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Community detection
The Stochastic Block Model (SBM)

G is generated as follows:

I n vertices: 1, . . . , n.
I Each vertex i has a label Xi ∈ {1, 2}

where (Xk)k
i.i.d.∼ 1 + Ber(1− p).

I Two vertices i, j are then connected
with probability MXi,Xj

.

I Goal: given the graph G we want to recover the labels X.
I Weak Reconstruction: Estimate X better than a “random guess”.

2 / 23



Community detection
The Stochastic Block Model (SBM)

G is generated as follows:

I n vertices: 1, . . . , n.
I Each vertex i has a label Xi ∈ {1, 2}

where (Xk)k
i.i.d.∼ 1 + Ber(1− p).

I Two vertices i, j are then connected
with probability MXi,Xj

.

I Goal: given the graph G we want to recover the labels X.
I Weak Reconstruction: Estimate X better than a “random guess”.

2 / 23



Setting
I The connectivity matrix will be of the form:

M = d

n

(
a b
b c

)
a, c > b and pa+ (1− p)b = pb+ (1− p)c = 1.

I Important quantity: the signal-to-noise ratio

λ = d(1− b)2

Mossel et al., 2015, Massoulié, 2014, Mossel et al., 2013
In the case of two symmetric communities (p = 1/2), when d > 1 is fixed
and n→∞,

I if λ ≤ 1 it is not possible to recover the partition X better that a
“random guess”.

I if λ > 1 it is possible to recover the labels better than chance.
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In the case of two symmetric communities (p = 1/2), when d > 1 is fixed
and n→∞,

I if λ ≤ 1 it is not possible to recover the partition X better that a
“random guess”.

I if λ > 1 it is possible to recover the labels better than chance.

3 / 23



Setting
I The connectivity matrix will be of the form:

M = d

n

(
a b
b c

)
a, c > b and pa+ (1− p)b = pb+ (1− p)c = 1.

I Important quantity: the signal-to-noise ratio

λ = d(1− b)2

Mossel et al., 2015, Massoulié, 2014, Mossel et al., 2013
In the case of two symmetric communities (p = 1/2), when d > 1 is fixed
and n→∞,

I if λ ≤ 1 it is not possible to recover the partition X better that a
“random guess”.

I if λ > 1 it is possible to recover the labels better than chance.

3 / 23



Asymmetric communities
The main picture

I Does this phase transition at λ = 1 still hold when p < 1/2?
I The physicist’s conjecture for the large degree limit (d→∞):
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Part 1.

Local weak convergence of the
SBM
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Local weak convergence of the SBM
The Stochastic Block Model converges locally weakly to a “Labeled Poison
Galton-Watson tree”.

I Offspring distribution: Pois(d).
I The labels “propagate” from the root according to the transition matrix(

pa (1− p)b
pb (1− p)c

)
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Reconstruction on trees

I An issue: the Galton-Watson tree, without the labels,
does not give any information about the label of the root!

I We thus suppose that the labels at depth r are revealed. Can we infer
the label of the root as r →∞ ?
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Reconstruction on trees
I An issue: the Galton-Watson tree, without the labels,

does not give any information about the label of the root!
I We thus suppose that the labels at depth r are revealed. Can we infer

the label of the root as r →∞ ?

I Belief-Propagation gives the marginal distribution of the root given G
and the labels at depth r.
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An impossibility result
I Studying the “BP recursion” one see that when λ < λsp, the marginal

does not contain any information about the true label.

We thus obtain the “impossibility curve” λsp(p) below:
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Part 2.

Low-rank matrix estimation
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Low-rank matrix estimation
From Bernoulli to Gaussian noise

Ai,j ∼ Ber
(
d

n
+
√
d
√
λ

n
X̃iX̃j

)
(1)

where X̃k =
{√

(1− p)/p if Xk = 1
−
√
p/(1− p) if Xk = 2

.

The Bernoulli noise model (1) is “equivalent” to the Gaussian noise model
(when n, d→∞)1:

A′i,j = d

n
+
√
d
√
λ

n
X̃iX̃j +

√
d

n
Zi,j (2)

where Zi,j
i.i.d.∼ N (0, 1), and thus to

Yi,j =
√
λ

n
X̃iX̃j + Zi,j

1Yash Deshpande and Emmanuel Abbe (2016). “Asymptotic mutual information for the
balanced binary stochastic block model”. In: Information and Inference, iaw017.
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Low-rank matrix estimation
The new statistical model

“Spiked Wigner” model

Y︸︷︷︸
observations

=
√√√√√λ
n

XXᵀ︸ ︷︷ ︸
signal

+ Z︸︷︷︸
noise

I X: vector of dimension n with entries Xi
i.i.d.∼ P0. EX1 = 0, EX2

1 = 1.
I Zi,j = Zj,i

i.i.d.∼ N (0, 1).
I λ: signal-to-noise ratio.
I λ and P0 are known by the statistician.

Goal: recover the low-rank matrix XXᵀ from Y.
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Principal component analysis (PCA)
B.B.P. phase transition

Spectral estimator:
Estimate X using the eigenvector x̂n associated with the largest
eigenvalue µn of Y/

√
n.

B.B.P. phase transition

I if λ ≤ 1

µn
a.s.−−−−→
n→∞

2
X · x̂n

a.s.−−−−→
n→∞

0

I if λ > 1

µn
a.s.−−−−→
n→∞

√
λ+ 1√

λ
> 2

|X · x̂n|
a.s.−−−−→
n→∞

√
1− 1/λ > 0

Baik et al., 2005; Benaych-Georges and Nadakuditi, 2011
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Questions

I PCA fails when λ ≤ 1, but is it still possible to recover the
signal?

I When λ > 1, is PCA optimal?

I More generally, what is the best achievable estimation
performance in both regimes?
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MMSE and information-theoretic threshold
Definitions

“MMSE” = Minimal Mean Square Error

MMSEn = min
θ̂

1
n2E

∥∥∥XXᵀ − θ̂(Y)
∥∥∥2

= 1
n2

∑
1≤i,j≤n

(XiXj − E[XiXj|Y])2 ≤ EP0 [X2]2︸ ︷︷ ︸
Dummy MSE

The information-theoretic threshold is the critical value λc such that
I if λ > λc, lim

n→∞
MMSEn < Dummy MSE

I if λ < λc, lim
n→∞

MMSEn = Dummy MSE
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Related work
A short overview

I Approximate Message Passing (AMP) algorithms: Rangan and Fletcher,
2012, Deshpande and Montanari, 2014; Lesieur et al., 2015 allows to
derive the MMSE when AMP is optimal.

I In presence of a “hard phase”, Barbier et al., 2016 uses AMP and spatial
coupling techniques to compute the MMSE under some additional
assumptions.

I Banks et al., 2016; Perry et al., 2016 obtained bounds on the
information-theoretic threshold by second moment computations and
contiguity.
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Main result
Limiting formula for the MMSE

Theorem

MMSEn −−−→
n→∞

EP0 [X2]2︸ ︷︷ ︸
Dummy MSE

− q∗(λ)2

where q∗(λ) is the maximizer of

q ≥ 0 7→ EX0∼P0
Z0∼N

[
log

∫
x0
dP0(x0)e

√
λqZ0x0+λqX0x0−λq2 x

2
0

]
− λ

4 q
2
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Proof ideas
A planted spin system

P(X = x |Y) = 1
Zn

P0(x)eHn(x) where

Hn(x) =
∑
i<j

√
λ

n
Yi,jxixj −

λ

2nx
2
ix

2
j .

Two step proof:
I Lower bound: Guerra’s interpolation technique. Adapted in Korada and

Macris, 2009; Krzakala et al., 2016.{
Y =

√
t

√
λ/n XXᵀ + Z

Y′ =
√

1− t
√
λ X + Z′

I Upper bound: Cavity computations (Mézard et al., 1987).
Aizenman-Sims-Starr scheme: Aizenman et al., 2003; Talagrand, 2010.
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Some curves

Recall Y =
√
λ/nXXᵀ + Z, where (Xi)1≤i≤n

i.i.d.∼ P0.

I We will plot the MMSE and MSEPCA curves for priors of the form

Xi =


√

1−p
p with probability p

−
√

p
1−p with probability 1− p

for some p ∈ (0, 1).

I One can show (similarly to Deshpande and Abbe, 2016) that the
corresponding matrix estimation problem is, in some sense, equivalent to
the community detection problem with 2 asymmetric communities of
sizes pn and (1− p)n.
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Plot of MMSE

MMSE, MSEPCA and MSEAMP, p = 0.05.
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Plot of MMSE

MMSE, MSEPCA and MSEAMP, p = 0.05.
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Phase diagram for asymmetric community detection
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Phase diagram from Caltagirone et al., 2017
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Thank you for your attention.
Any questions?
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