^{2}}
\end{gathered}
$$

No significant contribution for $k \in\left[1,(1-\epsilon) k_{0}\right]$.

Recursions - general z - the scalar regime

$$
\begin{gathered}
\delta_{k} \sim u_{k}+v_{k} \frac{\delta_{k-1}}{1+\delta_{k-1}} \\
u_{k} \sim \frac{b_{k}}{\sqrt{k \alpha_{k}^{2}}}+\frac{1}{2 k \alpha_{k}^{2}}-\frac{g_{k}}{\sqrt{k \alpha_{k}^{4}}}, \quad v_{k}=\frac{1-\frac{1}{2 k}+\frac{g_{k}}{\sqrt{k}}}{\alpha_{k}^{2}}
\end{gathered}
$$

No significant contribution for $k \in\left[1,(1-\epsilon) k_{0}\right]$. Solve in two steps: first, the linearized equation

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}
$$

Recursions - general z - the scalar regime

$$
\begin{gathered}
\delta_{k} \sim u_{k}+v_{k} \frac{\delta_{k-1}}{1+\delta_{k-1}} \\
u_{k} \sim \frac{b_{k}}{\sqrt{k \alpha_{k}^{2}}}+\frac{1}{2 k \alpha_{k}^{2}}-\frac{g_{k}}{\sqrt{k \alpha_{k}^{4}}}, \quad v_{k}=\frac{1-\frac{1}{2 k}+\frac{g_{k}}{\sqrt{k}}}{\alpha_{k}^{2}}
\end{gathered}
$$

No significant contribution for $k \in\left[1,(1-\epsilon) k_{0}\right]$. Solve in two steps: first, the linearized equation

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}
$$

with solution

$$
\bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell}
$$

Recursions - general z - the scalar regime

$$
\begin{gathered}
\delta_{k} \sim u_{k}+v_{k} \frac{\delta_{k-1}}{1+\delta_{k-1}} \\
u_{k} \sim \frac{b_{k}}{\sqrt{k \alpha_{k}^{2}}}+\frac{1}{2 k \alpha_{k}^{2}}-\frac{g_{k}}{\sqrt{k \alpha_{k}^{4}}}, \quad v_{k}=\frac{1-\frac{1}{2 k}+\frac{g_{k}}{\sqrt{k}}}{\alpha_{k}^{2}}
\end{gathered}
$$

No significant contribution for $k \in\left[1,(1-\epsilon) k_{0}\right]$. Solve in two steps: first, the linearized equation

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}
$$

with solution

$$
\bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell}
$$

$\bar{\delta}_{k}$ is a martingale, and small. We can compute $\sum \bar{\delta}_{k}$, and $\bar{\delta}_{k}$ are correlated!

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell}
$$

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z's computable.

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z 's computable. We need to control $\Delta_{k}=\delta_{k}-\bar{\delta}_{k}$.

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z 's computable. We need to control $\Delta_{k}=\delta_{k}-\bar{\delta}_{k}$.

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z 's computable. We need to control $\Delta_{k}=\delta_{k}-\bar{\delta}_{k}$.
$\Delta_{k}=v_{k}\left(\frac{\delta_{k-1}}{1+\delta_{k-1}}-\overline{\delta_{k-1}}\right)=v_{k}\left(1-2 \overline{\delta_{k-1}}\right) \Delta_{k-1}-v_{k}{\overline{\delta_{k-1}}}^{2}+O\left(\Delta_{k-1}^{2}+{\overline{\delta_{k-1}}}^{3}\right)$
Using a-priori bounds on $\bar{\delta}_{k}$, control size of Δ_{k}, and of the error terms.

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z 's computable. We need to control $\Delta_{k}=\delta_{k}-\bar{\delta}_{k}$.
$\Delta_{k}=v_{k}\left(\frac{\delta_{k-1}}{1+\delta_{k-1}}-\overline{\delta_{k-1}}\right)=v_{k}\left(1-2 \overline{\delta_{k-1}}\right) \Delta_{k-1}-v_{k}{\overline{\delta_{k-1}}}^{2}+O\left(\Delta_{k-1}^{2}+{\overline{\delta_{k-1}}}^{3}\right)$
Using a-priori bounds on $\bar{\delta}_{k}$, control size of Δ_{k}, and of the error terms.
At the end, Δ_{k} contributes only to the mean.

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z 's computable.
We need to control $\Delta_{k}=\delta_{k}-\bar{\delta}_{k}$. Using a-priori bounds on $\bar{\delta}_{k}$, control size of Δ_{k}, and of the error terms.
At the end, Δ_{k} contributes only to the mean. We conclude that

$$
\log \Psi_{k_{0}-k_{0}^{1 / 3}}=\sigma_{n} G-\frac{1}{2} \sigma_{n}^{2}, \quad \delta_{k_{0}-C k_{0}^{1 / 3}}=O\left(\frac{1}{k_{0}^{1 / 3}}\right)
$$

where $\sigma_{n}^{2}=\frac{2}{3 \beta} \log n$ and G is a standard Gaussian.

Recursions-general z- the scalar regime

$$
\bar{\delta}_{k}=u_{k}+v_{k} \bar{\delta}_{k-1}, \quad \bar{\delta}_{k}=\sum_{j=2}^{k} u_{j} \prod_{\ell=j+1}^{k} v_{\ell} .
$$

Turns out contribution occurs only for $k<k_{0}-k_{0}^{1 / 3}$, and then get a CLT with blocks of length $\left(k_{0} / i\right)^{1 / 3}$ to the left of k_{0} contributing order $1 / i$ to the variance. Also, correlation between different z 's computable.
We need to control $\Delta_{k}=\delta_{k}-\bar{\delta}_{k}$. Using a-priori bounds on $\bar{\delta}_{k}$, control size of Δ_{k}, and of the error terms.
At the end, Δ_{k} contributes only to the mean. We conclude that

$$
\log \Psi_{k_{0}-k_{0}^{1 / 3}}=\sigma_{n} G-\frac{1}{2} \sigma_{n}^{2}, \quad \delta_{k_{0}-C k_{0}^{1 / 3}}=O\left(\frac{1}{k_{0}^{1 / 3}}\right)
$$

where $\sigma_{n}^{2}=\frac{2}{3 \beta} \log n$ and G is a standard Gaussian.
A much finer analysis (up to $k_{0}-k_{0}^{1 / 3}\left(\log k_{0}\right)^{2 / 3}$) by Lambert-Paquette (hyperbolic regime) - arXiv:2001.09042

Recursions - general z - the oscilatory regime

$$
X_{k}=\binom{\Psi_{k+1}}{\Psi_{k}}, k>k_{0}
$$

We have

$$
X_{k+1}=\left(A_{k}+W_{k}\right) X_{k},
$$

where

$$
A_{k}=\left(\begin{array}{cc}
\omega_{k} & -1+\frac{1}{2 k} \\
1 & 0
\end{array}\right), W_{k}=\left(\begin{array}{cc}
\frac{-b_{k}}{\sqrt{k}} & \frac{g_{k}}{\sqrt{k}} \\
0 & 0
\end{array}\right)
$$

$z_{k}=z \sqrt{\frac{n}{k}}=2-\frac{1}{k_{0}}$ and $b_{k} \sim \mathcal{N}(0,2 / \beta)$ and $g_{k} \sim \mathcal{N}(0,2 / \beta)$.

Recursions - general z - the oscilatory regime

$$
X_{k}=\binom{\Psi_{k+1}}{\Psi_{k}}, k>k_{0}
$$

We have

$$
X_{k+1}=\left(A_{k}+W_{k}\right) X_{k},
$$

where

$$
A_{k}=\left(\begin{array}{cc}
\omega_{k} & -1+\frac{1}{2 k} \\
1 & 0
\end{array}\right), W_{k}=\left(\begin{array}{cc}
\frac{-b_{k}}{\sqrt{k}} & \frac{g_{k}}{\sqrt{k}} \\
0 & 0
\end{array}\right)
$$

$z_{k}=z \sqrt{\frac{n}{k}}=2-\frac{1}{k_{0}}$ and $b_{k} \sim \mathcal{N}(0,2 / \beta)$ and $g_{k} \sim \mathcal{N}(0,2 / \beta)$.
Eigenvalues of A_{k} for $k>k_{0}$ are complex of (essentially) unit norm. Change basis to eigenvector basis, get

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}
$$

where R_{i} are rotation matrices of angle $\theta_{k} \sim \sqrt{k / k_{0-1}}$.

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) Q_{k_{0}}^{-1} \hat{k}_{k_{0}}
$$

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) Q_{k_{0}}^{-1} \hat{k}_{k_{0}}
$$

Problems:

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) Q_{k_{0}}^{-1} \hat{x}_{k_{0}}
$$

Problems:

(1) $Q_{k_{0}}^{-1}$ has huge norm.

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) Q_{k_{0}}^{-1} \hat{k}_{k_{0}}
$$

Problems:

(1) $Q_{k_{0}}^{-1}$ has huge norm.
(2) Non-commutative product-effect on perturbations.

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) Q_{k_{0}}^{-1} \hat{x}_{k_{0}}
$$

Problems:

(1) $Q_{k_{0}}^{-1}$ has huge norm.
(2) Non-commutative product-effect on perturbations.

Problem 1: $Q_{k_{0}}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_{0}-C k_{0}^{1 / 3}$, not at k_{0}).

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) Q_{k_{0}}^{-1} \hat{x}_{k_{0}}
$$

Problems:

(1) $Q_{k_{0}}^{-1}$ has huge norm.
(2) Non-commutative product-effect on perturbations.

Problem 1: $Q_{k_{0}}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_{0}-C k_{0}^{1 / 3}$, not at k_{0}).
Solution: Recall that $\delta_{k_{0}-C k_{0}^{1 / 3}}$ is $\sim k_{0}^{-1 / 3}$, by scalar analysis.

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) Q_{k_{0}}^{-1} \hat{x}_{k_{0}}
$$

Problems:

(1) $Q_{k_{0}}^{-1}$ has huge norm.
(2) Non-commutative product-effect on perturbations.

Problem 1: $Q_{k_{0}}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_{0}-C k_{0}^{1 / 3}$, not at k_{0}).
Solution: Recall that $\delta_{k_{0}-C k_{0}^{1 / 3}}$ is $\sim k_{0}^{-1 / 3}$, by scalar analysis. This means initial conditions are of the form $\binom{1}{1}$, plus small perturbation.

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) Q_{k_{0}}^{-1} \hat{x}_{k_{0}}
$$

Problems:
(1) $Q_{k_{0}}^{-1}$ has huge norm.
(2) Non-commutative product-effect on perturbations.

Problem 1: $Q_{k_{0}}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_{0}-C k_{0}^{1 / 3}$, not at k_{0}).
Solution: Recall that $\delta_{k_{0}-C k_{0}^{1 / 3}}$ is $\sim k_{0}^{-1 / 3}$, by scalar analysis. This means initial conditions are of the form $\binom{1}{1}$, plus small perturbation. In this direction, do not have eigenvalue. This is enough to control from above the norm at the end of block.

Recursions - general z - the oscilatory regime

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) Q_{k_{0}}^{-1} \hat{x}_{k_{0}}
$$

Problems:
(1) $Q_{k_{0}}^{-1}$ has huge norm.
(2) Non-commutative product-effect on perturbations.

Problem 1: $Q_{k_{0}}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_{0}-C k_{0}^{1 / 3}$, not at k_{0}).
Solution: Recall that $\delta_{k_{0}-C k_{0}^{1 / 3}}$ is $\sim k_{0}^{-1 / 3}$, by scalar analysis. This means initial conditions are of the form $\binom{1}{1}$, plus small perturbation. In this direction, do not have eigenvalue. This is enough to control from above the norm at the end of block.
For lower bound on norm, use anti-concentration.

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) \hat{Y}_{k_{0}+C_{0}^{1 / 3}}
$$

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\prod R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)^{T}$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=\ell_{j}}^{\ell_{i+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(1,0)^{T} \sim \rho_{i}(1,0)^{T} .
$$

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\Pi R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)^{T}$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=\ell_{j}}^{\ell_{i+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(1,0)^{T} \sim \rho_{i}(1,0)^{T} .
$$

We have $\ell_{j+1}-\ell_{j} \sim\left(k_{0} / j\right)^{1 / 3}$, and variance computation as in sketch.

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{x}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{w}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

First order approximation: divide to blocks of length $\ell_{i}=\left(k_{0} / i\right)^{1 / 3}$, linearize in each block, and get contribution to variance of order $1 / i$.
Caveat: unlike the case of $z=0$, the quadratic variation of the (log) of the norm is not a function of the norm!
Solution: along block we have $\prod R_{i}=I$, but the vector $(1,0)^{T}$ is not mapped to $\rho_{i}(1,0)^{T}$ due to the noise. So instead, stop (at random time) where

$$
\prod_{i=\ell_{j}}^{\ell_{j+1}} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right)(1,0)^{T} \sim \rho_{i}(1,0)^{T} .
$$

We have $\ell_{j+1}-\ell_{j} \sim\left(k_{0} / j\right)^{1 / 3}$, and variance computation as in sketch. Of course, cannot achieve exactly $(1,0)^{\top}$, but can control error by choosing when to stop.

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

Within a block, linearization is a good approximation:

$$
\prod_{j=\ell_{i}+1}^{\ell_{i+1}} Q_{j+1}^{-1} Q_{j}\left(R_{i}+\hat{W}_{i}\right)=\prod_{j=\ell_{i}+1}^{\ell_{i+1}}\left(I+\Delta_{j}\right)\left(R_{i}+\hat{W}_{i}\right)
$$

$=\sum_{k=\ell_{i}+1}^{\ell_{i+1}} \mathbf{R}_{\mathbf{k}}\left(I+\Delta_{k}+\hat{W}_{k}\right) \mathbf{R}_{\mathbf{k}}^{-1}+$ error terms $=I+\sum_{k=\ell_{i}+1}^{\ell_{i+1}} \mathbf{R}_{\mathbf{k}}\left(\Delta_{k}+\hat{W}_{k}\right) \mathbf{R}_{\mathbf{k}}^{-1}+$ error term
where $\mathbf{R}_{\mathbf{k}}$ is a rotation by an angle between 0 and 2π.

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

$$
\hat{X}_{k}=Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i}\left(R_{i}+\hat{W}_{i}\right) \hat{Y}_{k_{0}+C k_{0}^{1 / 3}}
$$

Within a block, linearization is a good approximation:

$$
\prod_{j=\ell_{i}+1}^{\ell_{i+1}} Q_{j+1}^{-1} Q_{j}\left(R_{i}+\hat{W}_{i}\right)=\prod_{j=\ell_{i}+1}^{\ell_{i+1}}\left(I+\Delta_{j}\right)\left(R_{i}+\hat{W}_{i}\right)
$$

$=\sum_{k=\ell_{i}+1}^{\ell_{i+1}} \mathbf{R}_{\mathbf{k}}\left(I+\Delta_{k}+\hat{W}_{k}\right) \mathbf{R}_{\mathbf{k}}{ }^{-1}+$ error terms $=I+\sum_{k=\ell_{i}+1}^{\ell_{i+1}} \mathbf{R}_{\mathbf{k}}\left(\Delta_{k}+\hat{W}_{k}\right) \mathbf{R}_{\mathbf{k}}^{-1}+$ error term
where $\mathbf{R}_{\mathbf{k}}$ is a rotation by an angle between 0 and 2π.
Easy to compute effect of linearization, get that $\rho_{i} \sim 1+g_{i}+c^{\prime} / i$ where g_{i} has variance c / i.

Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the approximation, e.g. if block is of length 1 ; But variance is small there, so can combine blocks!

Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the approximation, e.g. if block is of length 1 ; But variance is small there, so can combine blocks!
Computing correlation between different z 's is complicated in the regime $\left|z-z^{\prime}\right|<N^{-2 / 3}$ because of block structure.

Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the approximation, e.g. if block is of length 1 ; But variance is small there, so can combine blocks!
Computing correlation between different z 's is complicated in the regime $\left|z-z^{\prime}\right|<N^{-2 / 3}$ because of block structure. Working on it!

