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Extreme value statistics

Statement of the problem  
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Three different universality classes depending 
on the pdf of    : Gumbel, Fréchet, Weibull  

Fully understood for i.i.d. random variables

Q: N ! 1 ?



Extreme value statistics

  Random walks

  Random matrices
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X1, X2, · · · , XN : N random variables, P
joint
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, · · · , XN )

Q: N ! 1 ?

Statement of the problem  

Very few exact results for strongly correlated variables

NX
max

      is interesting BUT concerns a single variable among 



Statistics of Near-Extremes  

Statistical Physics
Energy levels  

E0 Ground state
{T > 0

T = 0

Natural sciences 
(e.g. seismology)

Branching Brownian 
motion

1/f noise

see also:

Brownian motion

...

Crowding near the extremes



Statistics of Near-Extremes  

How to quantify the crowding close to extreme values  ?

Look at (higher) order statistics: k  maximum th

X
max

= M
1,N > M

2,N > · · · > MN,N = X
min

and in particular the spacings (gaps) dk,N = Mk,N �Mk+1,N

Consider the density of near-extremes Sabhapandit, Majumdar ’07



Near-extreme eigenvalues of random matrices

 Let    be a real symmetric (or complex Hermitian)      
random  matrix      

 The matrix     has    real eigenvalues which are 
strongly correlated

 Density of near 
  extreme eigenvalues

see also Witte, Bornemann, Forrester ’13

 A related quantity is the gap between the two largest  
eigenvalues 

Largest eigenvalue 

N ⇥N



Application: minimizing a quadratic form on the sphere

Quadratic form on the    -dimensional sphere      

Minimisation of this quadratic form on the sphere

are the eigenvalues of with

introduce a Lagrange multiplier 

with



Eigenvalues of the Hessian matrix at the minimum 

spectrum of is

is the mean eigenvalue density of 

with

Reminding that

Application: minimizing a quadratic form on the sphere



Dynamics of the spherical fully connected spin-glass model 
(spherical Sherrington-Kirkpatrick model)

Application to spherical fully connected spin-glasses

Cugliandolo, Dean ’95

where

and belongs to the GOE ensemble of RMT with variance

Random initial condition at time       :

temp.

infinitesimal 
mag. field

normalized eigenvectors of  : 

Relaxational dynamics characterized by two-time quantities

Ben Arous, Dembo, Guionnet ’06



Relaxational dynamics characterized by two-time quantities

Application to spherical fully connected spin-glasses

Correlation function Response function

In the quasi-stationary regime, for fixed

Perret, Fyodorov, G. S. ’14

see also Kurchan, Laloux ’96



Near-extreme eigenvalues of random matrices

rdr
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Wigner sea

Density of near 
extreme eigenvalues
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Density of near extreme eigenvalues in GUE

Fluctuations of the largest eigenvalue �
max

= max

1iN
�i

Tracy-Widom

Depending on        one expects two different regimes(r,N)

                 bulk regime

                 edge regime



A detour by the density of eigenvalues of  
random matrices

Two regimes: bulk and edge regime
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Two regimes: bulk and edge regime

A detour by the density of eigenvalues of GUE 
random matrices

Matching between the bulk and edge regimes
matching with Wigner semi-circle

coincides with the right tail of TW



Density of near extreme eigenvalues: results

In the bulk :

is insensitive to the fluctuations of  

 

shifted Wigner semi-circle 

A. Perret, G. S. ’14



Density of near extreme eigenvalues: results

At the edge

A. Perret, G. S. ’14

, a non trivial function



Consequences on the dynamics of the spherical fully 
connected spin-glass model

In the quasi-stationary regime, for 

two regimes:

Two temporal regimes for the response function

 

 

Cugliandolo, Dean ’95

Perret, Fyodorov, G. S. ’15

Ben Arous, Dembo, Guionnet ’06



Consequences on the dynamics of the spherical fully 
connected spin-glass model

For 

Asymptotic behaviors

Can one compute the full universal function 

universal !

?
an exact calculation for GUE Perret, G. S. ’14



,

Density of near extreme eigenvalues for GUE

is related to a solution of the Lax pair associated to Painlevé XXXIV

Perret, G. S. ’14



is related to a solution of the Lax pair associated to Painlevé XXXIV

Density of near extreme eigenvalues for GUE



Density of near extreme eigenvalues: results

Asymptotic behaviors
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Outline

Exact formulas for  for finite

Asymptotic analysis for large 

Comparison with existing results

Conclusion and related open problems



Outline

Asymptotic analysis for large 

Comparison with existing results

Conclusion and related open problems

Exact formulas for  for finite



An exact formula for 

wall

two-point correlations for conditioned eigenvalues

eigenvalues

After some manipulations one obtains 

wih the kernel
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An exact formula for 

wall

eigenvalues

Finally a useful formula is 
2-point correlations
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An exact formula for the PDF of the first gap

wall

eigenvalues

Reminding that

one gets



Outline

Orthogonal polynomials (OPs) on the semi-infinite real line

Exact formulas for  for finite

Comparison with existing results

Conclusion and related open problems



Orthogonal polynomials
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Cumulative distribution function of

Orthogonal polynomials on the semi-infinite real line

C. Nadal, S. N. Majumdar ’13 



Physical picture associated to the OP sytem

Coulomb gas with a wall located in 

Moving the wall through the edge: the density

ρy(λ)

λ λ λ
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described by a double scaling limit
see also T. Claeys, A. Kuijlaars ’08, «...when the soft edge meets the hard edge»

for a review see S. N. Majumdar, G. S. ’13
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Large    analysis of

Edge regime :

Analysis of the kernel in the double scaling limit

where

Find a solution of the recurrence in the double scaling limit
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Large    analysis of

In the double scaling limit the recurrence relation is solved by

A. Perret, G. S. ’14

with

In the double scaling limit, one has C. Nadal, S. N. Majumdar ’13 



Large    analysis of

After some more computations...

see T. Claeys, A. Kuijlaars ’07 for a (rigorous) derivation using RH

where     solve the Lax pair for Painlevé XXXIV



is related to a solution of the Lax pair associated to Painlevé XXXIV

Density of near extreme eigenvalues: results



Typical fluctuations of the gap: results
A. Perret, G. S. ’13

using

we obtain

from which we obtain the asymptotic behaviors

with
and complicated integral involving



Outline

Orthogonal polynomials (OPs) on the semi-infinite real line

Exact formulas for  for finite

Comparison with existing results

Conclusion and related open problems



Relations with existing results

Density of near extreme eigenvalues was not studied in RMT 
(to my knowledge)

Forrester ’93

Witte, Bornemann, Forrester ’13

Previous studies of the PDF of the first gap

an expression in terms of a Fredholm determinant

an expression in terms of Painlevé transcendents

  and a numerical computation of the formula in terms of a       
  Fredholm determinant



PDF of the first gap: the formula of Witte, Bornemann, Forrester

with

and

Showing that this formula coincides with ours is still challenging...

with



PDF of the first gap: the numerical evaluation of Witte, Bornemann, 
Forrester
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Conclusion and related open questions

Exact results for the statistics of near extreme eigenvalues of GUE

  A new formula for the PDF of the first gap in terms of 
    Painlevé transcendents (precise asymptotics)

What about GOE and GSE (skew orthogonal polynomials) ?

Applications to the relaxational dynamics of mean-field spin glass

What about Laguerre-Wishart matrices ?
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