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Background

Asymptotically Gaussian fields in random matrix
theory

XN - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and

above diagonal, variance 1/N off diagonal, 2/N on diagonal.

Empirical measure LN = N−1∑N
i=1 δλi converges weakly (in probability) to the

semicircle law σ of density
1

2π

√
4− x2.

Central limit theorem f : R→ R compactly supported, smooth. Consider

Wf ,N =
N∑

i=1

f (λi )− N
∫

fdσ.
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Background

CLT

Theorem (Johansson ’98; β ensembles)

Wf ,N satisfies CLT, mean (2/β − 1)
∫

fdν, variance

(2/β)

4π2

∫∫ 2

−2
f (t)f ′(s)

√
4− s2

(t − s)
√

4− t2
dsdt .

The measure ν in the mean expression is explicit.
The variance has an alternative expression

1
2π2

∞∑
k=1

k
(∫ π

0
f (2 cos(θ)) cos(kθ)

)2

dθ

CLT’s of this type go back at least to CLT of Jonsson for moments
(’82), Pastur and co-workers, Bai-Silverstein, Shcherbina, . . ..
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Background

CLT

1
2π2

∞∑
k=1

k
(∫ π

0
f (2 cos(θ)) cos(kθ)dθ

)2

If f is smooth and compactly supported - variance finite.
Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy ’99, recently
Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia . . .. Variance still of
order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)
What if f is not smooth? e.g. Sosoe-Wong ’13 H1+ε.
Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic
variance.
Formally, if f has log singularity then contributions at all scales, and k th
coefficient gives roughly contribution

∫ ε
0 log(x) sin(kx) ∼ 1/k . Thus if could

expand only to k ∼ N, would get logarithmic variance. Justify? More later.
Our basic object of interest: log |PN(z)| = log |det(zI − XN)|.
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Background

The CLT

fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.

Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The CLT

fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.
Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The CLT
fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.
Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

The α rescaling is natural as it relates to eigenvalues of certain transfer
matrices. At exponential scale, the product of α′s relates to the logarithmic
potential of the semicircle.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The CLT

fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.
Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The CLT

fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.
Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.

The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The CLT

fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.
Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.

I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The CLT

fN (z) = |PN (z)| = |det(zI − XN )|.

For z ∈ (−2,2) \ {0}, define ωk = z
√

n/k , k0 = z2n/4, and

α(ωk ) = ωk/2 +
√
ω2

k/4− 1.
Introduce the rescaled variable

f̂N(z) =
NN/2
√

N!
fN(z)

k0∏
k=1

1
α(ωk )

.

Theorem (Augeri-Butez-Z. ’20)

log f̂N(z) satisfies a CLT with mean −(log N)/6 and variance (log N)/β.

The case of z = 0 was handled by Tao-Vu, more later.
The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.
I will describe the proof, after a short digression toward circular ensembles.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 5 / 27



Background

The Lab: circular ensembles

UN -CUE (aka Haar unitary on UN ).

Diaconis-Shahshahani ’94: TrUk
N ∼ N(0, k) independent, very strong sense:

mixed moments of total degree < N are exactly those for independent
Gaussians.
Motivated by links with Riemann zeta function:
Baker-Forrester ’97, Keating-Snaith ’00: log |detUN | is Gaussian of mean 0
and variance c log N.
Hughes-Keating-Oconnell, Wieand ’02: multi-d extension: log |det(zi I − UN)|
is jointly Gaussian, log correlated structure.
If it is log-correlated, what about the extrema?
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Background

CUE char poly

Figure 1: Realizations of log |PN (eih)|, 0 ≤ h < 2π, for N = 50 and N = 1024. At microscopic scales,
the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and
macroscopic scales.

This was conjectured by Fyodorov & Keating, see Section 2.4 in [36]. In fact, a more precise expression
for the measure of high points was instrumental for their prediction of the subleading order in Conjecture
1.1, following the ideas of [39]. The theorem can be used to obtain the limit of the free energy

1

logN
log

(
N

2π

∫ 2π

0

|PN (h)|βdh

)
(1.5)

of the random field log |PN (eih)|. In particular, it is proposed in Section 2.2 of [36] that the free energy
exhibits freezing, i.e. that above a critical temperature βc, the free energy (1.5) divided by the inverse
temperature β becomes constant in the limit. The following, which is essentially an immediate consequence
of Theorem 1.3, proves the conjecture.

Corollary 1.4. For β ≥ 0,

lim
N→∞

1

logN
log

(
N

2π

∫ 2π

0

|PN (h)|βdh

)
=

{
1 + β2

4 if β < 2,

β if β ≥ 2,
in probability . (1.6)

The work [36] contains other interesting conjectures on statistics of characteristic polynomials. One of them,
a transition for the second moment of the partition function, was proved in [22].

1.1 Relations to Previous Works. This paper is part of the current research effort to develop a theory
of extreme value statistics of log-correlated fields. There have been many rigorous works on the subject
in recent years, and we give here a non-exhaustive list. In the physics literature, most predictions on the
extreme value statistics of log-correlated fields can be found in [21]. In mathematics, the leading order of
the two-dimensional Gaussian Free Field, was determined in [12]. In a series of impressive work, the form of
the subleading correction as well as convergence of the fluctuations have been obtained [11, 16, 19, 32]. The
approach (with the exception of [11]) follows closely the one used for branching random walks. This started
with the seminal work of Bramson [15] for branching Brownian motion and was later extended to general
branching random walks [2,3,7,17,18]. Log-correlated models are closely related to Gaussian Multiplicative
chaos, see [48] for a review. In particular, convergence of the maximum of a related model of log-correlated
Gaussian field was proved in [46]. We also refer to [52] for connections between the characteristic polyno-
mial of unitary matrices and Gaussian Multiplicative chaos. From the perspective of spin glasses, Corollary
1.4 suggests that the model exihibits a one-step replica symmetry breaking. This was proved for Gaussian
log-correlated fields in [5,6,13,28]. A general theorem for the convergence of the maximum of log-correlated
Gaussian fields was proved in [31]. A unifying point of view including non-Gaussian log-correlated fields and
their hierarchical structure is developed in [45]. Important non-Gaussian examples include cover times of
the two-dimensional random walk on the torus whose leading order was determined in [27] and subleading

3
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Background

Circular ensembles

Set MN(θ) = log |PN(eiθ)|,M∗N = maxθ∈[0,2π] MN(θ).

Conjecture (Fyodorov-Hiary-Keating ’12)

M∗N = log N − 3
4

log log N + W

where W has the law of the sum of two independent Gumbels.
Still open, although much progress.
Arguin, Belius, Bourgade ’17 - Identify the ’1’.
Paquette, Zeitouni ’18 - Identify the ’-3/4’.
Both use in essential way CUE (aka β = 2), where joint distribution of
eigenvalues is ∏

i<j

|λi − λj |2

for which Gaussianity of traces follows from Diaconis-Shashahani and
moments of determinant (=exponential moments of MN(z)) are Toeplitz
determinants.
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Background

M∗N = logN − 3
4 log logN + W

The clincher: ∏
i<j

|λi − λj |β , β > 0

Chhaibi-Madaule-Najnudel ’18 M∗N = log N − 3
4 log log N + O(1)

There is also some progress toward identifying W - G. Remy ’18
The key step of CMN is a representation in terms of orthogonal polynomials.
First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV
matrices) built from a sequence of independent variables (Verblunski
coefficients), then write recursions for orthogonal polynomials in terms of
Verblunsky coefficients.(

Φk+1(z)
Φ∗k+1(z)

)
=

(
z −ᾱ∗k
−αk z 1

)(
Φk (z)
Φ∗k (z)

)
,Φ∗k (z) = zk Φk (z̄−1).

αk = Bk e2πiθk , EB2
k ∼ 2/βk , beta variable. αk ∼ gk + ig′k , Gaussian.

In addition, sup|z|=1 | log |MN(z)| − log |Φ∗k (z)|| is tight.
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Background

Recursions - Circular ensembles

log Φ∗k (eiθ)− log Φ∗k−1(eiθ) = log(1− αjeiΨk−1(θ)) ∼ −αjeiΨk−1(θ)

Ψk (θ) = Ψk (θ) + θ − 2= log(1− αjeiΨk−1(θ)).

Thus, marginal of log |Φ∗N(eiθ)| is essentially Gaussian, of variance
(2/β) log N.
Log correlated, but joint law is not Gaussian.
Use a branching structure.
Chhaibi-Najnudel ’19 PN(·) converges to the GMC with parameter

√
2/β.

β = 2: Nikula, Saksman, Webb ’18, Webb ’15
Work in progress: Paquette-Z (’20?) Convergence in law of max log |Φ∗N (eiθ)| to Gumbel shifted by (unknown) r.v..
Some new phenomena for log-determinant of random permutations: Cook-Z. ’20
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Background

Back to GβE

We take XN ∼ GβE, ie joint distribution of eigenvalues on RN :∏
i<j

|λi − λj |βe−β
N
4
∑
λ2

i .

CLT for smooth test functions OK, for general smooth potential (Johansson
’98 - loop equations; Guionnet-Borot ’13)
Recent mesoscopic results: Bekerman, Figalli, Guionnet ’13; Bekerman,
Leble, Serfaty ’17; Lambert-Ledoux-Webb ’18
What about log |det(zI − XN)|?
β = 2- special case, direct access to maximum through Riemann-Hilbert
methods (Lambert-Paquette ’18, first order, general potential).
Also, connection to GMC for β = 2: Berestycki-Webb-Wong ’18 (L2 phase)
For general β: even CLT of log-det not clear!
Recent result of Claeys, Fahs, Lambert, Webb: sharp CLT’s for counting
functions, GMC convergence.
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Background

log-det trajectory

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 12 / 27



Background

Empirical facts

Skewed?
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Background

Reason for skewness in simulations
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Background

CLT for log determinant GβE

The case z = 0 is special.

Theorem (Tao-Vu ’11)

(MN(0)− aN − b log N)/
√
β log N converges (for Wigner matrices, 4

matching moments) to standard Gaussian.

Bourgade-Mody ’19: extends w/out matching 4 moments.

By replacement principle, the key step in the TV proof is the result for
GβE, β = 1,2. Their proof extends to general β > 0, and is based on
recursions.
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Background

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman ’05)

XN from GβE is unitarily equivalent to the following 3-diagonal Jacobi matrix

1√
N

XN =
1√
N


b1 a1 0 · · · 0
a1 b2 a2 0 · · ·
0 a2 b3 a3 0
· · · · · · · · · · · · · · ·
0 0 0 aN−1 bN


where bi ∼ N(0,

√
2/β), ai ∼ χiβ/

√
β.

Here ai ∼ χiβ/
√
β; here χ2

iβ has chi-square distribution with iβ degrees of
freedom, ie χiβ/

√
β ∼

√
iβ + G/

√
2β + O(1/i).
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Background

Recursions

Let ϕk (·) denote the characteristic polynomial of the top k -by-k block of XN .

From the 3-diagonal representation,

ϕk (z
√

N) = (z
√

N − bk )ϕk (z
√

N)− a2
k−1ϕk−1(z

√
N), ϕ−1 = 0, ϕ0 = 1.

Recall: ωk = z
√

n/k , k0 = z2n/4, and α(ωk ) = ωk/2 +
√
ω2

k/4− 1 if k < k0,
α(ωk ) = 1 if k ≥ k0.
We set

Ψk (z) = φk (z
√

N)
1

√
k !
∏k

i=1 α(ωi )

and then

Ψk (z) =
z
√

N − bk√
kα(ωk )

Ψk−1(z)−
a2

k−1√
k(k − 1)α(ωk )α(ωk−1)

Ψk−2(z).
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Background

Recursions

Recall that k0 satisfies ωk0 = 2 (if z = 0 then k0 = 1). In matrix form, for
k ≥ k0,(

Ψk+1(z)
Ψk (z)

)
∼
(
ωk −1 + 1/2k
1 0

)(
Ψk (z)
Ψk−1(z)

)
+

(
bk/
√

k gk/
√

k
0 0

)(
Ψk (z)
Ψk−1(z)

)
where ωk = z

√
n/k , and bk ,gk are (essentially) iid Gaussian of variance 2/β.

In the Tao-Vu z = 0 case, ωk = 0, and except for perturbation, we have a pure
rotation.
Tao-Vu show that Ψk−1(z)2 + Ψk−1(z)2 (essentially) forms a martingale with
quadratic variation process of increment ∼ 1/k . This gives the CLT.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 18 / 27



Background

Recursions

Recall that k0 satisfies ωk0 = 2 (if z = 0 then k0 = 1). In matrix form, for
k ≥ k0,(

Ψk+1(z)
Ψk (z)

)
∼
(
ωk −1 + 1/2k
1 0

)(
Ψk (z)
Ψk−1(z)

)
+

(
bk/
√

k gk/
√

k
0 0

)(
Ψk (z)
Ψk−1(z)

)
where ωk = z

√
n/k , and bk ,gk are (essentially) iid Gaussian of variance 2/β.

In the Tao-Vu z = 0 case, ωk = 0, and except for perturbation, we have a pure
rotation.

Tao-Vu show that Ψk−1(z)2 + Ψk−1(z)2 (essentially) forms a martingale with
quadratic variation process of increment ∼ 1/k . This gives the CLT.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 18 / 27



Background

Recursions

Recall that k0 satisfies ωk0 = 2 (if z = 0 then k0 = 1). In matrix form, for
k ≥ k0,(

Ψk+1(z)
Ψk (z)

)
∼
(
ωk −1 + 1/2k
1 0

)(
Ψk (z)
Ψk−1(z)

)
+

(
bk/
√

k gk/
√

k
0 0

)(
Ψk (z)
Ψk−1(z)

)
where ωk = z

√
n/k , and bk ,gk are (essentially) iid Gaussian of variance 2/β.

In the Tao-Vu z = 0 case, ωk = 0, and except for perturbation, we have a pure
rotation.
Tao-Vu show that Ψk−1(z)2 + Ψk−1(z)2 (essentially) forms a martingale with
quadratic variation process of increment ∼ 1/k . This gives the CLT.

Ofer Zeitouni A CLT for characteristic polynomial of GβE ZOOM 18 / 27



Background

(
Ψk+1(z)
Ψk (z)

)
= Ak

(
Ψk (z)
Ψk−1(z)

)
+ Ek

(
Ψk (z)
Ψk−1(z)

)
where

Ak =

(
ωk −1 + 1/2k
1 0

)(
Ψk (z)
Ψk−1(z)

)
, ωk = z

√
n/k

and Ek is a small noise matrix.

The eigenvalues of Ak are roughly 1
2ωk ± 1

2

√
ω2

k − 4.
For k < k0, eigenvalues real and smaller that 1.
For k > k0, eigenvalues imaginary, of modulus roughly 1.
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Background

Recursions - general z
There are several regimes to consider. Fix ε > 0, recall that k0 = z2N/4.

k < (1− ε)k0: one checks that Ψk (z) ∼ 1.

k ∈ [(1− ε)k0, k0]: write

Xk = Ψk/Ψk−1 = 1 + δk , Xk = Ak + Bk/Xk−1

for appropriate Ak ,Bk .

In this regime, δk ∼ 0 and one obtains a recursion

δk ∼ uk + vkδk−1

where, with αk = α(ωk ),

uk ∼
bk√
kα2

k

+
1

2kα2
k
− gk√

kα4
k

, vk =
1− 1

2k + gk√
k

α2
k

,

which one solves.

k > k0: Oscillatory regime, most interesting.
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Background

Recursions - general z - the scalar regime

δk ∼ uk + vk
δk−1

1 + δk−1

uk ∼
bk√
kα2

k

+
1

2kα2
k

−
gk√
kα4

k

, vk =
1− 1

2k +
gk√

k

α2
k

No significant contribution for k ∈ [1, (1− ε)k0].
Solve in two steps: first, the linearized equation

δ̄k = uk + vk δ̄k−1

with solution

δ̄k =
k∑

j=2

uj

k∏
`=j+1

v`.

δ̄k is a martingale, and small. We can compute
∑
δ̄k , and δ̄k are correlated!
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Background

Recursions-general z- the scalar regime

δ̄k = uk + vk δ̄k−1, δ̄k =
k∑

j=2

uj

k∏
`=j+1

v`.

Turns out contribution occurs only for k < k0 − k1/3
0 , and then get a CLT with

blocks of length (k0/i)1/3 to the left of k0 contributing order 1/i to the
variance. Also, correlation between different z ’s computable.
We need to control ∆k = δk − δ̄k . Using a-priori bounds on δ̄k , control size of
∆k , and of the error terms.
At the end, ∆k contributes only to the mean.We conclude that

log Ψk0−k1/3
0

= σnG − 1
2
σ2

n , δk0−Ck1/3
0

= O

(
1

k1/3
0

)

where σ2
n = 2

3β log n and G is a standard Gaussian.

A much finer analysis (up to k0 − k1/3
0 (log k0)2/3) by Lambert-Paquette

(hyperbolic regime) - arXiv:2001.09042
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blocks of length (k0/i)1/3 to the left of k0 contributing order 1/i to the
variance. Also, correlation between different z ’s computable.
We need to control ∆k = δk − δ̄k . Using a-priori bounds on δ̄k , control size of
∆k , and of the error terms.
At the end, ∆k contributes only to the mean.We conclude that

log Ψk0−k1/3
0

= σnG − 1
2
σ2

n , δk0−Ck1/3
0

= O

(
1

k1/3
0

)

where σ2
n = 2

3β log n and G is a standard Gaussian.

A much finer analysis (up to k0 − k1/3
0 (log k0)2/3) by Lambert-Paquette

(hyperbolic regime) - arXiv:2001.09042
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Background

Recursions - general z - the oscilatory regime

Xk =

(
Ψk+1

Ψk

)
, k > k0.

We have
Xk+1 = (Ak + Wk )Xk ,

where

Ak =

(
ωk −1 + 1

2k
1 0

)
, Wk =

(
−bk√

k
gk√

k
0 0

)
,

zk = z
√

n
k = 2− l

k0
and bk ∼ N (0, 2/β) and gk ∼ N (0, 2/β).

Eigenvalues of Ak for k > k0 are complex of (essentially) unit norm. Change
basis to eigenvector basis, get

X̂k = Qk

k−1∏
i=k0

Q−1
i+1Qi

(
Ri + Ŵi

)
Q−1

k0
X̂k0 ,

where Ri are rotation matrices of angle θk ∼
√

k/k0 − 1.
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Background

Recursions - general z - the oscilatory regime

X̂k = Qk

k−1∏
i=k0

Q−1
i+1Qi

(
Ri + Ŵi

)
Q−1

k0
X̂k0

Problems:

1 Q−1
k0

has huge norm.

2 Non-commutative product - effect on perturbations.

Problem 1: Q−1
k0

has huge norm: this is a problem at the first block only

(which in fact starts at k0 − Ck1/3
0 , not at k0).

Solution: Recall that δk0−Ck1/3
0

is ∼ k−1/3
0 , by scalar analysis. This means

initial conditions are of the form
(

1
1

)
, plus small perturbation.

In this direction, do not have eigenvalue. This is enough to control from above
the norm at the end of block.
For lower bound on norm, use anti-concentration.
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Background

Recursions - general z - the oscilatory regime
Problem 2: Noncommutative product - control

X̂k = Qk

k−1∏
i=k0

Q−1
i+1Qi

(
Ri + Ŵi

)
Ŷ

k0+Ck1/3
0

First order approximation: divide to blocks of length `i = (k0/i)1/3, linearize in
each block, and get contribution to variance of order 1/i .
Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!
Solution: along block we have

∏
Ri = I, but the vector (1,0)T is not mapped

to ρi (1,0)T due to the noise. So instead, stop (at random time) where

`j+1∏
i=`j

Q−1
i+1Qi

(
Ri + Ŵi

)
(1,0)T ∼ ρi (1,0)T .

We have `j+1 − `j ∼ (k0/j)1/3, and variance computation as in sketch.
Of course, cannot achieve exactly (1,0)T , but can control error by choosing
when to stop.
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Ŷ

k0+Ck1/3
0

First order approximation: divide to blocks of length `i = (k0/i)1/3, linearize in
each block, and get contribution to variance of order 1/i .

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!
Solution: along block we have

∏
Ri = I, but the vector (1,0)T is not mapped

to ρi (1,0)T due to the noise. So instead, stop (at random time) where

`j+1∏
i=`j

Q−1
i+1Qi

(
Ri + Ŵi
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Background

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

X̂k = Qk

k−1∏
i=k0

Q−1
i+1Qi

(
Ri + Ŵi

)
Ŷ

k0+Ck1/3
0

Within a block, linearization is a good approximation:

`i+1∏
j=`i +1

Q−1
j+1Qj

(
Ri + Ŵi

)
=

`i+1∏
j=`i +1

(I + ∆j )
(
Ri + Ŵi

)

=

`i+1∑
k=`i +1

Rk(I+∆k +Ŵk )Rk
−1+error terms = I+

`i+1∑
k=`i +1

Rk(∆k +Ŵk )Rk
−1+error terms

where Rk is a rotation by an angle between 0 and 2π.
Easy to compute effect of linearization, get that ρi ∼ 1 + gi + c′/i where gi
has variance c/i .
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Background

Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the
approximation, e.g. if block is of length 1; But variance is small there,
so can combine blocks!

Computing correlation between different z ’s is complicated in the
regime |z − z ′| < N−2/3 because of block structure.
Working on it!
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