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Light scattering by diffusive materials

Is part of our everyday experience :

…clouds…

..snow…

Origin: light is scattered 
by inhomogeneities

… human 
tissues…



Imaging in scattering media

Easy hard

Impossible?
Conventionally : information from 
only unscattered (‘ballistic’) light

Beer-Lambert Law: Exponential decay of the ballistic light

à   No imaging beyond a few hundred

	  microns in living tissues 

CAN WE GO DEEPER?



Scattering : a coherent process

Volume scattering:

Speckle results from multiple interference 
between a multiplicity of random paths

Coherent light 
(laser)

thin layer (about 300 µm) 
of white paint 

(particle size ≤ 1 µm)

Young’s slit experiment:  

two wave interference 

Fringes    



Wavefront shaping : the tool to study scattering 

Spatial Light Modulators  
based on Liquid crystals 

>1 million pixels 
Phase modulation at:  50Hz 

Display 

Deformable mirrors 

 10-100 actuators 
moving: 10-20 microns  

Speed > kHz 

Adaptive optics 

Spatial light modulators based on 
MEMS technology 

ex: Texas DLP/DMD  

>1 million pixels 
 binary ON/OFF at 20kHz 

Display 



Optimization for focusing through complex media

IM Vellekoop and AP Mosk, Optics Letters, 32(16) 2007 
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Optimization for focusing through complex media

IM Vellekoop and AP Mosk, Optics Letters, 32(16) 2007 

Re

Im

Re

ImE1

E2
Etot

E3
E4

Re

Im

Re

ImE1

E2

Etot E3

E4

E1

E2

E3

E4

E1
E2

E3

E4 Etot

Etot

1 

3 
4 

2 

incident  
wave 

output modes 

2 

4 

3 

1 

 It is possible to shape the incoming wavefront to obtain a constructive 
interference on a single speckle grain « turn paint into a lens »

IM Vellekoop and AP Mosk, Optics Letters, 32(16) 2007



Optimization for focusing through complex media

 CCD 
camera

laser

Spatial Light  
Modulator 

Scattering 
sample

in the lab of Sylvain Gigan - ENS / LKB



A more general approach : the transmission matrix

Linear system

=

MxN complex-valued matrix

CCD  camera: arrays of pixels

=

M modulus of complex-valued 
coefficients

SLM: array of pixels

=

N complex-valued 
amplitudes

Popoff et al. Nat. Commun. 1:81 
doi: 10.1038/ncomms1078 (2010) 



O
ut

pu
t k

Identity Matrix

Input k

(Seemingly) Random Matrix

O
ut

pu
t k

Input k

free 
field

Scattering 
material

A more general approach : the transmission matrix



A more general approach : the transmission matrix

SL
M

CCD

sample

knowing the transmission matrix turns the scattering material into a 
« lens » with a very high number of degrees of freedom

Popoff et al. Phys. Rev. Lett. 104,100601 (2010)

2 applications 
• focusing 
• imaging



Linear	Reconstruc*on

Tikhonov

Exploiting H for imaging

Popoff et al., 2010 

Sparse 
image

1
 H

Sparse	reconstruc3on	(l1 or l0)

Non-linear	Reconstruc*on

Gaussian iid measurements : 
ideal for « compressed sensing » !



Conditions for CS reconstruction 

For Gaussian measurement matrices, CS can be performed by 
L1-minimization, and “universal” behavior is observed (Donoho-Tanner)

undersampling ratio m/N

sparsity 
s/m Probability 

of success

Phase 
transition



The one-pixel camera

If natural images are sparse, are there smarter sampling 
schemes than 20 Mpixel regular sensors as in digital 
cameras ? (where 99% of images end up as JPEGs)

                                    (Rice Univ.) 
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Back to the physical scattering processes



Linear	Reconstruc*on

Exploiting H for imaging

Popoff et al., 2010 

At least as many measurement 
pixels as input pixels

H

Sparse 
image

Number of 
measurement pixels 

driven by sparsity 
( << input pixels)

Non-linear	Reconstruc*on

H



Compressive imaging with scattering media
number of pixels M used for reconstructionoriginal image 

1024 pixels

Each pixel provides information about the whole image



Compressive imaging with scattering media

undersampling ratio M/N

re
la

tiv
e 

sp
ar

si
ty

 k
/M

Probability of success for CS recovery

about 105 
experiments 

needed ! 
(measurements 

are fast !) 



Compressive imaging with scattering media

Proof of concept for compressive imaging with simple hardware

Measurements are made in parallel : extremely fast

Price to pay : calibration  



The single-pixel camera

(Baraniuk team, Rice Univ.) 

• Measurements are made sequentially : fundamentally slow 

• But calibration is easier (pseudo-randomness)   



Experimental setup

Multiply scattering
medium

Speckle

DMD
binary amplitude�modulator

Telescope

L2
L1

P

Beam blocker

Camera

Laser

High number of pixels, 
inexpensive, fast,


but binary {0,1} amplitude 
modulation.

 Can we instead use a DMD 
Binary Amplitude Modulator ?

No phase control at input —> can only measure intensity | Eout |



Compressive imaging with scattering media

A double phase retrieval problem: 
at calibration stage 

output speckle image  
intensity (measured, 
known up to noise) 

real (binary) input  
(known) 

complex TM  
(unknown, iid gaussian)

output speckle image  
intensity (measured, 
known up to noise) 

real input  
(unknown) complex TM  

(estimated at calibration)

at imaging stage 

y = |Hx|

y = |Hx|
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Compressive imaging with scattering media

A new single phase retrieval algorithm 
for both problems with different priors

A double phase retrieval problem: 

prSAMP : phase retrieval with Swept Approximate Message Passing

• works well with binary {0,1} matrices

• computationally efficient

• flexible signal and noise priors

• Code + demo available ( IPOL, Rajaei et al. 2017 )



Compressive imaging with scattering media

4 ways to assess the performance of the calibration  
(NB ground truth not available !) 

- prediction error : for a known xin , compare yout to | Dest xin |  
- eigenvalue distribution  
- focusing results 
- imaging results



Compressive imaging with scattering media

prediction error 

 number of training samples P = α N

prediction 

mean square error correlation 



Compressive imaging with scattering media

 Distribution of eigenvalues

prediction 

Distribution of normalized eigenvalues, comparison with random matrix 
theory (Marcenko-Pastur), for different undersampling ratio



Compressive imaging with scattering media

Goal : use estimated D to focus light on output plane 

prediction 

What is the best binary x as input, to focus on only a few target output 
pixels ? 

Light focusing

one can use :  
•  binarized phase conjugation  

• or the same bayesian model 
used for calibration, here 
particularized for the estimation 
of x, with a binary prior.



Compressive imaging with scattering media

Imaging results

original

reconstructed

• Better images can be obtained with more precise signal priors  
• Larger images raise significant computational issues 

ex for 128x128 images: H is 105 x 105 (5 GB in memory)
Phase retrieval algorithms do not scale well : see preprint        
Fast phase retrieval in high dimension : a block-based approach,      
B. Rajaei et al, arXiv:1602.02944 



Compressive imaging with scattering media

(Compressive) imaging through strongly scattering 
material is possible thanks to wavefront shaping 

with expensive & low res. SLM,         
8 shots / sparse image

(our previous studies)

with cheap & high res. DMD, 

1 shot / image ! 

price : robust and scalable PR

new algorithm : prSwAMP



«  Ask not what computing can do for optics – 
ask what optics can do for computing »



Towards optical computing

Now, let us just only consider the previous experiment as a 
“black box” with input in the SLM and output on the CCD 

DATA IN DATA OUT

Optical		
Random	Projections 

Spatial Light Modulator 

camera Laser 

0100101011101… 0101110…

DAC ADC



Towards optical computing

• These components can be very fast (kHz), with high pixel counts (10 Mpix) 
▷ potentially 10 Gbs total throughput

• This simulates the operation y = |Mx| with M a complex random iid 
matrix of size potentially 107 x 107     (TBs of memory) 

• The key idea : if you just want to compare outputs you do not 
have to know (calibrate) and store this matrix 

• This study presents a very simple proof-of-concept of image 
classification based on kernel ridge regression, where the random 
features are obtained with the optical experiment. 



Example : classification with ridge regression 
on random features

regression

inverting this N x N matrix can be hard  
These are only inner products 

use a kernel for these inner products 

training U : data Y: labels



Kernel ridge regression

Consider the following elliptic kernel (EK) 

and are the complete elliptic integrals of the first / second kind
is the angle between Ui and Uj

Example : classifying the MNIST database 

training set of 60000 training pictures 
(28x28) of handwritten digits 
test set of 10000 digits

Using the EK, one obtains a 1.31 % error rate  

(baseline 12 % with plain ridge regression)



Approximating kernels with random projections

of size N x N

where N is the number 
of training examples

For b = 0,     = |  |, as n —> infinity, this tends to the Elliptic Kernel above !

where W is a random complex matrix with 
gaussian i.i.d. entries, and     a non-linearity 

In the spirit of Rahimi-Recht / ELMs :

of size n x n
where n is the number of 
random features          
no dependency on N !



Random projections

example : at n = 10000 random features, error rate is about 2% 
empirical scaling law in 

+

+
++++++++++ + + + + +

UEK

n number of random features



Random projections

this is precisely what is performed by our optical experiment with    = |  |  

UEK

n number of random features



Random projections

We optically perform an operation that approximates the norm of 
random projections with complex-valued iid Gaussian entries

when the number of output random features tends to infinity, this 
amounts to computing a kernel (ugly but well behaved !)

that efficiently feeds a simple linear classifier (kernel 
ridge regression) 

1st experimental proof of concept on a small dataset : 
needs to be confirmed in large-scale experiments



• computational imaging:                                                     
turning a layer of scattering material into a « super-lens »                                                                          
From  imaging through scattering media  (challenge)                                                                          
to       using scattering media to better image  (opportunity)   

• optical computing                                                              
turning a layer of scattering material  into a « computer »

Conclusion

Multiply scattering media provides «optimal / universal» 
scrambling of information in a fully scalable analog way.



From lab experiment to prototype



From lab experiment to prototype

« OPU »LightOn

Using only off-the-shelf components



From lab experiment to prototype

« OPU »LightOn

Current prototype performs random projections 800 
times faster than CPU at the max size handled by RAM, 
it can also go at much larger sizes



Reservoir computing

Our prototype can be used as a physical implementation of 
large-scale echo-state networks

[diagram from Obst et al. 2013]

Can make ESNs at sizes not 
reachable by standard PCs

POC experiment with the XOR operation [ Dong et al., arXiv:1609.05204 ]



From lab experiment to prototype

We are investigating random projections for a number of 
Machine Learning schemes at scale:  

• Supervised / unsupervised schemes 
• Feed-forward / recurrent  
• dimensionality reduction 
• … 



From lab experiment to prototype

Soon (Q1 2018) available in the cloud with CPU/GPU 
for the beta-users (you !) to play with.



Conclusion
• Large random matrices can be found in Nature : « easily » harvested ! 

• « What the fly actually does is, instead of reducing it, it expands the 
dimension into much larger than it was [using Random Projection], 
and it creates a very sparse point in a high-dimensional 
space » (Brian Gallagher blog post, on a study by Navlakha et al.)

laurent@LightOn.iohttp://www.LightOn.io 

@Laurent_Daudet

• We are hiring (jobs/internships) - located in the center of Paris ! 

• Can provide remote access to our cloud-computing platform

Using	Light	to	change	the	Future	of	Compu5ng		
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