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Central limit theorem f : R — R compactly supported, smooth. Consider

N
Win=> f(\)—N / fdo.
i=1
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CLT

Theorem (Johansson '98; 5 ensembles)
W;  satisfies CLT, mean (2/ — 1) | fdv, variance
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CLT

Theorem (Johansson '98; 5 ensembles)
W; n satisfies CLT, mean (2/8 — 1) [ fdv, variance

(2/8) [[? i np V4 - ¢§?
mld //2 OO~ o gt

The measure v in the mean expression is explicit.
The variance has an alternative expression

# ki; k (/O7T f(2 cos(0)) cos(k@))2 do

CLT’s of this type go back at least to CLT of Jonsson for moments
('82), Pastur and co-workers, Bai-Silverstein, Shcherbina, .. ..
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If fis smooth and compactly supported - variance finite.

Mesoscopic scales: initiated by Boutet de Monvel-Khorunzhy *99, recently
Lodhia-Simm, Knowles-He, Lambert, Bekerman-Lodhia . ... Variance still of
order 1. Also 2D (Leble-Serfaty, Bauerschmidt-Bourgade-Nikula-Yau)
What if f is not smooth? e.g. Sosoe-Wong '13 H'*<.

Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic
variance.

Formally, if f has log singularity then contributions at all scales, and kth
coefficient gives roughly contribution [; log(x)sin(kx) ~ 1/k. Thus if could
expand only to k ~ N, would get logarithmic variance. Justify? More later.
Our basic object of interest: log |Pn(z)| = log |det(z/ — Xi)|-
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The CLT

in(z) = |Pn(2)] = |det(z] — Xpy)|.

For z € (-2,2) \ {0}, define wx = z\/n/k, ko = z°n/4, and
awk) = wi/2 + yJw2 /4 — 1.
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The CLT

n(2) = |Pn(2)] = |det(z] — Xp)I-

For z € (—2,2) \ {0}, define wx = z\/n/k, ko = z°n/4, and
a(wk) = wi/2 + yJw2 /4 — 1.
Introduce the rescaled variable

ko
n(z) = H

The « rescaling is natural as it relates to eigenvalues of certain transfer
matrices. At exponential scale, the product of o’s relates to the logarithmic
potential of the semicircle.
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The CLT
in(z) = |Pn(2)| = |det(z] — X))
For z € (—2,2) \ {0}, define wx = z\/n/k, ko = z2n/4, and

awg) = wk/2 + \/w,%/4 —1.
Introduce the rescaled variable

Theorem (Augeri-Butez-Z. ’20)
log fv(2) satisfies a CLT with mean —(log N)/6 and variance (log N)/3.

The case of z = 0 was handled by Tao-Vu, more later.

The proof is robust enough to deal with more general 3-diagonal models.
Also, can actually get good error bounds.

| will describe the proof, after a short digression toward circular ensembles.
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Background

The Lab: circular ensembles

Un-CUE (aka Haar unitary on Uy).

Diaconis-Shahshahani '94: TrUY, ~ N(O, k) independent, very strong sense:
mixed moments of total degree < N are exactly those for independent
Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: log |detUy| is Gaussian of mean 0
and variance clog N.

Hughes-Keating-Oconnell, Wieand *02: multi-d extension: log |det(z;/ — Uy)|
is jointly Gaussian, log correlated structure.

If it is log-correlated, what about the extrema?
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Background

CUE char poly
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Figure 1: Realizations of log|Px(e)|, 0 < h < 27, for N = 50 and N = 1024. At microscopic scales,
the field is smooth away from the eigenvalues, in contrast with the rugged landscape at mesoscopic and

macroscopic scales.

(From Arguin, Belius, Bourgade ’17)
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Background

Circular ensembles

Set MN(Q) = |Og |PN(e’9)\, MK/ = MaXge[0,27] MN(Q)
Conjecture (Fyodorov-Hiary-Keating '12)

M,’Q:IogN—%loglogN+ w

where W has the law of the sum of two independent Gumbels.

Still open, although much progress.

Arguin, Belius, Bourgade '17 - Identify the ’1°.

Paquette, Zeitouni ’18 - Identify the *-3/4’.

Both use in essential way CUE (aka 8 = 2), where joint distribution of

eigenvalues is
I = »?
i<j
for which Gaussianity of traces follows from Diaconis-Shashahani and

moments of determinant (=exponential moments of My(z)) are Toeplitz
determinants.
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The clincher:

[Ti=x1%8>0

i<j
Chhaibi-Madaule-Najnudel 18 My, = log N — 3 loglog N + O(1)
There is also some progress toward identifying W - G. Remy ’18
The key step of CMN is a representation in terms of orthogonal polynomials.
First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV
matrices) built from a sequence of independent variables (Verblunski
coefficients), then write recursions for orthogonal polynomials in terms of
Verblunsky coefficients.

(426) = (Zae %) (61 ) o= 20

o = Bxe?™i%, EB2 ~ 2/pk, beta variable. o ~ g + ig,, Gaussian.
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The clincher:

[Ti=x1%8>0

i<j
Chhaibi-Madaule-Najnudel 18 My, = log N — 3 loglog N + O(1)
There is also some progress toward identifying W - G. Remy ’18
The key step of CMN is a representation in terms of orthogonal polynomials.
First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV
matrices) built from a sequence of independent variables (Verblunski
coefficients), then write recursions for orthogonal polynomials in terms of
Verblunsky coefficients.

Ppii(2) \ _ (2 — ®k(2) “ () _ K (51
( o;,(2) ) T\ —akz 1 oy(z) ) Pk(2) = Z®k(27).
o = Bxe?™i%, EB2 ~ 2/pk, beta variable. o ~ g + ig,, Gaussian.
In addition, sup;/— [ log |[Mn(2)| — log [®k(2)]] is tight.
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Background

Recursions - Circular ensembles

log d),";(eia) — log % _4 (eie) = log(1 — a-e’wk*‘(e)) ~ —a-eiw"*‘(a)

Wi(0) = Wi(0) + 6 — 23 log(1 — aje/Ve—1(®)),

Thus, marginal of log | (€?)| is essentially Gaussian, of variance
(2/8)log N.

Log correlated, but joint law is not Gaussian.

Use a branching structure.

Chhaibi-Najnudel 19 Py(-) converges to the GMC with parameter /2/8.

B = 2: Nikula, Saksman, Webb "18, Webb '15 )
Work in progress: Paquette-Z ('20?) Convergence in law of max log |¢;‘V(e’9)\ to Gumbel shifted by (unknown) r.v..
Some new phenomena for log-determinant of random permutations: Cook-Z. ‘20
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Back to GSE

We take Xy ~ GSE, ie joint distribution of eigenvalues on RN:

[T - AlPeP¥ X

i<j
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Recent mesoscopic results: Bekerman, Figalli, Guionnet ’13; Bekerman,
Leble, Serfaty ’17; Lambert-Ledoux-Webb ’18

What about log |det(z/ — Xn)|?

B = 2- special case, direct access to maximum through Riemann-Hilbert
methods (Lambert-Paquette ’18, first order, general potential).

Also, connection to GMC for 3 = 2: Berestycki-Webb-Wong '18 (L2 phase)

A CLT for characteristic polynomial of G3E ZOOM 11/27



Back to GSE

We take Xy ~ GSE, ie joint distribution of eigenvalues on RN:

[T - AlPeP¥ X

i<j

CLT for smooth test functions OK, for general smooth potential (Johansson
‘98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet ’13; Bekerman,
Leble, Serfaty ’17; Lambert-Ledoux-Webb ’18

What about log |det(z/ — Xn)|?

B = 2- special case, direct access to maximum through Riemann-Hilbert
methods (Lambert-Paquette ’18, first order, general potential).

Also, connection to GMC for 3 = 2: Berestycki-Webb-Wong '18 (L2 phase)
For general 3: even CLT of log-det not clear!
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Back to GSE

We take Xy ~ GSE, ie joint distribution of eigenvalues on RN:

[T - AlPeP¥ X

i<j

CLT for smooth test functions OK, for general smooth potential (Johansson
‘98 - loop equations; Guionnet-Borot '13)

Recent mesoscopic results: Bekerman, Figalli, Guionnet ’13; Bekerman,
Leble, Serfaty *17; Lambert-Ledoux-Webb ’18

What about log |det(z/ — Xn)|?

B = 2- special case, direct access to maximum through Riemann-Hilbert
methods (Lambert-Paquette ’18, first order, general potential).

Also, connection to GMC for 3 = 2: Berestycki-Webb-Wong '18 (L2 phase)
For general 3: even CLT of log-det not clear!

Recent result of Claeys, Fahs, Lambert, Webb: sharp CLT’s for counting
functions, GMC convergence.

A CLT for characteristic polynomial of G3E ZOOM 11/27



Background

log-det trajectory

Beta=2, Matrice de taille n= 1000 Pas de temps= 0.001

IS

[

o

1 ‘" MW | i

W
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Empirical facts
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Background

Empirical facts

0.03

0.025

0.015

0.005 [

Skewed?
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Background

Reason for skewness in simulations

Ing|U-U2| U uniforme, 10000 réalisations

0.05

A CLT for characteristic polynomial of G3E ZOOM 14/27



CLT for log determinant GSE

The case z = 0 is special.
Theorem (Tao-Vu ’11)

(Mn(0) — aN — blog N)/+/ B log N converges (for Wigner matrices, 4
matching moments) to standard Gaussian.

Bourgade-Mody ’19: extends w/out matching 4 moments.
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CLT for log determinant GSE

The case z = 0 is special.
Theorem (Tao-Vu ’11)

(Mn(0) — aN — blog N)/+/ B log N converges (for Wigner matrices, 4
matching moments) to standard Gaussian.

Bourgade-Mody ’19: extends w/out matching 4 moments.
By replacement principle, the key step in the TV proof is the result for

GgE, s = 1,2. Their proof extends to general 5 > 0, and is based on
recursions.

A CLT for characteristic polynomial of G3E ZOOM 15/27



Background

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman '05)
Xn from GBE is unitarily equivalent to the following 3-diagonal Jacobi matrix

by a 0 200 0
1 1 a4 b2 a 0

—Xy=—=1] 0 a a 0
WNTUR| O 2 ka0
0 0 0 aN—1 bN

where b; ~ N(0,\/2/B), ai ~ xia//B.

Here a; ~ xiz/+/B; here X,?B has chi-square distribution with i3 degrees of
freedom, ie xis/v/B ~ /iB + G/v/2B + O(1/i).

A CLT for characteristic polynomial of G3E ZOOM 16/27



Background

Recursions

Let p«(-) denote the characteristic polynomial of the top k-by-k block of X.
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Recursions

Let p«(-) denote the characteristic polynomial of the top k-by-k block of X.
From the 3-diagonal representation,

ok(zVN) = (2VN = b)pk(zVN) — & _1pk—1(zVN),p_1 = 0,00 = 1.
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Let p«(-) denote the characteristic polynomial of the top k-by-k block of X.
From the 3-diagonal representation,

ok(zVN) = (2VN = b)pk(zVN) — & _1pk—1(zVN),p_1 = 0,00 = 1.

Recall: wx = z\/n/k, ko = 22n/4, and a(wk) = wi/2 + /w2 /4 — 1 if k < ko,
awg) =1if k > ko.
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Background

Recursions

Let p«(-) denote the characteristic polynomial of the top k-by-k block of X.
From the 3-diagonal representation,

ok(zVN) = (2VN = b)pk(zVN) — & _1pk—1(zVN),p_1 = 0,00 = 1.

Recall: wx = z\/n/k, ko = 22n/4, and a(wk) = wi/2 + /w2 /4 — 1 if k < ko,
awg) =1if k > ko.

We set 1
Vi(2) = ¢k(zm)\/ﬂnff:1 o(wj)
and then
_ zVN — by %1
Vi(2) VKa(w) 162 k(k — 1)()‘(“")0‘(%_1)%&2(2)

A CLT for characteristic polynomial of G3E ZOOM 17/27



Background

Recursions

Recall that kg satisfies wy, = 2 (if z = 0 then ko = 1). In matrix form, for
k > ko,

(Wk+1(z))
Vi (2)
~ (5 Y (V) + (81 ) (V)

where wx = z+/n/k, and by, gk are (essentially) iid Gaussian of variance 2/5.
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Recall that kg satisfies wy, = 2 (if z = 0 then ko = 1). In matrix form, for
k > ko,

(Wk+1(z))
Vi (2)
~ (5 Y (V) + (81 ) (V)

where wx = z+/n/k, and by, gk are (essentially) iid Gaussian of variance 2/5.
In the Tao-Vu z = 0 case, wy = 0, and except for perturbation, we have a pure
rotation.
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Background

Recursions

Recall that kg satisfies wy, = 2 (if z = 0 then ko = 1). In matrix form, for
k > ko,

(Wk+1(z))
Vi (2)
~ (5 Y (V) + (81 ) (V)

where wx = z+/n/k, and by, gk are (essentially) iid Gaussian of variance 2/5.
In the Tao-Vu z = 0 case, wy = 0, and except for perturbation, we have a pure
rotation.

Tao-Vu show that W,_4(2)? + Wx_4(2)? (essentially) forms a martingale with
quadratic variation process of increment ~ 1/k. This gives the CLT.

A CLT for characteristic polynomial of G3E ZOOM 18/27



Background

(i) = () +5 (5%

Ak:<‘fk 61+1/2k> <$Z(?(Z)> i = 27/TTK

where

and Ey is a small noise matrix.
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(i) = () +5 (5%

Ak:<‘fk 61+1/2k> <$Z(?(Z)> i = 27/TTK

where

and Ey is a small noise matrix.
The eigenvalues of A, are roughly Jwy + /w2 — 4.
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Background

(i) = () +5 (5%

Ak:<‘fk 61+1/2k> <$Z(?(z)> ok = 2/

and Ey is a small noise matrix.

The eigenvalues of A, are roughly Jwy + /w2 — 4.

For k < kg, eigenvalues real and smaller that 1.

For k > kg, eigenvalues imaginary, of modulus roughly 1.

where

A CLT for characteristic polynomial of G3E ZOOM 19/27



Background

Recursions - general z

There are several regimes to consider. Fix ¢ > 0, recall that ky = z2N/4.

@ k < (1 —€)ko: one checks that Wy (z) ~ 1.
@ k € [(1—e)ko, ko: write
Xe = Vi /Vk_1 =146, Xk = Ak + Br/Xk—1

for appropriate Ay, B.
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Background

Recursions - general z
There are several regimes to consider. Fix ¢ > 0, recall that ky = z2N/4.
@ k < (1 —€)ko: one checks that Wy (z) ~ 1.
@ k e[(1 - e)ko, ko: write
X = \Uk/\Uk_1 =14+, Xx=Ak+ Bi/Xk—1
for appropriate A, Bk. In this regime, §, ~ 0 and one obtains a recursion
Ok ~ Uk + VkOk_1
where, with o, = a(wk),
b 1 9 1otk
T oka? v T2
,/kai Qg kaﬁ Qg

which one solves.

Uy ~

@ k > ky: Oscillatory regime, most interesting.

A CLT for characteristic polynomial of G3E ZOOM 20/27



Background

Recursions - general z - the scalar regime

Ok—1
Ok ~ Uk + Vk 77—
1+ 0k_q
g
K 1 Ik 1‘&*%
U ~ 2 = = 2
ka2 Zkak kot a2
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Background

Recursions - general z - the scalar regime

Ok—1
6;( ~ Uk + Vkﬁ
K—1
9
by 1 Ik T— g+ ﬁ
Uy ~ + > , V= ——
kai 2k kai Xy

No significant contribution for k € [1, (1 — €)ko].
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Recursions - general z - the scalar regime

Ok—1
6;( ~ Uk + Vkﬁ
K—1
g
by 1 Ik T— g+ ﬁ
Uy ~ + > , V= ——
kai 2k kai Xy

No significant contribution for k € [1, (1 — €)ko].
Solve in two steps: first, the linearized equation

Sk = Uk + ngk—1
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Background

Recursions - general z - the scalar regime

Ok—1
Ok ~ Uk + Vk 77—
1+ 0k_q
u by 1 Ik v T— g+
k ~ ) k= — 5
ka2 2kaf kot o2

No significant contribution for k € [1, (1 — €)ko].
Solve in two steps: first, the linearized equation

Sk = Uk + ngk—1

with solution

_ k k
5KIZU]‘ H V.

j=2  t=j+1
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Background

Recursions - general z - the scalar regime

Ok—1
Ok ~ Uk + Vk 77—
1+ 0k_q
g
by 1 Ik T— gt NG
Uk ~ 7 = o Yk = >
kai Zkak k&i a2

No significant contribution for k € [1, (1 — €)ko].
Solve in two steps: first, the linearized equation

Sk = Uk + ngk—1

with solution

_ k k
5KIZU]‘ H V.

j=2  t=j+1

dx is a martingale, and small. We can compute 3" &, and & are correlated!

A CLT for characteristic polynomial of G3E ZOOM 21/27



Background

Recursions-general z- the scalar regime

o 1 v

Mx

8k = Uk + VkOk_1,

Il
[}
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Background

Recursions-general z- the scalar regime

o 1 v

Mx

8k = Uk + VkOk_1,

Il
N

Turns out contribution occurs only for k < ky — kg/a, and then get a CLT with
blocks of length (ko /i)!/3 to the left of ky contributing order 1/i to the
variance. Also, correlation between different z’s computable.
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Background

Recursions-general z- the scalar regime

K k
O = Uk + Vkok_1q, 5k:ZUj H 78
j=2  e=j+1

+
Turns out contribution occurs only for k < ko — k}/°, and then get a CLT with
blocks of length (ko /i)!/° to the left of ko contrlbutlng order 1/i to the
variance. Also, correlation between different z’s computable.

We need to control Ay = 5k — 0.

Ok— — — 2 —3
Ak = Vg (1_:5;1 = 5k—1> = V(1 =28k _1)Ak_1—Vikdk_1 +O(A2_ +3k_1)

Using a-priori bounds on &, control size of Ak, and of the error terms.
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Recursions-general z- the scalar regime

k k
Sk = Uk + Vicdk—1, Sk =>_u [] ve-
=2 et
Turns out contribution occurs only for k < ko — k}/°, and then get a CLT with

blocks of length (ko /i)!/° to the left of ko contrlbutlng order 1/i to the
variance. Also, correlation between different z's computable.
We need to control Ax = §x — k.

Ok— — — 2 —3
Ak = Vg (1_:5;1 = 5k—1> = V(1 =28k _1)Ak_1—Vikdk_1 +O(A2_ +3k_1)

Using a-priori bounds on &, control size of Ak, and of the error terms.
At the end, Ak contributes only to the mean.
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Background

Recursions-general z- the scalar regime

Sk = Uk + Vkdk—1,

4 11 v

Mx

Il
N

Turns out contribution occurs only for k < ky — kg/a, and then get a CLT with
blocks of length (ko /i)!/® to the left of ko contributing order 1/i to the
variance. Also, correlation between different z’s computable.

We need to control Ax = dx — dx. Using a-priori bounds on &, control size of
Ak, and of the error terms.

At the end, Ak contributes only to the mean.We conclude that

1, 1
|0gwk07k(;/a = UnG— 50’,7, 6k070k3/3 =0 <k1/3>
0

where 02 = 35 log nand G is a standard Gaussian.
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Background

Recursions-general z- the scalar regime

8k = Uk + VkOk_1,

o 1 v

Mx

Il
N

Turns out contribution occurs only for k < ky — kg/a, and then get a CLT with
blocks of length (ko /i)!/® to the left of ko contributing order 1/i to the
variance. Also, correlation between different z’s computable.

We need to control Ax = §x — k. Using a-priori bounds on dx, control size of
Ak, and of the error terms.

At the end, Ak contributes only to the mean.We conclude that

1, 1
|Og\Uk07k(;/a = UnG— 50’,7, (5}(070/(;/3 =0 <k1/3>
0

where 02 = 35 log nand G is a standard Gaussian.

A much finer analysis (up to ko — k0 3(log ko)?/3) by Lambert-Paquette
(hyperbolic regime) - arXiv:2001.09042
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Background

Recursions - general z - the oscilatory regime

X, — ( "’“k]:‘ ),k>k0.
We have
X1 = (Ax + W) X,

oglé

where
L A
0 ) Wk -

e (@

Zx=2z\/0=2- % and by ~ N(0,2/8) and gx ~ N(0,2/8).

A CLT for characteristic polynomial of G3E
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Background

Recursions - general z - the oscilatory regime

X, — ( "’\ﬁ:‘ ),k>k0.

We have
Xi+1 = (Ax + W) X,

1 —bx

Wk —1 4+ 5 —

we (375 ) e (T F)

Z = zﬁ: 2 — L and b ~ A(0,2/8) and g ~ N(0,2/8).

Eigenvalues of Ak for k > ky are complex of (essentially) unit norm. Change
basis to eigenvector basis, get

where

ogle

k-1
Xk = Qk H Q QiR+ W) Q/;J1Xk07
i—ko

where R; are rotation matrices of angle 6x ~ \/k/ko — 1.
A CLT for characteristic polynomial of G3E ZOOM 23/27



Background

Recursions - general z - the oscilatory regime

k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kg
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Recursions - general z - the oscilatory regime

k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kg

Problems:
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Background

Recursions - general z - the oscilatory regime

k—1
K= ac IT arai(R + W)a "Xy
i=kg
Problems:
© Q' has huge norm.
0

© Non-commutative product - effect on perturbations.
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Recursions - general z - the oscilatory regime

k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kgy
Problems:
@ Q_' has huge norm.
© Non-commutative product - effect on perturbations.

Problem 1: Q,jo‘ has huge norm: this is a problem at the first block only
(which in fact starts at ko — Ckg/ %, not at ko).
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k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kg

Problems:
@ Q_' has huge norm.

© Non-commutative product - effect on perturbations.

Problem 1: Q,jo‘ has huge norm: this is a problem at the first block only

(which in fact starts at ko — Ckg/ %, not at ko).
Solution: Recall that 6k070k1/3 iS ~ k0’1/3, by scalar analysis.
0
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Recursions - general z - the oscilatory regime

k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kg

Problems:
@ Q_' has huge norm.

© Non-commutative product - effect on perturbations.

Problem 1: Q,jo‘ has huge norm: this is a problem at the first block only

(which in fact starts at ko — Ckg/ %, not at ko).
Solution: Recall that 6k070k1/3 is ~ k0’1/3, by scalar analysis. This means
0

initial conditions are of the form ( ! ) plus small perturbation.

1
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Recursions - general z - the oscilatory regime

k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kg

Problems:
@ Q_' has huge norm.
© Non-commutative product - effect on perturbations.

Problem 1: Q,jo‘ has huge norm: this is a problem at the first block only

(which in fact starts at ko — Ckg/ %, not at ko).
Solution: Recall that 6k070k1/3 is ~ k0’1/3, by scalar analysis. This means
0

initial conditions are of the form ( ! , plus small perturbation.

1
In this direction, do not have eigenvalue. This is enough to control from above
the norm at the end of block.
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Background

Recursions - general z - the oscilatory regime

k—1
Xc=a [1 @71 Qi(R; + W,)Q;OWKO
i=kg

Problems:
@ Q_' has huge norm.
© Non-commutative product - effect on perturbations.

Problem 1: Q,jo‘ has huge norm: this is a problem at the first block only

(which in fact starts at ko — Ckg/ %, not at ko).
Solution: Recall that 6k070k1/3 is ~ k0’1/3, by scalar analysis. This means
0

initial conditions are of the form ( ! , plus small perturbation.

1
In this direction, do not have eigenvalue. This is enough to control from above
the norm at the end of block.

For lower bound on norm, use anti-concentration.

A CLT for characteristic polynomial of G3E ZOOM 24/27



Background

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

K—1
. > A
Y=o [T oz1Q(R + w)Y, wl/B
i=ko 0%
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Background

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

k—1
. > IS
Y=o [T oz1Q(R + w)Y, wl/B
i=kg 07"

First order approximation: divide to blocks of length ¢; = (ko/i)'/3, linearize in
each block, and get contribution to variance of order 1/i.
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Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

k—1
. > IS
X=o [T ;1R + W) -
i=kg 07"

First order approximation: divide to blocks of length ¢; = (ko/i)'/3, linearize in
each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!
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Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

k—1

Xe=a ] O,HQ,(FI + W)Yk ck3/3
i=kgy

First order approximation: divide to blocks of length ¢; = (ko/i)'/3, linearize in
each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!

Solution: along block we have [] R; = /, but the vector (1,0)7 is not mapped
to pi(1,0)7 due to the noise. So instead, stop (at random time) where

L

[T Q7 QiR+ W) (1,0)" ~ pi(1,0).

i=£;
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Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

Xk*QkH ,+1 F'+Wf)Yk+Ck1/3
i=kg 0%

First order approximation: divide to blocks of length ¢; = (ko/i)'/3, linearize in
each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!

Solution: along block we have [] R; = /, but the vector (1,0)7 is not mapped
to pi(1,0)7 due to the noise. So instead, stop (at random time) where

4
[T Q7 QiR+ W) (1,0)" ~ pi(1,0).

i=£;

We have (.1 — ¢; ~ (ko/j)'/3, and variance computation as in sketch.
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Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

Xk*QkH ,+1 F'+Wf)Yk+Ck1/3
i=kg 0%

First order approximation: divide to blocks of length ¢; = (ko/i)'/3, linearize in
each block, and get contribution to variance of order 1/i.

Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the
norm is not a function of the norm!

Solution: along block we have [] R; = /, but the vector (1,0)7 is not mapped
to pi(1,0)7 due to the noise. So instead, stop (at random time) where

L

[T Q7 QiR+ W) (1,0)" ~ pi(1,0).

i=£;

We have (.1 — ¢; ~ (ko/j)'/3, and variance computation as in sketch.
Of course, cannot achieve exactly (1,0)7, but can control error by choosing
when to stop.

A CLT for characteristic polynomial of G3E ZOOM 25/27



Background

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

k—1
& _q PN
Xk = Qg I Oi+1 O,’(FI,' + VV,) Yk0+ck8/3

i=kg
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Background

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

Xk*okH ,+1 F’+Wf)Yk+Ck1/3
i=kg 0%

Within a block, linearization is a good approximation:

€,+1 €i+1

[1 GiaA+ W)= 1] 0+ a)(A + W)

j=t+1 J=Li+1
it R Lit R
Z Rk(l—|—Ak—|—Wk)Rk71—|—error terms = [+ Z Rk(Ak+Wk)Rk71—|—error term
k=0;+1 k=0;+1

where R is a rotation by an angle between 0 and 27.

A CLT for characteristic polynomial of G3E ZOOM 26/27



Background

Recursions - general z - the oscilatory regime

Problem 2: Noncommutative product - control

Xk*okH ,+1 F’+Wf)Yk+Ck1/3
i=kg 0%

Within a block, linearization is a good approximation:

€,+1 €i+1

[1 GiaA+ W)= 1] 0+ a)(A + W)

j=t+1 J=Li+1
it R Lit R
Z Rk(l—|—Ak—|—Wk)Rk71—|—error terms = [+ Z Rk(Ak+Wk)Rk71—|—error term
k=0;+1 k=0;+1

where R is a rotation by an angle between 0 and 27.
Easy to compute effect of linearization, get that p; ~ 1 + g; + ¢/i where g;
has variance c/i.
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Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the
approximation, e.g. if block is of length 1; But variance is small there,
so can combine blocks!
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Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the
approximation, e.g. if block is of length 1; But variance is small there,
so can combine blocks!

Computing correlation between different z’s is complicated in the
regime |z — Z'| < N—2/3 because of block structure.
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Background

Recursions - general z - the oscilatory regime

Caveat: Complication when blocks get too small - cannot ensure the
approximation, e.g. if block is of length 1; But variance is small there,
so can combine blocks!

Computing correlation between different z’s is complicated in the
regime |z — Z'| < N—2/3 because of block structure.

Working on it!
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