A CLT for characteristic polynomial of $G\beta E$

Ofer Zeitouni with Fanny Augeri and Raphael Butez

May 2020

< ロ > < 同 > < 回 > < 回 > < 回 > <

 X_N - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance 1/N off diagonal, 2/N on diagonal.

 X_N - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance 1/N off diagonal, 2/N on diagonal. Empirical measure $L_N = N^{-1} \sum_{i=1}^N \delta_{\lambda_i}$ converges weakly (in probability) to the semicircle law σ of density

$$\frac{1}{2\pi}\sqrt{4-x^2}$$

 X_N - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance 1/N off diagonal, 2/N on diagonal. Empirical measure $L_N = N^{-1} \sum_{i=1}^N \delta_{\lambda_i}$ converges weakly (in probability) to the semicircle law σ of density

$$\frac{1}{2\pi}\sqrt{4-x^2}$$

Central limit theorem

 X_N - random Wigner matrix, e.g. GUE/GOE. In real case, centered independent entries on and above diagonal, variance 1/N off diagonal, 2/N on diagonal. Empirical measure $L_N = N^{-1} \sum_{i=1}^N \delta_{\lambda_i}$ converges weakly (in probability) to the semicircle law σ of density

$$\frac{1}{2\pi}\sqrt{4-x^2}$$

Central limit theorem $f : \mathbb{R} \to \mathbb{R}$ compactly supported, smooth. Consider

$$W_{f,N} = \sum_{i=1}^{N} f(\lambda_i) - N \int f d\sigma.$$

(日)

Theorem (Johansson '98; β **ensembles**) $W_{f,N}$ satisfies CLT, mean $(2/\beta - 1) \int f d\nu$, variance

$$\frac{(2/\beta)}{4\pi^2} \iint_{-2}^2 f(t)f'(s) \frac{\sqrt{4-s^2}}{(t-s)\sqrt{4-t^2}} ds dt.$$

<ロ> <部> < き> < き> < 。</p>

Theorem (Johansson '98; β **ensembles**) $W_{f,N}$ satisfies CLT, mean $(2/\beta - 1) \int f d\nu$, variance

$$\frac{(2/\beta)}{4\pi^2} \iint_{-2}^2 f(t)f'(s) \frac{\sqrt{4-s^2}}{(t-s)\sqrt{4-t^2}} ds dt.$$

The measure ν in the mean expression is explicit. The variance has an alternative expression

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)\right)^2d\theta$$

Ofer Zeitouni

Theorem (Johansson '98; β ensembles) $W_{f,N}$ satisfies CLT, mean $(2/\beta - 1) \int f d\nu$, variance

$$\frac{(2/\beta)}{4\pi^2} \iint_{-2}^2 f(t)f'(s) \frac{\sqrt{4-s^2}}{(t-s)\sqrt{4-t^2}} ds dt.$$

The measure ν in the mean expression is explicit. The variance has an alternative expression

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)\right)^2d\theta$$

CLT's of this type go back at least to CLT of Jonsson for moments ('82), Pastur and co-workers, Bai-Silverstein, Shcherbina,

(ロ) (同) (三) (三) (

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

◆□→ ◆□→ ◆注→ ◆注→ □注

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if *f* is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$. Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if *f* is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if *f* has log singularity then contributions at all scales, and *k*th coefficient gives roughly contribution $\int_0^{\epsilon} \log(x) \sin(kx) \sim 1/k$.

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if *f* is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if *f* has log singularity then contributions at all scales, and *k*th coefficient gives roughly contribution $\int_0^c \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if *f* is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if *f* has log singularity then contributions at all scales, and *k*th coefficient gives roughly contribution $\int_0^c \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance. Justify? More later.

$$\frac{1}{2\pi^2}\sum_{k=1}^{\infty}k\left(\int_0^{\pi}f(2\cos(\theta))\cos(k\theta)d\theta\right)^2$$

If *f* is smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy '99, recently Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia Variance still of order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau) What if *f* is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if *f* has log singularity then contributions at all scales, and *k*th coefficient gives roughly contribution $\int_0^{\epsilon} \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance. Justify? More later. Our basic object of interest: $\log |P_N(z)| = \log |\det(zI - X_N)|$.

$$f_{N}(z) = |P_{N}(z)| = |\det(zt - X_{N})|.$$

For $z \in (-2, 2) \setminus \{0\}$, define $\omega_{k} = z\sqrt{n/k}$, $k_{0} = z^{2}n/4$, and $\alpha(\omega_{k}) = \omega_{k}/2 + \sqrt{\omega_{k}^{2}/4 - 1}.$

<ロ> <同> <同> < 同> < 同> < 三> < 三> < 三

 $f_N(z) = |P_N(z)| = |\det(zI - X_N)|.$ For $z \in (-2, 2) \setminus \{0\}$, define $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}.$ Introduce the rescaled variable

$$\hat{f}_N(z) = rac{N^{N/2}}{\sqrt{N!}} f_N(z) \prod_{k=1}^{k_0} rac{1}{lpha(\omega_k)}.$$

< ロ > < 同 > < 回 > < 回 > - 回 > - 回

 $f_N(z) = |P_N(z)| = |\det(zI - X_N)|.$ For $z \in (-2, 2) \setminus \{0\}$, define $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}.$ Introduce the rescaled variable

$$\hat{f}_N(z) = rac{N^{N/2}}{\sqrt{N!}} f_N(z) \prod_{k=1}^{k_0} rac{1}{lpha(\omega_k)}$$

The α rescaling is natural as it relates to eigenvalues of certain transfer matrices. At exponential scale, the product of α 's relates to the logarithmic potential of the semicircle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $f_N(z) = |P_N(z)| = |\det(zl - X_N)|.$ For $z \in (-2, 2) \setminus \{0\}$, define $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}.$ Introduce the rescaled variable

$$\hat{f}_N(z) = rac{N^{N/2}}{\sqrt{N!}} f_N(z) \prod_{k=1}^{k_0} rac{1}{lpha(\omega_k)}.$$

Theorem (Augeri-Butez-Z. '20)

 $\log \hat{f}_N(z)$ satisfies a CLT with mean $-(\log N)/6$ and variance $(\log N)/\beta$.

 $f_N(z) = |P_N(z)| = |\det(zl - X_N)|.$ For $z \in (-2, 2) \setminus \{0\}$, define $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}.$ Introduce the rescaled variable

$$\hat{f}_N(z) = rac{N^{N/2}}{\sqrt{N!}} f_N(z) \prod_{k=1}^{k_0} rac{1}{lpha(\omega_k)}.$$

Theorem (Augeri-Butez-Z. '20)

 $\log \hat{f}_N(z)$ satisfies a CLT with mean $-(\log N)/6$ and variance $(\log N)/\beta$.

The case of z = 0 was handled by Tao-Vu, more later.

 $f_N(z) = |P_N(z)| = |\det(zl - X_N)|.$ For $z \in (-2, 2) \setminus \{0\}$, define $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}.$ Introduce the rescaled variable

$$\hat{f}_N(z) = rac{N^{N/2}}{\sqrt{N!}} f_N(z) \prod_{k=1}^{k_0} rac{1}{lpha(\omega_k)}.$$

Theorem (Augeri-Butez-Z. '20)

 $\log \hat{f}_N(z)$ satisfies a CLT with mean $-(\log N)/6$ and variance $(\log N)/\beta$.

The case of z = 0 was handled by Tao-Vu, more later. The proof is robust enough to deal with more general 3-diagonal models. Also, can actually get good error bounds.

 $f_N(z) = |P_N(z)| = |\det(zl - X_N)|.$ For $z \in (-2, 2) \setminus \{0\}$, define $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}.$ Introduce the rescaled variable

$$\hat{f}_N(z) = rac{N^{N/2}}{\sqrt{N!}} f_N(z) \prod_{k=1}^{k_0} rac{1}{lpha(\omega_k)}.$$

Theorem (Augeri-Butez-Z. '20)

 $\log \hat{f}_N(z)$ satisfies a CLT with mean $-(\log N)/6$ and variance $(\log N)/\beta$.

The case of z = 0 was handled by Tao-Vu, more later. The proof is robust enough to deal with more general 3-diagonal models.

Also, can actually get good error bounds.

I will describe the proof, after a short digression toward circular ensembles.

 U_N -CUE (aka Haar unitary on U_N).

 U_N -CUE (aka Haar unitary on U_N).

Diaconis-Shahshahani '94: $\operatorname{Tr} U_N^k \sim N(0, k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

 U_N -CUE (aka Haar unitary on U_N).

Diaconis-Shahshahani '94: $\operatorname{Tr} U_N^k \sim N(0, k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: $\log |\det U_N|$ is Gaussian of mean 0 and variance $c \log N$.

 U_N -CUE (aka Haar unitary on U_N).

Diaconis-Shahshahani '94: $\operatorname{Tr} U_N^k \sim N(0, k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: $\log |\det U_N|$ is Gaussian of mean 0 and variance $c \log N$.

Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log |\det(z_i I - U_N)|$ is jointly Gaussian, log correlated structure.

 U_N -CUE (aka Haar unitary on U_N).

Diaconis-Shahshahani '94: $\operatorname{Tr} U_N^k \sim N(0, k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: $\log |\det U_N|$ is Gaussian of mean 0 and variance $c \log N$.

Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log |\det(z_i I - U_N)|$ is jointly Gaussian, log correlated structure.

If it is log-correlated, what about the extrema?

(日)

CUE char poly

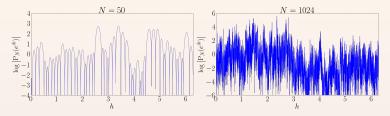


Figure 1: Realizations of $\log |P_N(e^{i\hbar})|$, $0 \le h < 2\pi$, for N = 50 and N = 1024. At microscopic scales, the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and macroscopic scales.

(From Arguin, Belius, Bourgade '17)

< ロ > < 同 > < 回 > < 回 >

Circular ensembles

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0, 2\pi]} M_N(\theta).$

Circular ensembles

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0, 2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - rac{3}{4} \log \log N + W$$

where W has the law of the sum of two independent Gumbels.

Circular ensembles

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0, 2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - rac{3}{4} \log \log N + W$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress.

Circular ensembles

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0, 2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - rac{3}{4} \log \log N + W$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress. Arguin, Belius, Bourgade '17 - Identify the '1'.

Circular ensembles

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0, 2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - rac{3}{4} \log \log N + W$$

where *W* has the law of the sum of two independent Gumbels. Still open, although much progress. Arguin, Belius, Bourgade '17 - Identify the '1'. Paquette, Zeitouni '18 - Identify the '-3/4'.

Circular ensembles

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0, 2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

where *W* has the law of the sum of two independent Gumbels. Still open, although much progress. Arguin, Belius, Bourgade '17 - Identify the '1'. Paquette, Zeitouni '18 - Identify the '-3/4'. Both use in essential way CUE (aka $\beta = 2$), where joint distribution of eigenvalues is

$$\prod_{i < j} |\lambda_i - \lambda_j|^2$$

for which Gaussianity of traces follows from Diaconis-Shashahani and moments of determinant (=exponential moments of $M_N(z)$) are Toeplitz determinants.

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

The clincher:

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

<ロ> <同> <同> < 同> < 同> < 三> < 三> < 三

$$M^*_{\mathcal{N}} = \log \mathcal{N} - rac{3}{4} \log \log \mathcal{N} + \mathcal{W}$$

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$

$$M_N^* = \log N - rac{3}{4} \log \log N + W$$

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients),

< ロ > < 同 > < 三 > < 三 > -

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$\begin{pmatrix} \Phi_{k+1}(z) \\ \Phi_{k+1}^*(z) \end{pmatrix} = \begin{pmatrix} z & -\bar{\alpha}_k^* \\ -\alpha_k z & 1 \end{pmatrix} \begin{pmatrix} \Phi_k(z) \\ \Phi_k^*(z) \end{pmatrix}, \Phi_k^*(z) = z^k \overline{\Phi_k(\bar{z}^{-1})}.$$

 $\alpha_k = B_k e^{2\pi i \theta_k}$, $EB_k^2 \sim 2/\beta k$, beta variable. $\alpha_k \sim g_k + ig'_k$, Gaussian.

・ロット (雪) (日) (日) - 日)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18 The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$\left(\begin{array}{c} \Phi_{k+1}(z) \\ \Phi_{k+1}^*(z) \end{array}\right) = \left(\begin{array}{c} z & -\bar{\alpha}_k^* \\ -\alpha_k z & 1 \end{array}\right) \left(\begin{array}{c} \Phi_k(z) \\ \Phi_k^*(z) \end{array}\right), \Phi_k^*(z) = z^k \overline{\Phi_k(\bar{z}^{-1})}.$$

 $\alpha_k = B_k e^{2\pi i \theta_k}$, $EB_k^2 \sim 2/\beta k$, beta variable. $\alpha_k \sim g_k + ig'_k$, Gaussian. In addition, $\sup_{|z|=1} |\log |M_N(z)| - \log |\Phi_k^*(z)||$ is tight.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

$$\log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) = \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}$$
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}).$$

$$\log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) = \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}$$
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}).$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta) \log N$.

<ロ> <同> <同> < 回> < 回> < 三</p>

$$\log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) = \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}$$
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}).$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta) \log N$. Log correlated, but joint law is not Gaussian.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) = \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}$$
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}).$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta) \log N$. Log correlated, but joint law is not Gaussian.

Use a branching structure.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) = \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}$$
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}).$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta) \log N$.

Log correlated, but joint law is not Gaussian.

Use a branching structure.

Chhaibi-Najnudel '19 $P_N(\cdot)$ converges to the GMC with parameter $\sqrt{2/\beta}$.

 $\beta\,=$ 2: Nikula, Saksman, Webb '18, Webb '15

$$\log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) = \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}$$
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}).$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta) \log N$.

Log correlated, but joint law is not Gaussian.

Use a branching structure.

Chhaibi-Najnudel '19 $P_N(\cdot)$ converges to the GMC with parameter $\sqrt{2/\beta}$.

 $\beta\,=$ 2: Nikula, Saksman, Webb '18, Webb '15

Work in progress: Paquette-Z ('20?) Convergence in law of max log $|\Phi_N^*(e^{i\theta})|$ to Gumbel shifted by (unknown) r.v.. Some new phenomena for log-determinant of random permutations: Cook-Z. '20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i < j} |\lambda_i - \lambda_j|^{eta} \boldsymbol{e}^{-eta rac{N}{4} \sum \lambda_i^2}.$$

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_i^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_i^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13) Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_i^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13) Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18 What about log $|\det(zI - X_N)|$?

(日)

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_i^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18

What about $\log |\det(zI - X_N)|$?

 β = 2- special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_j^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18 What about $\log |\det(zI - X_N)|$?

 β = 2- special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).

Also, connection to GMC for $\beta = 2$: Berestycki-Webb-Wong '18 (L^2 phase)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_i^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18 What about $\log |\det(zI - X_N)|$?

 $\beta = 2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).

Also, connection to GMC for $\beta = 2$: Berestycki-Webb-Wong '18 (L^2 phase) For general β : even CLT of log-det not clear!

We take $X_N \sim G\beta E$, ie joint distribution of eigenvalues on \mathbb{R}^N :

$$\prod_{i< j} |\lambda_i - \lambda_j|^{\beta} \boldsymbol{e}^{-\beta \frac{N}{4} \sum \lambda_i^2}.$$

CLT for smooth test functions OK, for general smooth potential (Johansson '98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet '13; Bekerman, Leble, Serfaty '17; Lambert-Ledoux-Webb '18 What about $\log |\det(zI - X_N)|$?

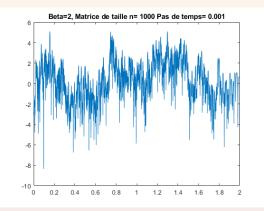
 $\beta = 2$ - special case, direct access to maximum through Riemann-Hilbert methods (Lambert-Paquette '18, first order, general potential).

Also, connection to GMC for $\beta = 2$: Berestycki-Webb-Wong '18 (L^2 phase) For general β : even CLT of log-det not clear!

Recent result of Claeys, Fahs, Lambert, Webb: sharp CLT's for counting functions, GMC convergence.

<ロ> (日) (日) (日) (日) (日) (日) (0)

log-det trajectory



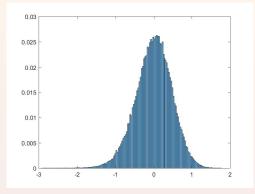
Ofer Zeitouni

A CLT for characteristic polynomial of $G\beta E$

ZOOM 12/27

<ロ> <同> <同> < 同> < 同> < 同>

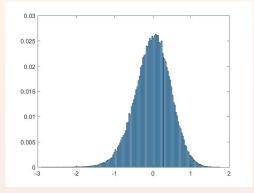
Empirical facts



ZOOM 13/27

<ロ> <同> <同> < 同> < 同> < 三> < 三> < 三</td>

Empirical facts



Skewed?

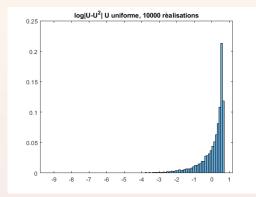
Ofer Zeitouni

A CLT for characteristic polynomial of $G\beta E$

ZOOM 13/27

◆ロ→ ◆御→ ◆注→ ◆注→ □注

Reason for skewness in simulations



イロン イロン イヨン イヨン

CLT for log determinant $G\beta E$

The case z = 0 is special.

Theorem (Tao-Vu '11)

 $(M_N(0) - aN - b \log N) / \sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments.

< ロ > < 同 > < 回 > < 回 > < 回 > <

CLT for log determinant $G\beta E$

The case z = 0 is special.

```
Theorem (Tao-Vu '11)
```

 $(M_N(0) - aN - b \log N) / \sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $G\beta E$, $\beta = 1, 2$.

CLT for log determinant $G\beta E$

The case z = 0 is special.

```
Theorem (Tao-Vu '11)
```

 $(M_N(0) - aN - b \log N) / \sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $G\beta E$, $\beta = 1, 2$. Their proof extends to general $\beta > 0$, and is based on recursions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman '05)

 X_N from $G\beta E$ is unitarily equivalent to the following 3-diagonal Jacobi matrix

$$\frac{1}{\sqrt{N}}X_N = \frac{1}{\sqrt{N}} \begin{pmatrix} b_1 & a_1 & 0 & \cdots & 0\\ a_1 & b_2 & a_2 & 0 & \cdots \\ 0 & a_2 & b_3 & a_3 & \mathbf{0}\\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \mathbf{0} & a_{N-1} & b_N \end{pmatrix}$$

where $b_i \sim N(0, \sqrt{2/eta})$, $a_i \sim \chi_{ieta}/\sqrt{eta}$.

Here $a_i \sim \chi_{i\beta}/\sqrt{\beta}$; here $\chi^2_{i\beta}$ has chi-square distribution with $i\beta$ degrees of freedom, ie $\chi_{i\beta}/\sqrt{\beta} \sim \sqrt{i\beta} + G/\sqrt{2\beta} + O(1/i)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top *k*-by-*k* block of X_N .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top *k*-by-*k* block of X_N . From the 3-diagonal representation,

$$\varphi_k(z\sqrt{N}) = (z\sqrt{N} - b_k)\varphi_k(z\sqrt{N}) - a_{k-1}^2\varphi_{k-1}(z\sqrt{N}), \varphi_{-1} = 0, \varphi_0 = 1.$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top *k*-by-*k* block of X_N . From the 3-diagonal representation,

$$\varphi_k(z\sqrt{N}) = (z\sqrt{N} - b_k)\varphi_k(z\sqrt{N}) - a_{k-1}^2\varphi_{k-1}(z\sqrt{N}), \varphi_{-1} = 0, \varphi_0 = 1.$$

Recall: $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}$ if $k < k_0$, $\alpha(\omega_k) = 1$ if $k \ge k_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top *k*-by-*k* block of X_N . From the 3-diagonal representation,

$$\varphi_k(z\sqrt{N}) = (z\sqrt{N} - b_k)\varphi_k(z\sqrt{N}) - a_{k-1}^2\varphi_{k-1}(z\sqrt{N}), \varphi_{-1} = 0, \varphi_0 = 1.$$

Recall: $\omega_k = z\sqrt{n/k}$, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}$ if $k < k_0$, $\alpha(\omega_k) = 1$ if $k \ge k_0$. We set

$$\Psi_k(z) = \phi_k(z\sqrt{N}) \frac{1}{\sqrt{k!} \prod_{i=1}^k \alpha(\omega_i)}$$

and then

$$\Psi_k(z) = \frac{z\sqrt{N} - b_k}{\sqrt{k}\alpha(\omega_k)} \Psi_{k-1}(z) - \frac{a_{k-1}^2}{\sqrt{k(k-1)}\alpha(\omega_k)\alpha(\omega_{k-1})} \Psi_{k-2}(z).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that k_0 satisfies $\omega_{k_0} = 2$ (if z = 0 then $k_0 = 1$). In matrix form, for $k \ge k_0$,

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} \sim \begin{pmatrix} \omega_{k} & -1+1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + \begin{pmatrix} b_{k}/\sqrt{k} & g_{k}/\sqrt{k} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where $\omega_k = z \sqrt{n/k}$, and b_k, g_k are (essentially) iid Gaussian of variance $2/\beta$.

◆□ > ◆母 > ◆臣 > ◆臣 > ● ● のへの

Recall that k_0 satisfies $\omega_{k_0} = 2$ (if z = 0 then $k_0 = 1$). In matrix form, for $k \ge k_0$,

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} \sim \begin{pmatrix} \omega_{k} & -1+1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + \begin{pmatrix} b_{k}/\sqrt{k} & g_{k}/\sqrt{k} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where $\omega_k = z\sqrt{n/k}$, and b_k , g_k are (essentially) iid Gaussian of variance $2/\beta$. In the Tao-Vu z = 0 case, $\omega_k = 0$, and except for perturbation, we have a pure rotation.

<ロ> <同> <同> < 三> < 三> < 三> < ○<

Recall that k_0 satisfies $\omega_{k_0} = 2$ (if z = 0 then $k_0 = 1$). In matrix form, for $k \ge k_0$,

$$egin{pmatrix} \Psi_{k+1}(z) \ \Psi_{k}(z) \end{pmatrix} \ \sim egin{pmatrix} \omega_{k} & -1+1/2k \ 1 & 0 \end{pmatrix} egin{pmatrix} \Psi_{k}(z) \ \Psi_{k-1}(z) \end{pmatrix} + egin{pmatrix} b_{k}/\sqrt{k} & g_{k}/\sqrt{k} \ 0 & 0 \end{pmatrix} egin{pmatrix} \Psi_{k}(z) \ \Psi_{k-1}(z) \end{pmatrix}$$

where $\omega_k = z\sqrt{n/k}$, and b_k , g_k are (essentially) iid Gaussian of variance $2/\beta$. In the Tao-Vu z = 0 case, $\omega_k = 0$, and except for perturbation, we have a pure rotation.

Tao-Vu show that $\Psi_{k-1}(z)^2 + \Psi_{k-1}(z)^2$ (essentially) forms a martingale with quadratic variation process of increment $\sim 1/k$. This gives the CLT.

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} = A_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + E_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where

$$A_{k} = \begin{pmatrix} \omega_{k} & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}, \quad \omega_{k} = z\sqrt{n/k}$$

and E_k is a small noise matrix.

◆ロ→ ◆御→ ◆注→ ◆注→ □注

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} = A_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + E_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where

$$A_{k} = \begin{pmatrix} \omega_{k} & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}, \quad \omega_{k} = z\sqrt{n/k}$$

and E_k is a small noise matrix.

The eigenvalues of A_k are roughly $\frac{1}{2}\omega_k \pm \frac{1}{2}\sqrt{\omega_k^2 - 4}$.

<ロ> <部> < 部> < き> < き> < き</p>

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} = A_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + E_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where

$$A_{k} = \begin{pmatrix} \omega_{k} & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}, \quad \omega_{k} = z\sqrt{n/k}$$

and E_k is a small noise matrix.

The eigenvalues of A_k are roughly $\frac{1}{2}\omega_k \pm \frac{1}{2}\sqrt{\omega_k^2 - 4}$. For $k < k_0$, eigenvalues real and smaller that 1. For $k > k_0$, eigenvalues imaginary, of modulus roughly 1.

Recursions - general z

There are several regimes to consider. Fix $\epsilon > 0$, recall that $k_0 = z^2 N/4$.

- $k < (1 \epsilon)k_0$: one checks that $\Psi_k(z) \sim 1$.
- $k \in [(1 \epsilon)k_0, k_0]$: write

$$X_k = \Psi_k / \Psi_{k-1} = 1 + \delta_k, \quad X_k = A_k + B_k / X_{k-1}$$

for appropriate A_k, B_k .

Recursions - general z

There are several regimes to consider. Fix $\epsilon > 0$, recall that $k_0 = z^2 N/4$.

- $k < (1 \epsilon)k_0$: one checks that $\Psi_k(z) \sim 1$.
- $k \in [(1 \epsilon)k_0, k_0]$: write

$$X_k = \Psi_k / \Psi_{k-1} = 1 + \delta_k, \quad X_k = A_k + B_k / X_{k-1}$$

for appropriate A_k , B_k . In this regime, $\delta_k \sim 0$ and one obtains a recursion

$$\delta_k \sim u_k + v_k \delta_{k-1}$$

where, with $\alpha_k = \alpha(\omega_k)$,

$$u_k \sim rac{b_k}{\sqrt{klpha_k^2}} + rac{1}{2klpha_k^2} - rac{g_k}{\sqrt{klpha_k^4}}, \quad v_k = rac{1 - rac{1}{2k} + rac{y_k}{\sqrt{k}}}{lpha_k^2},$$

which one solves.

• $k > k_0$: Oscillatory regime, most interesting.

Ofer Zeitouni

A CLT for characteristic polynomial of $G\beta E$

ZOOM 20/27

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

$$\begin{split} \delta_k &\sim u_k + v_k \frac{\delta_{k-1}}{1 + \delta_{k-1}} \\ u_k &\sim \frac{b_k}{\sqrt{k\alpha_k^2}} + \frac{1}{2k\alpha_k^2} - \frac{g_k}{\sqrt{k\alpha_k^4}}, \quad v_k = \frac{1 - \frac{1}{2k} + \frac{g_k}{\sqrt{k}}}{\alpha_k^2} \end{split}$$

$$\begin{split} \delta_k &\sim u_k + v_k \frac{\delta_{k-1}}{1 + \delta_{k-1}} \\ u_k &\sim \frac{b_k}{\sqrt{k\alpha_k^2}} + \frac{1}{2k\alpha_k^2} - \frac{g_k}{\sqrt{k\alpha_k^4}}, \quad v_k = \frac{1 - \frac{1}{2k} + \frac{g_k}{\sqrt{k}}}{\alpha_k^2} \end{split}$$

No significant contribution for $k \in [1, (1 - \epsilon)k_0]$.

$$\begin{split} \delta_k &\sim u_k + v_k \frac{\delta_{k-1}}{1 + \delta_{k-1}} \\ u_k &\sim \frac{b_k}{\sqrt{k\alpha_k^2}} + \frac{1}{2k\alpha_k^2} - \frac{g_k}{\sqrt{k\alpha_k^4}}, \quad v_k = \frac{1 - \frac{1}{2k} + \frac{g_k}{\sqrt{k}}}{\alpha_k^2} \end{split}$$

No significant contribution for $k \in [1, (1 - \epsilon)k_0]$. Solve in two steps: first, the linearized equation

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}$$

Ofer Zeitouni

$$\begin{split} \delta_k &\sim u_k + v_k \frac{\delta_{k-1}}{1 + \delta_{k-1}} \\ u_k &\sim \frac{b_k}{\sqrt{k\alpha_k^2}} + \frac{1}{2k\alpha_k^2} - \frac{g_k}{\sqrt{k\alpha_k^4}}, \quad v_k = \frac{1 - \frac{1}{2k} + \frac{g_k}{\sqrt{k}}}{\alpha_k^2} \end{split}$$

No significant contribution for $k \in [1, (1 - \epsilon)k_0]$. Solve in two steps: first, the linearized equation

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}$$

with solution

$$\bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell.$$

$$\begin{split} \delta_k &\sim u_k + v_k \frac{\delta_{k-1}}{1 + \delta_{k-1}} \\ u_k &\sim \frac{b_k}{\sqrt{k\alpha_k^2}} + \frac{1}{2k\alpha_k^2} - \frac{g_k}{\sqrt{k\alpha_k^4}}, \quad v_k = \frac{1 - \frac{1}{2k} + \frac{g_k}{\sqrt{k}}}{\alpha_k^2} \end{split}$$

No significant contribution for $k \in [1, (1 - \epsilon)k_0]$. Solve in two steps: first, the linearized equation

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}$$

with solution

$$ar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell.$$

 $\overline{\delta}_k$ is a martingale, and small. We can compute $\sum \overline{\delta}_k$, and $\overline{\delta}_k$ are correlated!

イロト イポト イラト イラト

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell$$

イロト イポト イヨト イヨト 三日

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable.

イロト イポト イラト イラト

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable. We need to control $\Delta_k = \delta_k - \overline{\delta}_k$.

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable. We need to control $\Delta_k = \delta_k - \overline{\delta}_k$.

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell.$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable. We need to control $\Delta_k = \delta_k - \overline{\delta}_k$.

$$\Delta_{k} = v_{k} \left(\frac{\delta_{k-1}}{1+\delta_{k-1}} - \overline{\delta_{k-1}} \right) = v_{k} (1 - 2\overline{\delta_{k-1}}) \Delta_{k-1} - v_{k} \overline{\delta_{k-1}}^{2} + O(\Delta_{k-1}^{2} + \overline{\delta_{k-1}}^{3})$$

Using a-priori bounds on $\overline{\delta}_k$, control size of Δ_k , and of the error terms.

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell.$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable. We need to control $\Delta_k = \delta_k - \overline{\delta}_k$.

$$\Delta_{k} = v_{k} \left(\frac{\delta_{k-1}}{1 + \delta_{k-1}} - \overline{\delta_{k-1}} \right) = v_{k} (1 - 2\overline{\delta_{k-1}}) \Delta_{k-1} - v_{k} \overline{\delta_{k-1}}^{2} + O(\Delta_{k-1}^{2} + \overline{\delta_{k-1}}^{3})$$

Using a-priori bounds on $\overline{\delta}_k$, control size of Δ_k , and of the error terms. At the end, Δ_k contributes only to the mean.

・ロット (四) (日) (日) (日) (日)

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable. We need to control $\Delta_k = \delta_k - \overline{\delta}_k$. Using a-priori bounds on $\overline{\delta}_k$, control size of Δ_k , and of the error terms.

At the end, Δ_k contributes only to the mean. We conclude that

$$\log \Psi_{k_0 - k_0^{1/3}} = \sigma_n G - \frac{1}{2} \sigma_n^2, \quad \delta_{k_0 - Ck_0^{1/3}} = O\left(\frac{1}{k_0^{1/3}}\right)$$

where $\sigma_n^2 = \frac{2}{3\beta} \log n$ and *G* is a standard Gaussian.

(ロ) (同) (E) (E) (E) (O)(C)

$$\bar{\delta}_k = u_k + v_k \bar{\delta}_{k-1}, \quad \bar{\delta}_k = \sum_{j=2}^k u_j \prod_{\ell=j+1}^k v_\ell$$

Turns out contribution occurs only for $k < k_0 - k_0^{1/3}$, and then get a CLT with blocks of length $(k_0/i)^{1/3}$ to the left of k_0 contributing order 1/i to the variance. Also, correlation between different *z*'s computable. We need to control $\Delta_k = \delta_k - \overline{\delta}_k$. Using a-priori bounds on $\overline{\delta}_k$, control size of Δ_k , and of the error terms.

At the end, Δ_k contributes only to the mean. We conclude that

$$\log \Psi_{k_0 - k_0^{1/3}} = \sigma_n G - \frac{1}{2} \sigma_n^2, \quad \delta_{k_0 - Ck_0^{1/3}} = O\left(\frac{1}{k_0^{1/3}}\right)$$

where $\sigma_n^2 = \frac{2}{3\beta} \log n$ and *G* is a standard Gaussian. A much finer analysis (up to $k_0 - k_0^{1/3} (\log k_0)^{2/3}$) by Lambert-Paquette (hyperbolic regime) - arXiv:2001.09042

ZOOM 22/27

$$X_k = \begin{pmatrix} \Psi_{k+1} \\ \Psi_k \end{pmatrix}, k > k_0.$$

We have

$$X_{k+1}=(A_k+W_k)X_k,$$

where

$$\boldsymbol{A}_{k} = \left(\begin{array}{cc} \omega_{k} & -1 + \frac{1}{2k} \\ 1 & 0 \end{array}\right), \ \boldsymbol{W}_{k} = \left(\begin{array}{cc} \frac{-b_{k}}{\sqrt{k}} & \frac{g_{k}}{\sqrt{k}} \\ 0 & 0 \end{array}\right),$$

 $z_k = z \sqrt{\frac{n}{k}} = 2 - \frac{l}{k_0}$ and $b_k \sim \mathcal{N}(0, 2/\beta)$ and $g_k \sim \mathcal{N}(0, 2/\beta)$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

$$X_k = \begin{pmatrix} \Psi_{k+1} \\ \Psi_k \end{pmatrix}, k > k_0.$$

We have

$$X_{k+1}=(A_k+W_k)X_k,$$

where

$$A_k = \begin{pmatrix} \omega_k & -1 + \frac{1}{2k} \\ 1 & 0 \end{pmatrix}, \quad W_k = \begin{pmatrix} \frac{-b_k}{\sqrt{k}} & \frac{g_k}{\sqrt{k}} \\ 0 & 0 \end{pmatrix},$$

 $z_k = z\sqrt{\frac{n}{k}} = 2 - \frac{l}{k_0}$ and $b_k \sim \mathcal{N}(0, 2/\beta)$ and $g_k \sim \mathcal{N}(0, 2/\beta)$. Eigenvalues of A_k for $k > k_0$ are complex of (essentially) unit norm. Change basis to eigenvector basis, get

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i ig(R_i + \hat{W}_i ig) Q_{k_0}^{-1} \hat{X}_{k_0},$$

where R_i are rotation matrices of angle $\theta_k \sim \sqrt{k/k_0 - 1}$.

= nac

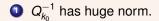
$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

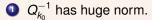
$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:



$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:



Non-commutative product - effect on perturbations.

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

• $Q_{k_0}^{-1}$ has huge norm.

2 Non-commutative product - effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0).

・ロット (四) (日) (日) (日)

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

• $Q_{k_0}^{-1}$ has huge norm.

Non-commutative product - effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0). Solution: Recall that $\delta_{k_0 - Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis.

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

• $Q_{k_0}^{-1}$ has huge norm.

Non-commutative product - effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0). Solution: Recall that $\delta_{k_0 - Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis. This means initial conditions are of the form $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, plus small perturbation.

(ロ) (同) (E) (E) (E) (E)

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

• $Q_{k_0}^{-1}$ has huge norm.

Non-commutative product - effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0). Solution: Recall that $\delta_{k_0 - Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis. This means initial conditions are of the form $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, plus small perturbation. In this direction, do not have eigenvalue. This is enough to control from *above*

the norm at the end of block.

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

• $Q_{k_0}^{-1}$ has huge norm.

Non-commutative product - effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0). Solution: Recall that $\delta_{k_0 - Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis. This means initial conditions are of the form $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, plus small perturbation.

In this direction, do not have eigenvalue. This is enough to control from *above* the norm at the end of block.

For lower bound on norm, use anti-concentration.

ZOOM 24/27

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0}+Ck_{0}^{1/3}}$$

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

First order approximation: divide to blocks of length $\ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i.

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

First order approximation: divide to blocks of length $\ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i. Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the normalized for the normalize

norm is not a function of the norm!

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

First order approximation: divide to blocks of length $\ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!

Solution: along block we have $\prod R_i = I$, but the vector $(1, 0)^T$ is not mapped to $\rho_i(1, 0)^T$ due to the noise. So instead, stop (at random time) where

$$\prod_{i=\ell_j}^{\ell_{j+1}} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) (1,0)^T \sim \rho_i (1,0)^T.$$

・ロット (四) (日) (日) (日) (日)

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

First order approximation: divide to blocks of length $\ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!

Solution: along block we have $\prod R_i = I$, but the vector $(1, 0)^T$ is not mapped to $\rho_i(1, 0)^T$ due to the noise. So instead, stop (at random time) where

$$\prod_{i=\ell_j}^{\ell_{j+1}} Q_{i+1}^{-1} Q_i \big(R_i + \hat{W}_i \big) (1,0)^T \sim \rho_i (1,0)^T.$$

We have $\ell_{j+1} - \ell_j \sim (k_0/j)^{1/3}$, and variance computation as in sketch.

(ロ) (同) (E) (E) (E) (O)(C)

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

First order approximation: divide to blocks of length $\ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!

Solution: along block we have $\prod R_i = I$, but the vector $(1, 0)^T$ is not mapped to $\rho_i(1, 0)^T$ due to the noise. So instead, stop (at random time) where

$$\prod_{i=\ell_j}^{\ell_{j+1}} Q_{i+1}^{-1} Q_i \big(R_i + \hat{W}_i \big) (1,0)^T \sim \rho_i (1,0)^T.$$

We have $\ell_{j+1} - \ell_j \sim (k_0/j)^{1/3}$, and variance computation as in sketch. Of course, cannot achieve exactly $(1,0)^T$, but can control error by choosing when to stop.

Ofer Zeitouni

ZOOM 25/27

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

イロン 不得 とくほう イヨン 二日

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0}+Ck_{0}^{1/3}}$$

Within a block, linearization is a good approximation:

$$\prod_{j=\ell_i+1}^{\ell_{i+1}} Q_{j+1}^{-1} Q_j \big(R_i + \hat{W}_i \big) = \prod_{j=\ell_i+1}^{\ell_{i+1}} (I + \Delta_j) \big(R_i + \hat{W}_i \big)$$

$$=\sum_{k=\ell_i+1}^{\ell_{i+1}}\mathbf{R}_{\mathbf{k}}(I+\Delta_k+\hat{W}_k)\mathbf{R}_{\mathbf{k}}^{-1}+\text{error terms}=I+\sum_{k=\ell_i+1}^{\ell_{i+1}}\mathbf{R}_{\mathbf{k}}(\Delta_k+\hat{W}_k)\mathbf{R}_{\mathbf{k}}^{-1}+\text{error terms}$$

where $\mathbf{R}_{\mathbf{k}}$ is a rotation by an angle between 0 and 2π .

・ロット (四) (日) (日) (日)

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0}+Ck_{0}^{1/3}}$$

Within a block, linearization is a good approximation:

$$\prod_{j=\ell_i+1}^{\ell_{i+1}} Q_{j+1}^{-1} Q_j \big(R_i + \hat{W}_i \big) = \prod_{j=\ell_i+1}^{\ell_{i+1}} (I + \Delta_j) \big(R_i + \hat{W}_i \big)$$

$$=\sum_{k=\ell_i+1}^{\ell_{i+1}}\mathbf{R}_{\mathbf{k}}(I+\Delta_k+\hat{W}_k)\mathbf{R}_{\mathbf{k}}^{-1}+\text{error terms}=I+\sum_{k=\ell_i+1}^{\ell_{i+1}}\mathbf{R}_{\mathbf{k}}(\Delta_k+\hat{W}_k)\mathbf{R}_{\mathbf{k}}^{-1}+\text{error terms}$$

where $\mathbf{R}_{\mathbf{k}}$ is a rotation by an angle between 0 and 2π . Easy to compute effect of linearization, get that $\rho_i \sim 1 + g_i + c'/i$ where g_i has variance c/i.

ZOOM 26/27

Caveat: Complication when blocks get too small - cannot ensure the approximation, e.g. if block is of length 1; But variance is small there, so can combine blocks!

- **Caveat:** Complication when blocks get too small cannot ensure the approximation, e.g. if block is of length 1; But variance is small there, so can combine blocks!
- Computing correlation between different *z*'s is complicated in the regime $|z z'| < N^{-2/3}$ because of block structure.

Caveat: Complication when blocks get too small - cannot ensure the approximation, e.g. if block is of length 1; But variance is small there, so can combine blocks! Computing correlation between different *z*'s is complicated in the regime $|z - z'| < N^{-2/3}$ because of block structure. Working on it!